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Summary

The case-cohort design facilitates economical investigation of risk factors in a large survival

study, with covariate data collected only from the cases and a simple random subset of the full

cohort. Methods that accommodate the design have been developed for various semiparametric

models, but most inference procedures are based on asymptotic distribution theory. Such inference

can be cumbersome to derive and implement, and does not permit confidence band construction.

While bootstrap is an obvious alternative, how to resample is unclear because of complications

from the two-stage sampling design. We establish an equivalent sampling scheme, and propose a

novel and versatile nonparametric bootstrap for robust inference with an appealingly simple

single-stage resampling. Theoretical justification and numerical assessment are provided for a

number of procedures under the proportional hazards model.
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1. Introduction

In clinical or epidemiologic investigation of infrequent disease endpoints, cohort studies

require a large sample size, but full-cohort covariate data collection can be costly. Case-

cohort sampling (Prentice, 1986) offers an economical alternative, to collect covariates only

from the cases and a simple random subcohort. A number of statistical methods have been

developed for the proportional hazards model under such sampling. Prentice (1986) and Self

& Prentice (1988) proposed a pseudolikelihood approach. Kalbfleisch & Lawless (1988) and

Chen & Lo (1999) suggested methods to take better advantage of the data so as to improve

estimation efficiency. Borgan et al. (2000), Kulich & Lin (2004), and Nan (2004) studied a

variant of the design where some covariates or surrogate measures are available for the full

cohort. Other semiparametric models have also been investigated, including the additive

hazards model (Kulich & Lin, 2000), linear transformation models (Chen, 2001; Kong et al.,

2004; Lu & Tsiatis, 2006; Chen & Zucker, 2009), and the accelerated failure time model

(Nan et al., 2006; Kong & Cai, 2009).

Statistical challenges with the case-cohort design lie in the two-stage sampling. After the

first stage resulting in the full study cohort, the second stage selects a subcohort by simple

random sampling without replacement. As a result, interval estimation based on asymptotic
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distribution theory, which is routinely adopted and specific to each point estimation

procedure, is often cumbersome to derive and implement. Although the jackknife approach

of Barlow (1994) to variance estimation in the proportional hazards model may deal with

some of these issues, neither approach permits confidence band construction for an infinite-

dimensional quantity, e.g., a covariate-specific survival function for prediction. While a

bootstrap method would be advantageous in these regards, how to resample is not obvious

since the covariates are not available for the full cohort. The only existing bootstrap method

is due to Wacholder et al. (1989), which has been adopted for the proportional hazards

model and accelerated failure time model (Kong & Cai, 2009). However, the method fixes

the case numbers in the subcohort and full cohort. Theoretical justification is lacking and it

may not always perform well.

We propose a novel nonparametric bootstrap that involves only a single-stage resampling,

after establishing an equivalent sampling scheme for the case-cohort design. Three existing

point estimation methods under the proportional hazards model will set the stage and

illustrate our proposal.

2. Point estimation methods under the proportional hazards model

Write the survival time as T and the censoring time as C. As a result of censoring, they are

observed only through follow-up time X = T ∧ C and censoring indicator Δ = I(T ≤C), where

∧ is the minimization operator and I(·) is the indicator function. Denote the covariate vector

by Z; we confine our attention to time-independent covariates. The proportional hazards

model (Cox, 1972) postulates

(1)

where Λz is the cumulative hazard function of T given Z = z, Λ0 is an unspecified baseline

cumulative hazard function, β0 is an unknown regression coefficient, and ⫫ denotes

statistical independence. Under cohort sampling, the data consist of (Xi, Δi, Zi), i = 1, …, n,

as n independent replicates of (X, Δ, Z). Define counting process Ni(t) = ΔiI(Xi ≤ t) and at-

risk process Yi(t) = I(Xi ≥ t). Further, introduce empirical processes

where  ≡ {1, …, n} is the index set. The maximum partial likelihood estimator (Cox,

1972, 1975), β̂, is the solution of
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The Breslow (1972) estimator of Λ0(t) is Λ̂(t; β̂), with

These functional representations are due to Huang & Wang (2000).

However, under the case-cohort design, the covariates are ascertained only for the cases, for

whom Δi = 1, and a simple random subcohort  ⊂  of size m. Thus, U(t, β) and V(t, β) in

Ψ(β) and Λ̂(t; β) are no longer available; they are the full-cohort empirical estimates of E{Y

(t)eβ
TZ} and E{Y(t)Zeβ

TZ}, respectively. Different replacements are made in the following

three case-cohort estimation procedures, giving rise to

(2)

and subsequently estimator {βk̂, Λ̂k(t; β̂k)}, for k = 1, 2, 3. Self & Prentice (1988) adopted the

subcohort counterparts,

Chen & Lo (1999) showed that one can make better use of the case-cohort data. Both E{Y

(s)eβ
TZ} and E{Y(s)Zeβ

TZ} are weighted averages of case- and control-specific quantities,

e.g., E{Y(s)eβ
TZ} = E(Δ)E{Y(s)eβ

TZ | Δ = 1} + {1 − E(Δ)}E{Y (s)eβ
TZ| Δ = 0}, and

estimating the case-specific quantities may utilize the full cohort instead of the subcohort.

By taking m1/m as an estimate of E(Δ) with m1 = Δi, their first method adopts

where n1 = Δi,  = {i ∈ : Δi = 1}, and  = {i ∈  : Δi = 0}. If n1/n instead is used as an

estimate of E(Δ), their second method has

Rescaled estimating functions nΨ1(β) and nΨ2(β), and therefore β̂1 and β̂2, do not require the

full cohort size, n. As pointed out in Prentice (1986), the case-cohort design does not
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necessarily require a full cohort roster and thus n need not be known; see also Chen & Lo

(1999, Remark 2). However, β̂3 and the three estimators of the baseline cumulative hazard

function require that the full cohort be well-defined and n known.

These regression coefficient estimators, as commonly adopted, have been well studied, and

their asymptotics-based inference procedures have been developed (Self & Prentice, 1988;

Chen & Lo, 1999). However, inference for the baseline cumulative hazard function or a

covariate-specific survival function is only available in a pointwise fashion for the method

of Self & Prentice (1988). A nonparametric bootstrap is desirable to permit simple and

automatic inference, for these as well as other procedures.

3. Equivalent sampling scheme and the proposed bootstrap

Efron’s (1979) bootstrap would mimic the two-stage sampling to resample the full cohort as

a pseudo-population, but the full cohort is not fully observed and possibly not even well-

defined. Therefore, the procedure is not applicable, as recognized by Wacholder et al.

(1989). In the sample survey literature, Gross (1980), Bickel & Freedman (1984), Chao &

Lo (1985), and Sitter (1992a,b) developed methods to construct a pseudo-population for

simple random sampling without replacement. Although these methods can be adapted, the

resulting bootstraps may not be ideal, for several reasons. First, the resampling is complex,

especially when n/m is not an integer. Second, cases outside the subcohort are not utilized.

Third, this approach does not apply when the full cohort size n is unknown. Finally, a

resample may contain only censored observations. Cohort sampling might suffer this

complication as well (e.g., Kosorok, 2008) but it can be particularly acute with typical case-

cohort studies, where the endpoint is infrequent and the subcohort has limited size.

Appealing to finite population sampling theory seems natural to deal with simple random

sampling without replacement; this tactic is also commonly taken for asymptotic studies

(e.g., Chen & Lo, 1999; Kulich & Lin, 2000; Kong et al., 2004). However, the full cohort is

a random sample, not a finite population of interest. We rather pursue a direct approach by

establishing an equivalent sampling scheme.

Proposition 1

The joint distribution of a set of random variables that are independent and identically

distributed is invariant to reordering by a random permutation.

Since simple random sampling can be implemented via permutation, the subcohort in the

case-cohort design consists of independent and identically distributed random variables, and

so does its complement. Furthermore, the two sets are independent of each other. This fact

does not contradict the well-known dependence structure from simple random sampling,

which is conditional on the full cohort. Write the complement of  as  =  \ . Then, {(Xi,

Δi, Zi) : i ∈ } are m independent replicates of (X, Δ, Z), and {(XiΔi, Δi, ZiΔi) : i ∈ } are n –

m independent replicates of (XΔ, Δ, ZΔ). This results in an equivalent single-stage parallel

sampling scheme.
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This sampling equivalence first facilitates a model-free asymptotic study for the three

estimation methods introduced in § 2.

Proposition 2

Re-define β0 as the solution of

(3)

and subsequently

where τ = sup{t : pr(X > t) > 0}. Suppose that the subcohort fraction m/n converges to a

constant ρ ∈ (0, 1) as both m and n – m approach ∞, and that the conditions in the Appendix

hold. Then, for each k = 1, 2, 3, β̂k is consistent for β0 and Λ̂k(t, β̂k) is consistent for Λ0(t)

uniformly in t ∈ [0, τ]. In addition, n1/2{β̂k − β0, Λ̂k(·; β̂k) − Λ0(·)} converges weakly to a

Gaussian process.

Remark 1—This result is slightly more general than those of Self & Prentice (1988) and

Chen & Lo (1999) as obtained under the proportional hazards model (1). The model (1)

implies the above definitions of β0 and Λ0(·), but not vice versa.

More importantly, our proposal of parallel bootstrapping  and  naturally follows. We

adapt the multiplier or weighted bootstrap, which assigns a nonnegative random weight to

each individual and thus averts the complication of a resample without uncensored

observations (cf. Kosorok, 2008). These independent and identically distributed weights, ξi

for i ∈ , are independent of the data and have unit mean and unit variance; the standard

exponential distribution was used in all our numerical studies reported later. However, a

typical multiplier bootstrap as applied to a single sample standardizes the weights by their

average such that the sum is fixed to the sample size (e.g., Kosorok et al., 2004; Kosorok,

2008), leading to the Bayesian bootstrap of Rubin (1981) if the standard exponential

distribution is chosen for ξi. In contrast, we do not carry out the standardization and

consequently our bootstrap resamples have random sizes m* and n*– m* for  and ,

respectively, where m*= ξi and n* = ξi. While superfluous in the single-sample case,

this modification is critical in the case-cohort design particularly when the full cohort size n

is unknown and thus  is not well defined. In this circumstance, our bootstrap remains

applicable provided that the point estimator is defined.

We now detail the proposed bootstrap for the three estimation methods. Define the bootstrap

counterparts,
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The bootstrap estimator { } results from

(4)

Just like β1̂ and β̂2, their bootstrap counterparts  and  do not require the knowledge of

the full cohort size n.

Theorem 1

Adopt the definitions and conditions in Proposition 2. Suppose that the nonnegative random

variable ξ1 of unit mean and unit variance satisfies . Conditionally on

the data,  has the same asymptotic distribution as n1/2{β̂k
− β0, Λ̂k(·, β̂k) − Λ0(·)} for each k = 1, 2, 3.

The proposed bootstrap gives rise to robust inference, similar to Barlow (1994) but different

from model-based inference of Self & Prentice (1988) and Chen & Lo (1999). The

distribution of { } can be simulated to approximate that of {β̂k −

β0, Λ̂k(·, β̂k) − Λ0(·)}. The implementation requires trivial coding beyond the point

estimators.

Remark 2—Case-cohort sampling specializes to cohort sampling when n = m. In this case,

our proposal reduces to the multiplier bootstrap, which is different from the model-based

resampling method of Lin et al. (1994) for the proportional hazards model. Recently, Cheng

& Huang (2010) developed general theory for the bootstrap in semiparametric models under

cohort sampling. They considered the proportional hazards model as an example, but

focused only on the regression coefficients.

4. Numerical studies

We simulated under a proportional hazards model with a constant baseline hazard and two

covariates. The two covariates were independent, each with a uniform distribution between

−1 and 1; their coefficients were both unity. The censoring time depended linearly on the
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first covariate, having a uniform distribution between 0 and 1.5. The full cohort size was

1000. As a realistic scenario, the baseline hazard was set to 12.5, resulting in approximately

90% censoring, and the subcohort size was set to 200. For a more comprehensive

assessment, two additional scenarios were studied as well. One reduced the subcohort size to

100, while the other changed the baseline hazard to 1 for a censoring rate of approximately

50%. With these three scenarios, the expected sizes of combined cases and subcohort were

280, 190, and 600, including 100, 100, and 500 expected cases, respectively.

To compare with the proposed bootstrap, we also evaluated asymptotics-based inference for

the regression coefficients β1 and β2 as in Chen & Lo (1999, Remark 5) and the bootstrap of

Wacholder et al. (1989); asymptotics-based pointwise inference for the baseline cumulative

hazard function Λ0(·) would require tedious derivation and was not examined. For both

bootstrap methods, we computed standard errors, Wald-type and percentile confidence

intervals for β1, β2, α1 = log Λ0(0.5), and α2 = log Λ0(1). Moreover, a confidence band for

the baseline survival function S0(·) over time [0, 1.25] was constructed, by transformation

from the equal-precision band for log Λ0(·); an equal-precision band has boundaries parallel

to those of the corresponding pointwise Wald-type confidence intervals. The calculation was

based on 1000 bootstrap resamples, but our numerical experiments indicated that a much

smaller bootstrap size, say, 200, would typically suffice for standard errors and Wald-type

confidence intervals (cf. Efron & Tibshirani, 1993, § 6.4).

Table 1 reports the results from 2000 replications. The proposed bootstrap performed well

overall, more so with a larger subcohort; the performance for β1 and β2 was largely

comparable to that of the asymptotics-based inference procedures. The standard errors all

tracked the standard deviations closely. The Wald-type and percentile confidence intervals

had coverage probabilities reasonably close to the nominal level, but the latter slightly

outperformed the former for α1 and α2. The confidence bands for S0(·) also had good

coverage probabilities. In comparison, the bootstrap of Wacholder et al. was less satisfactory

except for β1 and β2 in the circumstance of 90% censoring. At 50% censoring, the second

method of Chen & Lo was noticeably more efficient than their first method for β1

estimation. However, the bootstrap of Wacholder et al. showed little difference in the

standard errors. In addition, the confidence intervals for α1 and α2 often under-covered

whereas the confidence bands for S0(·) tended to over-cover.

Typical case-cohort studies involve infrequent disease endpoints, and have a fairly large full

cohort and a moderate-sized subcohort, say, in thousands and hundreds, respectively. The

preceding simulations and our other numerical experience suggest that the proposed

bootstrap is generally reliable in such circumstances. Furthermore, the bootstrap also

performs well with more frequent disease endpoints.

As an illustration, we analyzed data from the ACTG 175 trial conducted by the AIDS

Clinical Trials Group (Hammer et al., 1996). The study evaluated four treatments,

zidovudine, zidovudine plus didanosine, zidovudine plus zalcitabine, and didanosine, in

HIV-1 infected adults whose screening CD4 counts were between 200 and 500 per cubic

millimeter. A total of 2467 participants were randomized, and the mean follow-up was 29

months with 154 deaths observed. We considered a survival model with two continuous
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covariates, age and log(CD4), and five binary ones, treatment indicators, hemophilia, and

presence of symptomatic HIV infection. All these baseline covariates were measured in the

dataset, and the full cohort was sampled to emulate the case-cohort design. We began with

fitting the proportional hazards model to the full cohort, and subsequently drew 100

subcohorts of size 240 and averaged the case-cohort point estimates and standard errors. The

results are summarized in Table 2, where the bootstrap size of 1000 was used. The case-

cohort estimates were, on average, all close to those from the full-cohort analysis, but more

variable. The two methods of Chen & Lo had estimates comparable to each other and more

efficient than those of Self & Prentice. Consistent with the earlier simulation results, the

standard errors from our bootstrap were very similar to the asymptotics-based ones for all

three case-cohort methods. We also estimated the survival function for an individual with

given covariates and constructed a 95% confidence band by the proposed bootstrap, using

the same approach as in the earlier simulations for the baseline survival function. Figure 1

shows the averaged survival functions and averaged confidence bands over the 100

simulated subcohorts, for the three case-cohort methods. The confidence bands for the two

Chen & Lo methods were barely distinguishable, and tighter than that for Self & Prentice.

5. Discussion

Despite using simple random sampling without replacement in the second stage, the case-

cohort design gives rise to an independent data structure. This result facilitates statistical

developments using standard tools such as empirical process theory. In the literature,

Bernoulli sampling has been suggested in place of simple random sampling, partly to have

an independent and identically distributed sample so as to exploit standard theory (e.g.,

Kulich & Lin, 2000, 2004; Nan et al., 2006). It is now clear that this alteration may be

unnecessary for the purpose.

The three procedures in § 2 are among a large collection of case-cohort estimation methods

for the proportional hazards model. Often, one method does not dominate another in both

feasibility and efficiency. For example, the first method of Chen & Lo is more efficient than

Self & Prentice when estimating the regression coefficients. However, with time-dependent

covariates, the former requires each case outside the subcohort to have its whole covariate

history available. In contrast, the latter only needs the covariate at the failure time, which is

more realistic particularly with prospective sampling. Another reason for the co-existence of

many methods is to accommodate sampling variations, e.g., stratified sampling (Borgan et

al., 2000). A general and automatic tool for inference, such as the proposed bootstrap, is thus

particularly attractive.

We have focused on the proportional hazards model because of its popularity. The proposed

bootstrap should apply to other models with justifications similar to Theorem 1. Under the

framework of our modularized proof as given, essentially it suffices to establish that a new

estimator is a well-behaved and sufficiently smooth functional of empirical processes. This

is clearly the case for the estimators of Kulich & Lin (2000) under the additive hazards

model. However, those of Lu & Tsiatis (2006) under linear transformation models and Nan

et al. (2006) and Kong & Cai (2009) under the accelerated failure time model may challenge

the proof. With the former, an explicit profile estimating function for the finite-dimensional
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parameter may not exist. In the accelerated failure time model case, the estimating functions

are not smooth. Nevertheless, existing techniques may be adopted or adapted to address

these complications.
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Appendix

Proofs of Proposition 2 and Theorem 1

We impose the following fairly standard regularity conditions:

Condition A1

The upper support point τ of X is finite. Further, pr(T > τ) > 0 and pr(C = τ) > 0.

Condition A2

The covariate Z is bounded.

Condition A3

The matrix

is nonsingular, where υ⊗2 ≡ υυT for vector υ.

Condition A1 is adopted to avoid lengthy technical tail treatment.

By Proposition 1, the distribution of {βk̂, Λ̂k (·, β̂k), } is the same under either

case-cohort or single-stage parallel sampling, for any k = 1, 2, 3. Thus, it suffices to prove

Proposition 2 and Theorem 1 under the latter sampling scheme, as we do below. We only
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present the proofs for the case of k = 2, the first method of Chen & Lo (1999). Those for the

other two methods are similar and thus omitted.

Proof of Proposition 2

We express Ψ2(β) and Λ̂2(t; β) as functionals of empirical processes, and exploit empirical

process theory. Such an approach was taken by Huang & Wang (2000) and Kosorok (2008,

§ 4.2.1) under cohort sampling, and becomes feasible and effective for the case-cohort

design under its equivalent single-stage parallel sampling scheme. The empirical processes

are defined for either the sub-cohort  or its complement . Specifically, the four processes

in Ψ2(β) and Λ̂2(t; β) as given by (2) can be written as

Condition A1 effectively limits the time scale to finite interval [0, τ]. Let  be an arbitrary

compact neighborhood of β0. Under Condition A2, the classes of functions associated with

these empirical processes, {N(t) : t ∈ [0, τ]}, {ZN(t) : t ∈ [0, τ]}, {Δ}, {ΔY(t)eβ
TZ : t ∈ [0, τ],

β ∈ }, {(1 − Δ)Y(t)eβ
TZ : t ∈ [0, τ], β ∈ }, {ΔY(t)Zeβ

TZ : t ∈ [0, τ], β ∈ }, and {(1 −

Δ)Y(t)Zeβ
TZ : t ∈ [0, τ], β ∈ }, are all Donsker; see, e.g., Kosorok (2008, § 4.2.1).

Since Donsker implies Glivenko–Cantelli, the empirical processes in A(t), B(t), U2(t, β), and

V2(t, β), converge in probability to their respective limits, uniformly in t ∈ [0, τ] and β ∈  if

applicable. By Condition A1, the limit of U2(t, β) is bounded away from 0 for t ∈ [0, τ] and

β ∈ . One can then show that uniformly Ψ2(β) converges in probability to the left-hand side

of (3), which is a monotone function and admits a unique solution β0 by Condition A3.

Therefore, β̂2 converges in probability to β0. The same technique can be used to prove the

uniform convergence of Λ̂2(t; β). This, coupled with the consistency of β̂2, establishes that

Λ̂2(t; β̂2) converges in probability to Λ0(t) uniformly in t ∈ [0, τ].

By Taylor expansion,

since  is bounded by Condition A2. Using similar techniques as before, one can show

that  converges in probability to −D, which is nonsingular by Condition A3.

Therefore,
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Similarly,

where J(t) is the limit of ∂Λ̂2(t; β)/∂β|β=β0. Thus, asymptotically {β2̂ − β0, Λ̂2(t; β̂2) − Λ0(t)}

is a linear function of {Ψ2(β0), Λ̂2(t; β0) − Λ0(t)}.

Given the asymptotic linearity, it remains to establish the asymptotic normality of {Ψ2(β0),

Λ̂2(·; β0) − Λ0(·)}. Observe that A(·), B(·), U2(·, β0), and V2(·, β0) are asymptotically

equivalent when the term m/n in these expressions is replaced by its limit ρ. For example,

where the last term is op(n−1/2). The asymptotic normality of {A(·), B(·), U2(·, β0), V2(·, β0)}

then follows from the properties of Donsker classes and the functional delta method. Using

Gill (1989, Lemma 3) and the chain rule, one can show that Ψ2(β0) and Λ̂2(·; β0) are

compactly differentiable functionals of {A(·), B(·), U2(·, β0), V2(·, β0)}. Finally, the

functional delta method leads to the asymptotic normality of {Ψ2(β0), Λ̂2(·; β0) − Λ0(·)}.

Proof of Theorem 1

In parallel with A(t), B(t), U2(t, β0), and V2(t, β0), their counterparts A*(t), B*(t), ,

and  in (4) involve bootstrapped empirical processes and bootstrapped subcohort

fraction m*/n*. By Kosorok (2008, Corollary 10.14), these bootstrapped empirical processes

converge in probability to their respective limits, uniformly in t ∈ [0, τ] and β ∈  if

applicable. By the law of large numbers and the continuous mapping theorem, m*/n*

converges in probability to ρ. Then, the same argument as in the consistency proof of

Proposition 2 establishes the consistency of  for β0 and  for Λ0(t) uniformly in t ∈

[0, τ].

Similar to the proof of Proposition 2, we further obtain
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By Kosorok (2008, Theorem 2.6), the bootstrapped empirical processes in A*(t), B*(t),

, and  minus their expectations are all Op(n−1/2). So is . Then,

coupled with the asymptotic linearity result on β̂2 and Λ̂2(t; β̂2), we obtain

Thus, asymptotically { } is the same linear function in terms of

{ }, as {β̂2 − β0, Λ̂2(t; β̂2) − Λ0(t)} in terms of {Ψ2(β0),

Λ̂2(t; β0) − Λ0(t)}.

It remains to show that , conditionally on the

data, has the same asymptotic distribution as n1/2{Ψ2(β0), Λ̂2(t; β0) − Λ0(t)}. This can be

obtained by using a conditional multiplier central limit theorem (Kosorok, 2008, Theorem

2.6) along with the functional delta method and chain rule, as argued in the asymptotic

normality proof of Proposition 2.
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Fig. 1.
Estimated survival functions and 95% confidence bands over [0, 30] months, as averages

over 100 simulated subcohorts, for a 35-year-old individual in the zidovudine arm with

symptomatic HIV infection, hemophilia, and baseline CD4 count of 200. The solid, dotted,

and dashed lines correspond to the Self & Prentice, the first of Chen & Lo, and the second of

Chen & Lo methods, respectively.
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