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Fluctuation relations (FRs) are among the few existing general
results in nonequilibrium systems. Their verification requires the
measurement of the total work performed on a system. Neverthe-
less in many cases only a partial measurement of the work is
possible. Here we consider FRs in dual-trap optical tweezers where
two different forces (one per trap) are measured. With this setup
we perform pulling experiments on single molecules by moving
one trap relative to the other. We demonstrate that work should
be measured using the force exerted by the trap that is moved.
The force that is measured in the trap at rest fails to provide the
full dissipation in the system, leading to a (incorrect) work definition
that does not satisfy the FR. The implications to single-molecule
experiments and free-energy measurements are discussed. In the case
of symmetric setups a second work definition, based on differential
force measurements, is introduced. This definition is best suited to
measure free energies as it shows faster convergence of estimators.
We discuss measurements using the (incorrect) work definition as an
example of partial work measurement. We show how to infer the full
work distribution from the partial one via the FR. The inference pro-
cess does also yield quantitative information, e.g., the hydrodynamic
drag on the dumbbell. Results are also obtained for asymmetric dual-
trap setups. We suggest that this kind of inference could represent
a previously unidentified and general application of FRs to extract
information about irreversible processes in small systems.
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Fluctuation relations (FRs) are mathematical equations con-
necting non equilibrium work measurements to equilibrium

free-energy differences. FRs, such as the Jarzynski equality (JE)
or the Crooks fluctuation relation (CFR), have become a valu-
able tool in single-molecule biophysics where they are used to
measure folding free energies from irreversible pulling experi-
ments (1, 2). Such measurements have been carried out with
laser optical tweezers on different nucleic acid structures such as
hairpins (3–6), G quadruplexes (7, 8), and proteins (9–12) and
with atomic force microscopes on proteins (13) and bimolecular
complexes (14). An important issue regarding FRs is the correct
definition of work, which rests on the correct identification of
configurational variables and control parameters. In the single-
trap optical tweezers configuration this issue has been thor-
oughly discussed (17–19).
The situation of how to correctly measure work in small sys-

tems becomes subtle when there are different forces applied to
the system. In this case theory gives the prescription to correctly
define the work (WΓ) for a given trajectory (Γ): Integrate the
generalized force (fλ) (conjugated to the control parameter, λ)
over λ along Γ, WΓ =

R
Γfλdλ. However, in some cases one cannot

measure the proper generalized force or has limited experi-
mental access to partial sources of the entropy production,
leading to what we call incorrect or partial work measurements.
A remarkable example of this situation is dual-trap setups,
mostly used as the high-resolution tool for single-molecule
studies (Fig. 1A). In this case a dumbbell formed by a molecule
tethered between two optically trapped beads is manipulated by
moving one trap relative to the other. In this setup two different

forces (one per trap) can be measured and at least two different
work definitions are possible. In equilibrium conditions, i.e.,
when the traps are not moved, both forces are equivalent: The
forces acting on each bead have equal magnitude and opposite
sign. On the contrary, in pulling experiments, where one trap is
at rest (with respect to water) while the other is moved, the two
forces become inequivalent. This is so because the center of mass
of the dumbbell drifts and the beads are affected by different
viscous drags (purple arrows in Fig. 1B). In such conditions
theory prescribes that the full thermodynamic work must be
defined on the force measured at the moving trap whereas the
force measured in the trap at rest (with respect to water) leads to
a partial work measurement that, as we show below, entails
a systematic error in free-energy estimates. The difference be-
tween both works equals the dissipation by the center of mass of
the dumbbell, which is correctly accounted for only in the correct
work definition.
In this paper we combine theory and experiments in a dual-

trap setup to demonstrate several results. First, we show that if
the wrong work definition is used, free-energy estimates will be
flawed. The error is especially severe in the case of unidirectional
work estimates (e.g., JE) whereas it influences bidirectional
estimates to a lesser extent. This fact is not purely academic:
Measuring the force in the trap at rest is experimentally easier in
dual-trap setups and, in fact, many groups choose to do so (5, 20,
21). For example, if different lasers are used for trapping and
detection, measuring the force in the moving trap poses the
additional challenge of keeping the trapping and detection lasers
aligned while moving them. Second, we show how it is possible,
by using the CFR, to infer the full work distribution from partial
work measurements. We elucidate the inference process in our
dual-trap setup by showing how to reconstruct the correct work
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distribution (i.e., the one we would have measured in the moving
optical trap) from partial work measurements in the wrong op-
tical trap (i.e., the one at rest with respect to water) by using the
CFR. In particular, for symmetric setups the correct work dis-
tribution can be directly inferred by simply shifting the partial
work distribution. In asymmetric setups inference is still possible
in the framework of a Gaussian approximation, but the knowl-
edge of some equilibrium properties of the system is still re-
quired. This type of inference should be seen as an example of
a more general application of FRs that aims at extracting in-
formation about the total entropy production of a nonequi-
librium system from partial entropy production measurements.
This allows us to determine the average power dissipated by the
center of mass of the dumbbell, from which we can extract the
corresponding hydrodynamic coefficient, thereby avoiding direct
hydrodynamic measurements. Moreover, we argue this type of
inference might find applicability to future biophysical experi-
ments where the sources of entropy production are not directly
measurable, e.g., ATP-dependent motor translocation where the
hydrolysis reaction cycle cannot be followed one ATP at a time.
Finally we show how, in symmetric setups, the work definition
satisfying the CFR is not unique. In particular the differential
work, based on differential force measurements (22), still sat-
isfies the CFR and leads to the least-biased free-energy esti-
mates. The distinguishing feature of this work definition is that it
completely filters out the dissipation due to the motion of the
center of mass of the dumbbell. Throughout this paper, and for

simplicity and pedagogical reasons, most of the derivations, cal-
culations, and experiments are shown for symmetric dual-trap
setups whereas the asymmetric case is discussed toward the end
of the paper.

The Model
In dual-trap setups a molecule is stretched by two optical traps,
the control parameter λ being the trap-to-trap distance. Let A
and B denote the two optical traps. When one trap (say trap A) is
moved with respect to the bath while trap B is at rest, suitable
configurational variables are the positions of the beads, both
measured from the center of the trap at rest (trap B). We denote
these variables by yA and yB, Fig. 1B. The total energy of the
system is composed of three terms,

UðyA; yB; λÞ=UmðyA − yBÞ+ kB
2
y2B +

kA
2
ðλ− yAÞ2; [1]

where the quadratic terms model the potential of the optical trap
and Um describes the properties of the tether. However, one
could measure the positions of the beads and the trap-to-trap
distance in the moving frame of trap A (xA, xB, and −λ in Fig. 1B),
and the potential energy in Eq. 1 would be written as

U′ðxA; xB; λÞ=UmðxA − xBÞ+ kA
2
x2A +

kB
2
ðλ+ xBÞ2; [2]

where yA − xA = yB − xB = λ (xA and xB are negative). Central to our
analysis is the equation connecting the potential U and the work
performed on the system by changing the control parameter (1):

W =
Ztf

ti

dt∂tU: [3]

From Eq. 1 we get

W =
Ztf

ti

fA _λdt; [4]

with fA = −kA(yA − λ). Inserting U′ instead of U in [3] gives

W ′=
Ztf

ti

dt∂tU′=−
Ztf

ti

fB _λdt: [5]

Despite their similarity we show that W and W′ are remarkably
different. In fact, from the reference frame of trap A, the bath is
seen to flow with velocity − _λ (Fig. 1B). Because of this flow an
experiment in which trap A is moved is not Galilean equivalent
to one in which trap B is moved. In the presence of a flow the
connection between potential and work, Eq. 3, is not valid any-
more. In fact, thermodynamic work measurements must be
based on the force measured in the trap being moved. This fact
has been discussed in ref. 23, yet the implications to single-mol-
ecule experiments have never been pointed out. Summarizing, if
trap A is moved and B is at rest with respect to water, using the
work W (Eq. 4) in the JE leads to correct free-energy estimates
whereas using W′ (Eq. 5) in the JE leads to a systematic error.
Below we quantify such error in detail. The difference between
W andW′ can be readily discussed in symmetric setups (kA = kB = k)
where calculations are much simpler. To do this we switch to a new
coordinate system: x+ = ð1=2ÞðyA + yBÞ; x− = yA − yB. Here x+ is the
position of the geometric center of the dumbbell, whereas x− is the

A

B C

Fig. 1. Pulling experiments with dual-trap optical tweezers. (A) Force–dis-
tance curves in a pulling experiment on a 20-bp hairpin with our dual-trap
setup. A molecular tether is attached between two trapped beads. By in-
creasing the distance, λ, between the traps the tether is stretched or released
until some thermally activated reaction is triggered, e.g., the unfolding or
folding of a DNA hairpin, and detected as a force jump (black arrows). The
small force jump (0.2 pN) is due to the low-trap stiffness of our dual-trap
setup (’0.02 pN/nm). Inset shows scheme of the hairpin with color-coded
sequence (A/T, yellow/green; G/C, red/blue). (B) Pulling experiments in a
dual-trap setup where trap A is moved at speed _λ and trap B is at rest with
respect to water. λ is the control parameter, yA and yB are the configura-
tional variables with respect to the trap at rest (trap B), and xA and xB are the
configurational variables with respect the moving trap A. (C) Pulling curves
(red stretching, black releasing) for a 3-kb dsDNA tether in a dual-trap setup.
(Inset) The cyclic pulling protocol used in the experiments.
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differential coordinate (22). In this coordinate system the potential
Eq. 1 reads U(x−, x+; λ) = U−(x−; λ) + U+(x+; λ):

U−ðx−; λÞ=Umðx−Þ+ k
4
ðx− − λÞ2;

U+ðx+; λÞ= k
�
x+ −

λ

2

�2

:

[6]

The potential energy term U+ associated to x+ is that of a moving
trap, a problem that has been addressed both with experiments
and with theory (24, 25), whereas the potential energy term U−
associated to x− corresponds to pulling experiments performed
using a single trap and a fixed point. The dumbbell is in contact
with an isothermal bath where the equilibrium state is described
by the Boltzmann distribution and the corresponding partition
function (we assume a weak system–environment coupling, a sit-
uation satisfied in our experimental conditions, SI Text, sections
S1 and S2). Consequently, the 2 df are uncoupled and the total
partition function for the system factorizes,

ZðλÞ=Z+ðλÞZ−ðλÞ
Z± ðλÞ=

Z
dx± expð−βU±Þ; [7]

with β = (KBT)
−1, T being the temperature and KB being Boltzmann

constant. As a consequence free-energy changes in the system can
be decomposed into two contributions:

ΔG=ΔG+ +ΔG−; ΔG± =−β−1 logZ± : [8]

Work can also be decomposed into two contributions, each re-
garding one of the subsystems: W ± =

R
∂tU ± ðx± ; λÞdt. Here W−

contains the work done in stretching the molecule whereas W+ is
pure dissipation due to the movement of the center of mass of the
dumbbell. Note that

W =W− +W+; W ′=W− −W+; [9]

which shows that the difference between W andW′ is entirely due
to W +. The JE holds for W, the standard work definition, so that

ΔG=−β−1 log
�
expð−βW Þ�: [10]

Inserting Eqs. 8 and 9 into Eq. 10, we get ΔG+ + ΔG− =
−β−1〈exp(−β(W+ + W−))〉. In symmetric setups W+ and W−

are independently distributed random variables (SI Text, sections
S1 and S3) and we can conclude that

ΔG± =−β−1 log
�
e−βW

± �
: [11]

Using the JE on both W and W′, we get two different free-energy
estimates: ΔG (Eq. 10) and ΔG′ = −β−1log〈exp(−βW′)〉. The
error E committed by using W′ instead of W can be quantified as

E =ΔG−ΔG′=−β−1 log
hexpð−βW Þi
hexpð−βW ′Þi: [12]

From Eqs. 9 and 10 and again using the fact W + and W − are in-
dependently distributed random variables, we get 〈exp(−βW)〉 =
〈exp(−β(W+ + W−))〉 = 〈exp(−βW+)〉〈exp(−βW−)〉 and simi-
larly for W′. As a consequence,

�
expð−βW Þ�=�expð−βW ′Þ�=�

expð−βW+Þ�=�expð+ βW+Þ� and Eq. 12 is reduced to

E =−β−1 log
�
expð−βW+Þ��
expð+βW+Þ�: [13]

Because x+ is subject to a quadratic potential (Eq. 6), we expect
W+ to be a Gaussian random variable. This is not true in general
for W− given that x− is affected by the nonlinear term Um. For
Gaussian random variables we have

β−1 log
�
expð± βW+Þ�= hW+i± β

2
σ2+; [14]

where by σ2+ we denote the variance of W+. Moreover, dragging
a trapped bead in a fluid causes no free-energy change, so that

ΔG+ =−β−1 log
�
expð−βW+Þ�= hW+i− β

2
σ2+ = 0 [15]

or hW+i= ðβ=2Þσ2+. Inserting Eqs. 14 and 15 into Eq. 13, we get

E = hW+i+ β

2
σ2+ = 2hW+i: [16]

Eq. 16 gives E = βσ2+ > 0, showing that ΔG′ is lower than ΔG
(Eq. 12). Interestingly enough, using W′ instead of W in the JE
leads to free-energy estimates in apparent violation of the second
law. The error on free-energy estimates obtained using W′ in-
stead of W is proportional to the mean work performed on the
center of the dumbbell. This mean work 〈W+〉 is just the mean
friction force times the total trap displacement Δλ,

hW+i= γ+
_λ

2
Δλ; [17]

where γ+ is the friction coefficient of the drag force opposing the
movement of the geometric center of the dumbbell. The value of
γ+ can be independently obtained from equilibrium measure-
ments (26) (SI Text, sections S4 and S5).

Differential Work Measurements
Eqs. 9 and 15 show that free-energy estimates based on the standard
work W and the differential work W− are equivalent:

ΔG=−β−1 log
�
expð−βW Þ�

=−β−1 log
�
expð−βW−Þ�− β−1 log

�
expð−βW+Þ�

=−β−1 log
�
expð−βW−Þ�=ΔG−:

[18]

We stress that this is true only for symmetric setups where W+

and W− are independent random variables. The case of asym-
metric setups is discussed further below. Therefore, W− can be
used for free-energy determination, as has been done in ref. 11,
although without discussion. Eq. 18 does hold only when the
number of work measurements, N, tends to infinity. In all prac-
tical cases we deal with finite N and the Jarzynski estimator is
biased (27, 28). The bias is strongly linked to the typical dissipa-
tion Dtyp and a reliable estimate of free-energy differences
requires a number of work measurements, which scales as N ’
exp(Dtyp) (29, 30), so that even a small reduction in Dtyp entails
a considerable improvement in the convergence of free-energy
estimators. Moreover, the bias is superadditive. Let us consider
for simplicity Gaussian work distributions. In this case the bias,
BGWD
N , in the large N limit is a function of the variance of the

distribution σ2 and of N (27):

BGWD
N =

exp
�
β2σ2 − 1

�
2βN

: [19]

BGWD
N is a convex function of σ and is superadditive; i.e.,

BGWD
N ðσ2 +ϕ2Þ>BGWD

N ðσ2Þ+BGWD
N ðϕ2Þ. This means that, should

the work be the sum of two independent Gaussian contributions,
the bias on the sum is greater than the sum of the biases. Although
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Eq. 19 was derived under strong assumptions, superadditivity also
holds for other theoretical expressions for the bias and has been
checked in our experimental data (see below). Let us introduce the
following Jarzynski estimators for finite N,

ΔGN =−β−1 log
1
N

XN
i=1

e−βWi ; [20]

ΔG±
N =−β−1 log

1
N

XN
i=1

e−βW
±
i ; [21]

and the corresponding bias functions,

BN =ΔGN −ΔG [22]

B±
N =ΔG±

N −ΔG: [23]

Because W = W + + W −, superadditivity guarantees

BN ≥ B−
N + B+

N ≥ B−
N : [24]

Because of Eq. 24 differential work measurements always im-
prove the convergence of free-energy estimates in dual-trap setups.
This is especially important in all those cases in which bidirectional
methods (e.g., the CFR) cannot be used and one has to use unidi-
rectional methods.

Pulling on dsDNA
The theory discussed so far has been put to test in a series of
pulling experiments performed in a recently developed dual-trap
optical tweezers setup that directly measures force in each trap
(31, 32). The setup can move the two optical traps independently
and measure their relative position with subnanometer accuracy,
giving direct access to both W and W′. In these experiments 3-kb
dsDNA tethers (’1 μm in contour length) were stretched be-
tween 1 pN and 3 pN (Fig. 1C) in a symmetric dual-trap setup
(kA = kB = 0.02 pN/nm), using 4-μm silica beads as force probes.
The experiments were performed moving one of the two traps
(trap A) with respect to the laboratory frame and leaving trap B
at rest. All experiments were performed in PBS buffer (pH
7.4, 1 M NaCl). We chose cyclical protocols (λt : λ0 = λTc ,
where Tc is the total duration of the cyclic protocol). The
excursion of the control parameter, Δλ= λTc=2 − λ0, was varied
between 200 nm, 400 nm, and 600 nm, and the pulling speed
was varied between 1.35 ± 0.05 μm/s, 4.3 ± 0.1 μm/s, and 7.2 ±
1 μm/s. Given the force–distance curves, the total dissipation
along cycles was measured:

D=
I

dλfA; D′=−
I

dλfB: [25]

The CFR (16) is a symmetry relation between the work distribution
associated to the forward (PF) and time-reversed (PR) protocols:

PFðW Þ=PRð−W Þexp�βðW −ΔGÞ�: [26]

In the case of cyclic protocols PF = PR = P and ΔG = 0 so that
the CFR takes the form

PðDÞ= expðβDÞPð−DÞ: [27]

Such symmetry of the probability distribution for D can be di-
rectly tested in cases where negative dissipation events are ob-
served. In Fig. 2A we show measured work histograms (solid
points, left-hand side of Eq. 27) and reconstructed histograms

(open points, right-hand side of Eq. 27). If Eq. 27 is fulfilled,
then the measured and reconstructed histograms match each

A

B

C

Fig. 2. Work distributions. Work statistics are obtained on cyclic protocols
with a 200-nm excursion with different pulling speeds (columns). Four dif-
ferent work observables are considered. In each case the solid points are
direct work measurements (left-hand side of Eq. 27). To improve statistics
these distributions are calculated as the convolution of the distribution of
the work performed while stretching with that performed while releasing.
For that we took all forward and reverse work values WF, WR and combined
them, W = WF + WR, to get a joint work distribution for the cycle. Open
symbols are the reconstructed histogram (right-hand side of Eq. 27). Dif-
ferent columns refer to different pulling speeds, _λ, as shown on top. (A)
Comparison of the measured and reconstructed distributions according to
the two definitions of Eq. 25 (D, D′). The distribution for D satisfies the CFR
Eq. 27; i.e., the measured and reconstructed distributions superimpose. The
distribution for D′ does not satisfy it. Horizontal error bars represent the
systematic error in work measurements, and vertical error bars denote sta-
tistical errors. (B) The CFR, Eq. 27, is satisfied within the experimental error
for D, D+, and D− but not for D′. (C) Comparison between the measured and
reconstructed distributions for D− and D+ (Eqs. 28 and 29), both of which
satisfy the CFR. Horizontal error bars represent the systematic error in work
measurements, and vertical error bars denote statistical errors.
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other. A quantitative measure of the deviation from Eq. 27 can
be obtained from the ratio P(D)/P(−D), as shown in Fig. 2B.
Experimental data show that D fulfills the FR whereas D′ does
not. In Fig. 2C we show that the probability density functions of
D+ and D−, with

D− =
D+D′

2
[28]

D+ =
D−D′

2
; [29]

are experimentally found to satisfy a FR as in Eq. 27. D− is just
the differential work, W −, Eq. 9 evaluated on a cyclic protocol,
whereas D+ is the dissipation due to the movement of the center
of mass of the dumbbell. Summarizing, although in general W is
the only observable we expect to fulfill a FR, in symmetric setups
two new FRs emerge, for W − and W +. In Fig. 3 A and B we
compare the predictions of Eqs. 12 and 17 with experimental
results for different pulling speeds, _λ, and different displace-
ments Δλ. Eq. 17 must be used to correct free-energy estimates
obtained in all those dual-trap setups that do not measure the
force applied by the trap that is being moved (as in refs. 5, 20,
and 21). The advantages of usingW− in free-energy estimates are
shown in Fig. 3C. There we show the convergence of the Jarzynski
estimator with sample size for the cycles in Fig. 1C. Being
evaluated over cycles, the expected free-energy change is zero.
The convergence of the estimator is faster for W− than for W in
the three cases (Eq. 24). The effect is enhanced in our experi-
ments by the high pulling speed (in the range 1–7 μm) and by the
large bead radius (2 μm). Let us note that due to the finite
lifetime of molecular tethers and unavoidable drift effects, raising
the pulling speed is a convenient strategy to improve the qual-
ity of free-energy estimates. Similar results have been found also
at low pulling speeds where, again, W′ does not satisfy the CFR
(SI Text, section S7).

Experiments on DNA Hairpins
Fluctuation theorems are used to extract folding free energies
for nucleic acid secondary structures or proteins. We further
tested the different work definitions by performing pulling
experiments on a 20-bp DNA hairpin (Fig. 4A) at a 0.96 ±
0.02-μm/s pulling speed in the same dual-trap setup as in the
previous dsDNA experiments. In this case the work performed
during the unfolding and that performed during the refolding of
the molecule were considered separately, as is customary for
free-energy determination. In Fig. 4B we present forward and
reverse work histograms for W, W′, and W+. Again W and W−

both fulfill the CFR but W shows higher dissipation than W−,
resulting in slower convergence of unidirectional free-energy
estimators (Fig. 4C). The difference between unidirectional free-
energy estimates based on W and W− is in this case ’1KBT. As
previously discussed for double-stranded DNA (Fig. 2A), W′
does not fulfill the CFR and, as a consequence, unidirectional
free-energy estimates based on W′ are flawed. In our experi-
mental conditions the error committed by using the wrong work
definition is again positive and equal to E ’ 3KBT. As previously
discussed this leads to a negative average dissipated work, ap-
parently violating the second law. It must be noted that the

A

B

C

Fig. 3. Bias in unidirectional free-energy estimators. (A) Error ðEÞ on free-
energy estimates (Eq. 12) committed by using JE for W′. Circles, diamonds,
and squares refer to excursions of 200 nm, 400 nm, and 600 nm. Three dif-
ferent pulling speeds were considered in each case. Note that in this case
work is evaluated over closed cycles (ΔG = 0) and the error is defined as
E =−β−1 loghe−βW ′i. (B)〈W+〉displays a bilinear dependence on pulling speed
_λ and (Inset) Δλ as expected from Eq. 17. Solid lines are linear fits to the
experimental results, which contain a single fitting parameter. The shaded
area (Inset) corresponds to the region within 1 SD from the expected value
of 〈W+〉 based on equilibrium measurements of γ+ (SI Text, sections S4 and
S5). (C) Experimental bias measurements from the cycles shown in Fig. 1C.
The plots show the bias (Eqs. 22 and 23) as a function of the number of work
measurements, N. The three plots correspond to different pulling speeds
(7.2 μm/s, 4.3 μm/s, and 1.35 μm/s). Interestingly B−

N � BN , which guarantees
faster convergence of free-energy estimates. Moreover, BN is also larger than

the sum B− + B+ (dashed line); i.e., the bias is superadditive (compare with
Eq. 24). The error bars represent the statistical error on free-energy de-
termination, not including systematic calibration errors in force and dis-
tance. Solid lines show the theoretical predictions from ref. 28 for Gaussian
work distributions. Note that these are not fits but predictions that use only
the mean dissipation as an input parameter.
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difference in free-energy estimates based on W− and W is a
finite-size effect, whose magnitude decreases when an increasing
number of work measurements are considered. On the contrary
the error committed by using W′ does not vanish by increasing
the number of work measurements. It can be noted from Fig. 4B
that, although W′ does not fulfill the CFR and gives wrong
unidirectional estimates, its forward and reverse distributions
apparently cross at W′ = ΔG within the experimental error. Al-
though this could be used for free-energy determination, the

result should be taken with caution as we have no general proof
that this should happen in all cases.

Free-Energy Inference from Partial Work Measurements
The JE and CFR are statements on the statistics of the total
dissipation in irreversible thermodynamic transformations. The
need to measure the total dissipation limits the range of appli-
cability of these and other FRs. For example, testing FRs con-
cerning the dynamics of molecular motors would need the
simultaneous measurement of both the work performed by the
motor and the number of hydrolyzed ATPs. Here we demon-
strate that, at least in some cases, a different approach is possi-
ble. Let us start by considering the simple case of symmetric
setups as developed in the previous sections. In the experiments
discussed so far there are two sources of dissipation that we were
able to measure and characterize separately: the motion of the
dumbbell and the dissipation of the differential coordinate. We
already learned that W satisfies a FR whereas W′ does not.
Moreover, we know thatW = (W− +W+)/2 andW′ = (W− −W+)/2
and that, being W+ and W− uncorrelated random variables,
W and W′ have the same variance. Imagine now to have only
partial information on the system. For example, one could be
able to measure force only in the trap at rest, as many experi-
mental setups do. With this information, and in absence of any
guiding principle, no statement about the total entropy pro-
duction is possible. We will find such a guiding principle if we
assume the FR to hold for W. Knowing that W and W′ have the
same variance, we just have to shift the work distribution P′(W′)
by W = W′ + Δ to get a new distribution that satisfies the CFR.
In practice this is done starting from the set of W′ values and
tuning the value of Δ (Fig. 5A) until P(W) = P′(W − Δ) fulfills
the CFR (Fig. 5B). In the case of the hairpin, this same shifting
procedure is operated for both forward and reverse work dis-
tributions. Again the value of Δ is tuned (Fig. 5C) until the
CFR symmetry is recovered (Fig. 5D). The unique value of Δ
that restores the validity of the CFR equals the average work
dissipated by the motion of center of mass of the dumbbell,
giving the hydrodynamic coefficient γ+ via Eq. 17. Let us note
that, once the work distribution in the correct trap (i.e., the
moving trap) has been recovered, then we could also extract the
correct free-energy difference (the value of ΔG, Fig. 5E)
and infer the distribution for the differential work W− by
deconvolution.
The extension of this analysis to the asymmetric case is more

complex but equally interesting (Fig. 6A). The decomposition of
W, W′ in W+ and W− (Eq. 9) is still possible although W+, W− are
not uncorrelated variables anymore and neither W+ nor W−

satisfies a FR. In this general case only W satisfies a FR (but not
W′, W+, or W−). Remarkably enough, in the framework of a
Gaussian approximation, it is still possible to infer the correct
work distribution P(W) out of partial work W′ measurements.
The analysis is presented in SI Text, section S6. In this case it is
enough to know the trap and molecular stiffnesses kA, kB, km, i.e.,
some equilibrium properties of the system, for a successful in-
ference. To reconstruct P(W) both the mean and the variance of
P′(W′) must be changed, which can be achieved by doing a con-
volution between the P′(W′) and a normal distribution: PΔ;Σ =
P′⋆NðΔ;ΣÞ, where ⋆ denotes the convolution operator and
NðΔ;ΣÞ is a normal distribution with mean Δ and SD Σ. Starting
from a distribution P′(W′) there are infinitely many choices of Δ
and Σ that yield a PΔ,Σ(W) satisfying the CFR. Indeed, let us
suppose that the pair Δ*, Σ* is such that PΔ* ;Σ*ðW Þ satisfies the
CFR. Then it is easy to check that P

Δ*+ϕ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ*2+2ϕKBT

p will also

satisfy the CFR for any ϕ (Fig. 6B). In this situation the inference
cannot rest on the CFR alone. Explicit calculations in the
Gaussian case (SI Text, section S6) show that variances (σ2)

A B

C

Fig. 4. Work measurements on a DNA hairpin. (A) Scheme of the experi-
mental setup (beads and hairpin not to scale). The hairpin is presented with
color-coded sequence (A/T, yellow/green; G/C, red/blue). (B) Work measure-
ments upon unfolding and refolding according to three different work
definitions: W (Top), W′ (Middle), and W− (Bottom). In this experiment
pulling speed was 0.96 ± 0.02 μm/s. Open symbols show an estimate of
the refolding work distributions reconstructed from the unfolding dis-
tribution via the CFR (Eq. 26). W and W− fulfill the fluctuation theorem
whereas W′ does not. Horizontal error bars represent the systematic
error on work measurements, and vertical error bars denote statistical
errors. The contributions of trap, handles, and single-stranded DNA have
been removed as detailed in ref. 6. (C ) Unidirectional estimates for the
free energy from the unfolding work distribution. The optimal estimator
based on W− (red) converges to the correct value ΔG0 = 51KBT as mea-
sured from bidirectional estimates. The estimator based on W (green)
shows a larger bias and overestimates the free energy by ’1KBT. The
estimator based on W′ (blue) converges to a wrong free-energy difference
ðΔG− EÞ that is ’3 KBT below the correct value, against the second law. Note
that the error committed by using W is due to finite-size effects and
decreases when more unfolding curves are measured. In contrast, the error
committed by using W′ remains finite for all sample sizes. The error bars
represent the statistical error on free-energy determination and do not in-
clude the systematic error due to force and distance calibrations, which is
around 5%.
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and means (〈. . .〉) of P(W) and P′(W′) are related by an asym-
metry factor (AF),

AFðkA; km; kBÞ= σ2W − σ2W ′
hW i− hW ′i=KBT

4kmðkA − kBÞ
kAðkB + 2kmÞ; [30]

which depends only on equilibrium properties such as the stiffnesses
of the different elements (SI Text, section S6). Knowing the AF
allows us to select the unique pair Δ, Σ such that AF = Σ2/Δ with
PΔ,Σ(W) satisfying the CFR. The inference procedure can be de-
scribed with a very simple formula (SI Text, section S6). The key
idea is to proceed as previously done in the case of symmetric setups
by just shifting the mean of P′(W′) by a parameter δ until the CFR is
satisfied; i.e., Δ = δ, Σ = 0 (Fig. 6B, Center). From the values of AF
and δ we can reconstruct P(W) by using the formulas

Δ=
2δ

2− βAF
; Σ2 =

2δAF
2− βAF

: [31]

The inference procedure for an asymmetric setup is shown in
Fig. 6 C and D for cyclic dsDNA pulling experiments. For non-
cyclic pulls (ΔG ≠ 0) the procedure can be easily generalized in
the line of what has been shown for the case of the hairpin in the
symmetric setup (Fig. 5C).

Discussion
FRs are among the few general exact results in nonequilibrium
statistical mechanics. Their validity has been already extensively

tested in different systems, ranging from single molecules to sin-
gle-electron transistors, and in different conditions (steady-state
dynamics, irreversible transformations between steady states, and
transient nonequilibrium states). At the present stage, the main
widespread application of FR is free-energy recovery from non-
equilibrium pulling experiments in the single-molecule field. What
we are presenting here is an application of FR for inference. All
FRs are statements about the statistics of the total entropy pro-
duction in a system plus the environment. If some part of the
entropy production is missed or inadequately considered, FRs will
in general not hold. This is why, for irreversible transformations
between equilibrium states, we have a FR for the dissipated work
(which is the total entropy production) but not for the dissipated
heat (which is just the entropy production in the environment).
The main tenet is now that the violation of FRs in a given setting
provides useful information: It is evidence that some contribution
to the total entropy production is being missed. We have given
rigorous examples in which the violation of FRs can be used to
characterize the missing entropy production. Remarkably, in our
model system, one could even replace the moving trap by a mov-
ing micropipette, an object lacking any measurement capability,
and still infer the work distribution exerted by that object on the
molecular system [this extremely asymmetric setup would still be
described by Eq. 30, with kA → ∞ and AF = 4KBTkm/(kB + 2km)].
These results open the exciting prospect of extending and applying
these ideas to steady-state systems, such as molecular motors, to
extract useful information about their mechanochemical cycle.

A B

C D E

Fig. 5. Inference of P(W) from partial work measurements in the symmetric case. (A) The distribution P′(W′) in the case of the dsDNA tether, for the work
measured in the wrong trap,W′. The distribution does not fulfill the CFR. To recover the correct work distribution P(W),W′ is shifted by a constant amount Δ.
The shifted distribution is tested for the CFR by defining the function H(W′) = log(P′(W′ − Δ)/P′(−W′ − Δ)). The prediction by the CFR is H(W′) = β(W′ − ΔG). (B)
Evolution of H(W′) as a function of W′ for different values of Δ. The value Δ* for which the slope of H(W′) is equal to 1 (work being measured in KBT units)
determines the correct work distribution P(W ) (Δ ’ 15, Inset). (C ) In the case of bidirectional measurements both the forward and the reverse work
distributions PF′ðW ′Þ, PR′ð−W ′Þ are shifted by an amount Δ in opposite directions. (D) Evolution of the function H= logðPF′ðW ′−ΔÞ=PR′ð−W ′−ΔÞÞ as
a function of Δ. Again the CFR predicts H should be linear in W′ with slope 1. (E ) Inference of the correct work distributions and ΔG measurement.
For each value of Δ a linear fit A(Δ)W + B(Δ) to H is performed. The value Δ* for which A(Δ*) = 1 (Δ* ’ 7) is the shift needed to recover the full work
distribution P(W ) from partial work measurements in the wrong trap. Moreover, from the parameter B we can infer the free energy difference as B(Δ*) =
−ΔG (ΔG ’ 60KBT ).
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Conclusions
To give a clear and definite meaning to free-energy inference we
have discussed irreversible transformations between equilibrium
states performed with dual-trap optical tweezers. In these ex-
periments a molecular tether is attached between two beads that
are manipulated with two optical traps. The irreversible trans-
formation is performed by increasing the trap-to-trap distance at
a finite speed. In this kind of transformation the dissipated work
equals the total entropy production, leading to our first result: In
pulling experiments work W must be defined on the force mea-
sured in the trap that is moved with respect to the thermal bath.
The force measured in the trap at rest gives rise to a work def-
inition, W′, which does not satisfy the FR and is unsuitable to

extract free-energy differences. We have called W′ a partial work
measurement because it misses part of the total dissipation. This
result is of direct interest to experimentalists: Many optical tweezers
setups are designed so that they can measure onlyW′. We have thus
imagined a situation in which W′ is measurable and W is not and
asked the question, Can we infer the distribution of W from that of
W′? If the question is asked in full generality, without any system-
specific information, the answer is probably negative. Knowing only
the extent of violation of the FR will be of little use; in general,
some additional system-specific information will be needed for a
successful inference. Here we discussed free-energy inference in the
framework of a Gaussian approximation; the extent to which such
inference is generally possible should be the subject of future
studies. Let us summarize our main results:

• A symmetry of the system can be crucial for the inference. For
left–right symmetric systems (as exemplified in our symmetric
dual-trap setup) the P(W) can be inferred from P′(W′) just by
imposing that the former satisfies the CFR. When symmetry
considerations cannot be used, the knowledge of some equilib-
rium properties of the system may suffice to successfully guide
the inference (such as the stiffnesses for the asymmetric setup).

• The inference process can be used to recover the full dissipa-
tion spectrum plus additional information about the hidden
entropy source. In our specific dual-trap example W′ does not
account for the dissipation due to the movement of the
center of mass of the dumbbell and the inference procedure
can be seen as a method to measure the associated hydro-
dynamic drag.

• We stress the benefits of using symmetric dumbbells in single-
moleculemanipulation. In this case an alternative work definition,
the differential workW−, fulfills the CFR and is thus suitable for
free-energy measurements. Given that W− is less influenced by
dissipation than W, switching from W to W− ensures faster con-
vergence of unidirectional free-energy estimates. For asymmetric
setups W− does not satisfy a FR anymore (only W does) and
cannot be used to extract free-energy differences.

A deep understanding of how to correctly define and mea-
sure thermodynamic work in small systems (a long debated question
in the past 20 y) is not just a fine detail for experimentalists and
theorists working in the single-molecule field, but an essential
question pertaining to all areas of modern science concerned with
energy transfer processes at the nanoscale. The added feature of
free-energy inference discussed in this paper paves the way to apply
FRs to new problems and contexts. This remains among the most
interesting open problems in this exciting field.

Methods
Buffers and DNA Substrates. All experiments were performed in PBS buffer,
1 M NaCl at 25 °C; 1 mg/mL BSA was added to passivate the surfaces and
avoid nonspecific interactions. The dsDNA tether was obtained by ligating
a 1-kb segment to a biotin-labeled oligo at one end and a digoxigenin la-
belled oligo at the other end. The DNA hairpin used in the experiments has
short (20 bp) molecular handles and was synthesized by hybridization and
ligating three different oligos. One oligo is biotin labeled and a second is dig
labeled. Details of the synthesis procedure are given in ref. 33.

Optical Tweezers Assay. Measurements were performed with a highly stable
miniaturized laser tweezers in the dual-trap mode (32). This instrument di-
rectly measures forces by linear momentum conservation. In all experiments
we used silica beads with 4-μm diameter, which give a maximum trapping
force around 20 pN. Data are acquired at 1 kHz.
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A

B

C D

Fig. 6. Inference of P(W) from partial work measurements in the asym-
metric case. (A) Equilibrium force distributions at 2 pN for the 3-kb dsDNA
tether measured in an asymmetric dual-trap setup (kA = 0.012 pN/nm, kB =
0.003 pN/nm, km = 0.0027 pN/nm). (B) Convolution of P′(W′) with different
Gaussian distributions corresponding to different pairs Δ, Σ [values are
shown on top, units are KBT for Δ and (KBT)

2 for Σ2]. We show P′(W) (blue
solid circles), P′(−W)exp(βW) (blue open circles), and P(W) (green solid cir-
cles). Among all different PΔ,Σs only one matches the correct work distri-
bution P(W); i.e., only one reconstructed distribution is physically correct
[graph on Right, with Δ = 8KBT, Σ2 = 7.5(KBT)

2]. In this situation the in-
ference cannot rest on the CFR alone, and additional information is required
to infer P(W). (C) Asymmetry factor (AF) as a function of x = kA/kB for different
values of y = km/kB. The blue (red) circles indicate the symmetric (AF = 0) and
asymmetric (AF ’ 1) cases, respectively. (D) The AF defined by Σ2 = AF × Δ (red
line) and the CFR invariance Δ = Δ* + ϕ, Σ2 = Σ*2 + 2ϕKBT for any ϕ (blue line),
select a narrow range of possible pairs (Δ, Σ) at the intersection between the
blue and red lines, where both constraints are satisfied. Blue points represent
pairs (Δ, Σ) such that PΔ,Σ is compatible with the CFR. In our setup we measure
both P(W ) and P(W′) so the correct values of Δ and Σ can be measured as: Δ =
<W> − <W′>, Σ2 = σ2W − σ2W independently of the inference [Δ = 8KBT, Σ2 =
7.2(KBT)

2, black solid circle]. These measured values fall in the inferred in-
tersection region, validating the inference process.
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