
NRPquest: Coupling Mass Spectrometry and Genome Mining for
Nonribosomal Peptide Discovery
Hosein Mohimani,† Wei-Ting Liu,‡ Roland D. Kersten,§ Bradley S. Moore,§,⊥ Pieter C. Dorrestein,‡,⊥

and Pavel A. Pevzner*,∥

†Department of Electrical and Computer Engineering, ‡Department of Chemistry and Biochemistry, §Center for Marine
Biotechnology and Biomedicine, Scripps Institution of Oceanography, ⊥Skaggs School of Pharmacy and Pharmaceutical Sciences, and
∥Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, United States

*S Supporting Information

ABSTRACT: Nonribosomal peptides (NRPs) such as
vancomycin and daptomycin are among the most effective
antibiotics. While NRPs are biomedically important, the
computational techniques for sequencing these peptides are
still in their infancy. The recent emergence of mass
spectrometry techniques for NRP analysis (capable of
sequencing an NRP from small amounts of nonpurified
material) revealed an enormous diversity of NRPs. However,
as many NRPs have nonlinear structure (e.g., cyclic or
branched-cyclic peptides), the standard de novo sequencing
tools (developed for linear peptides) are not applicable to
NRP analysis. Here, we introduce the first NRP identification algorithm, NRPquest, that performs mutation-tolerant and
modification-tolerant searches of spectral data sets against a database of putative NRPs. In contrast to previous studies aimed at
NRP discovery (that usually report very few NRPs), NRPquest revealed nearly a hundred NRPs (including unknown variants of
previously known peptides) in a single study. This result indicates that NRPquest can potentially make MS-based NRP
identification as robust as the identification of linear peptides in traditional proteomics.

About 70% of new chemical entities introduced as
antibacterials over the last 25 years are natural product

derivatives.1 Peptide natural products have diverse biological
activities (such as cell signaling, immune response, and
development) and are divided into nonribosomal peptides
(NRPs)2 and ribosomally synthesized and post-translationally
modified peptides (RiPPs).3 NRPs represent a widely
distributed and biomedically important class of peptidic natural
products that includes antibiotics, antitumor agents, immuno-
suppressors, and toxins. NRPs do not follow the central dogma
“DNA produces RNA produces protein”. Instead, they are
assembled by nonribosomal peptide synthetases (NRPSs) that
represent both the mRNA-free template and the building
machinery for the peptide biosynthesis.4 Thus, NRPs are not
directly inscribed in the genomes and cannot be inferred with
traditional DNA sequencing. Instead, they are coded by NRPSs
using “nonribosomal code” (also called the Stachelhaus rule)
discovered 15 years ago.5

Many NRPs are nonlinear peptides that contain nonstandard
amino acids, increasing the number of possible building blocks
from 20 to several hundred. The now dominant NMR-based
methods for NRP characterization are time-consuming and
error prone and require large amounts of highly purified
material. Because NRPs are often produced by difficult-to-
cultivate microorganisms, it may not be possible to obtain
sufficient quantities for NMR-based NRP sequencing, calling

for a new nanomolar scale NRP sequencing approach.6 Such
methods based on mass spectrometry (MS) promise to greatly
accelerate NRP screening and may provide a vast resource for
the discovery of pharmaceutical agents.7 MS and NMR are
complementary approaches to NRP discovery, with MS being a
fast nanomolar scale technique able to identify multiple, diverse
NRPs in a single MS study, while NMR studies are being aimed
at a single NRP but are capable of differentiating between
monomers with identical masses (that are impossible to
distinguish by MS).
In this paper we develop algorithms for identification of both

cyclic and branched-cyclic NRPs. Branched-cyclic NRPs have a
cyclic peptide backbone with a side chain consisting of one or
more amino acids or a linear peptide backbone and a side chain
bond formed between two arbitrary residues. While these two
categories of peptides are chemically different, we use the same
fragmentation model for them since their fragmentation
patterns are similar.
The first automated MS approach to sequencing cyclic

peptides was proposed by Ng et al. in 20098 and was used in a
number of follow-up NRP discovery efforts.9−12 This approach
was further extended to NRP sequencing by multistage mass
spectrometry13 and multiplex sequencing of NRP families.14 Ng
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et al., 2009,8 also described algorithms for dereplication of
cyclic peptides, answering the question of whether a spectrum
arises from a known peptide in a chemical database such as
Norine.15 They further introduced a variable dereplication
algorithm answering the question of whether a spectrum is
derived from a peptide that is similar to a known peptide.
Ibrahim et al., 2012,16 further extended the dereplication
approach8 from cyclic to branched-cyclic peptides. However, all

of these approaches represent either de novo sequencing
algorithms or dereplication searches in chemical databases and
do not utilize valuable information about biosynthetic genes in
the genomes of the NRP-producing organisms.17

In contrast to the dereplication approaches (that use the
same chemical database for different organisms), our new
NRPquest tool, available at www.cyclo.ucsd.edu, first generates
a database of putative NRPs extracted from the genome

Figure 1. NRPquest pipeline starts with mining the microbial genome for putative NRPs using standard tools such as NRPSpredictor222 and
constructing a database of putative NRPs. In the green rectangle, the results of NRPSpredictor2 are illustrated for Bacillus subtilis subsp. subtilis
NCIMB 3610. This strain has two NRPS gene clusters, which according to NRPSpredictor2 produce two surfactins (7 amino acids each) and one
plipastatin (10 amino acids). Adenylation domains are shown in red, condensation domains in blue, PCP domains in green, and thioesterase domains
in light blue. Two blind modifications (with arbitrary offsets) are added to each NRP, and different possible structures (linear/cyclic/branched-
cyclic) are considered (blue rectangle), resulting in ∼134 million modified peptides. The red rectangle illustrates PSMs formed between each
spectrum and each putative modified NRP with feasible mass difference. PSMs are scored and their p-values are computed using MS-DPR.28 MS-
DPR approximates the probability distribution of scores of PSMs formed by a random peptide and the spectrum and further derives the p-value as
the area under the extreme tail of the distribution. Spectra are further analyzed by spectral networks to enlarge the set of identified statistically
significant PSMs. The yellow rectangle illustrates a spectral network of surfactins. The red arrows in the network illustrate how annotations are
propagated from a node with low p-value 2.4 × 10−10 (precursor m/z 1022.7 Da) to nodes with higher p-values (e.g., a node with precursor m/z
1030.7 Da), thus rescuing these nodes from being discarded as statistically insignificant.
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sequence of the organism using the nonribosomal code.
Because the nonribosomal code, in contrast to the ribosomal
genetic code, is not yet fully understood (and is not as specific
as the ribosomal genetic code), it may result in a multitude of
peptides predicted from a single NRPS domain, and these
putative NRPs may miss the correct NRP variant. Thus, the
NRP identification approach “from genome to NRPS gene
prediction to NRP prediction to spectra matching” is more
intricate than the classical proteomics approach “from genome
to gene prediction to spectra matching”. NRPquest couples MS
and genome mining and represents the first tool that
transforms previous approaches for de novo sequencing/
dereplication of NRPs into an MS/MS database search
approach for the identification of NRPs. We demonstrate
that, similarly to proteomics, peptide identification tools for
NRP discovery are much more accurate than de novo
sequencing tools.
NRPSs are organized in modules that are responsible for the

incorporation (and, if necessary, modification) of each
additional amino acid in the synthesized NRP. Each module
consists of several domains with defined functions, separated by
short spacer regions of about 15 amino acids. A minimum of
three domains are required for each NRPS module, termed the
adenylation domain (A-domain), the peptidyl carrier domain
(PCP-domain), and the condensation domain (C-domain).
The A-domain is responsible for picking the specific amino acid
monomers that are to be incorporated into the final product.
Hundreds of different A-domain specificities have been
classified using the Stachelhaus code, each one recruiting a
specific amino acid as a monomer. This allows one to
determine the putative sequence of the NRP by looking at
the sequential order of A-domains along the assembly line and
assigning a specific amino acid to each one. Many genome
mining tools have been introduced for identification of NRPS
gene clusters and the determination of their adenylation
specificities, such as NRPSpredictor,18 ClustScan,19 NP.search-
er,20 antiSMASH,21 and NRPSpredictor2.22 As the non-
ribosomal code5 is not yet fully understood (particularly with
respect to unusual nonstandard amino acids) and is
promiscuous (adenylation domains can often load multiple
amino acids), the accurate determination of the specificities of
the adenylation domains remains difficult. Moreover, most
NRPs go through postassembly line modifications such as
backbone macrocyclization and the addition of fatty acid chains,
and genome mining tools currently fail to predict most of these
modifications. NRPquest recruits NRPSpredictor2 for the
prediction of adenylation specificities and implements a
mutation-tolerant and modification-tolerant (blind) MS/MS
search that allows for multiple modifications and mutations.
This is a difficult computational problem even in the case of
linear peptides,23 let alone nonlinear peptides.
As the first tool integrating genomic and mass spectrometric

evidence for identification of NRPs, NRPquest promises to
greatly increase the number of known peptide−spectrum
matches (PSMs) for NRPs; for example, this study alone
identified nearly a hundred PSMs. Previous studies emphasized
the importance of increasing the number of PSMs (formed by
NRPs) for developing rigorous statistical approaches and more
adequate scoring functions for cyclic peptide analysis.8,13

■ RESULTS AND DISCUSSION
NRPquest uses a sequenced genome and a mass spectral data
set as an input and includes the following steps: (i) uses NRP

prediction tools for identifying NRPSs in the genome and
constructing the database of putative NRPs, (ii) matches a
spectral data set against the database of putative NRPs in a
blind mode, (iii) computes statistical significance of the
resulting cyclic, branched-cyclic, and linear PSMs and further
ranks confident PSMs, (iv) constructs a spectral network29 to
enlarge the set of identified PSMs and reveal families of related
NRPs via spectral network dereplication (Figure 1).

NRP Database Construction. The NRPquest software
pipeline starts with annotation of the genome of an organism of
interest by NRPSpredictor2,22 which attempts to predict a set
of all possible monomers for each adenylation domain in the
genome (Figure 1). By considering all possible combinations of
monomers, we construct a database of all putative NRPs
(referred to as NRP database) that can be produced by the
organism. NRPquest further searches the genome for
methylation domains (PF08242) and accounts for the
corresponding modification in the NRPs database. If NRPquest
finds a methylation domain, it allows these modifications for
the corresponding residues. If NRPquest finds a cytochrome
P450 domain, it models side chain bonds between any two
residues of the peptide, turning a linear peptide into a
branched-cyclic peptide. Note that NRPquest also allows all
peptides to have cyclic backbones with amino acid side chains.
For each amino acid sequence in the database of putative
NRPs, NRPquest considers linear, cyclic, and branched-cyclic
structures representing these amino acid sequences.

Blind Search for Modifications. Each spectrum is
matched against each putative peptide in the NRP database
using a brute force algorithm that allows for blind
modifications. The standard blind PTM search in traditional
proteomics with tools (e.g., InsPecT23 and MODa24) typically
limits the searches to at most two modifications, since further
increase in the number of blind modifications makes the
identified peptides less reliable. Since predictions provided by
NRPSpredictor2 are typically within two mutations/modifica-
tions from the correct peptide, NRPquest also limits searches to
at most two blind modifications whose total mass does not
exceed 300 Da. This accounts for possible inaccurate
adenylation specificity prediction of rare nonstandard amino
acids (such as kynurenine from daptomycin), postassembly line
modifications (such as modification of homoproline to 4-oxo-
homoproline in pristinamycin), and addition of a fatty acid tail.
Similarly to identification of linear peptides, MS-based methods
for NRP identifications are limited to finding modification
masses but do not provide insights into specific chemistry of
modifications.
For example, in the case of Bacillus subtilis, the genome

sequence has two NRPS clusters (surfactin and plipastatin).
NRPSpredictor2 predicts a single NRP for plipastatin but two
NRPs for surfactin (both Glu and Gln are predicted as first
amino acid). As a result, we have only three possible NRPs
initially predicted for B. subtilis. However, after considering
different structures (linear, cyclic, branched-cyclic) there are 48
possible structures. If we consider two blind modifications with
masses less than 300 Da for each peptide, there would be ∼134
million possibilities. However, many of these peptides have
masses very different from the spectrum precursor mass, and on
average, only ∼450 thousand of these putative modified
peptides have a precursor mass matching each spectrum within
0.5 Da.

Statistical Significance. As there is still no large data set of
PSMs formed by nonlinear peptides for automated learning of
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fragmentation propensities,25 previous studies of cyclic
peptides8,16,26 used a somewhat primitive scoring based on
the “shared peak” count. NRPquest scores cyclic PSMs using a
previously proposed approach26 (Figure 1) and, to be
consistent with the cyclic case, uses the same “shared peak
count” approach for linear peptides. For branched-cyclic
peptides, NRPquest simply adds up the scores of linear and
cyclic parts (assuming that the linear branch is a modification
on the cyclic part).
While methods for evaluating statistical significance of linear

PSMs are well developed,27 until 2013 there were no methods
for evaluating statistical significance of nonlinear PSMs.
NRPquest calculates the statistical significance of each PSM
using the recently introduced MS-DPR algorithm,28 which
works for linear, cyclic, and branched-cyclic peptides (Figure
1). It further reports PSMs with low p-values (Table S1).
Spectral Networks. We use spectral networks29 to enlarge

the set of identified NRPs. Spectral networks (also known as
molecular networks12) analyze multiple spectra to simulta-
neously sequence related unknown peptides. The advantage of
this approach (compared to de novo sequencing of individual
spectra) is that finding peptides that simultaneously explain all
spectra in a spectral network results in more accurate peptide
reconstructions. Most NRPs form families of related peptides,
and spectral network analysis can be used to reveal relation-
ships between different spectra without knowing the amino acid
sequences corresponding to these spectra.
Given a set of peptides P1 , ..., Pm, their peptide network is a

graph with m nodes P1, ..., Pm and edges connecting two

peptides if they differ by a single amino acid substitution or a
single modification. Figure 2 shows the peptide network for
nine variants of tyrocidine, a well-studied NRP from Bacilus
brevis. For example, peptide 1 (tyrocidine B1) in this network
(red node) is connected to four peptides differing from
tyrocidine B1 by a single mutation or modification: tyrocidine
A1 (peptide 2), tyrocidine B (peptide 5), tyrocidine C1
(peptide 8), and a previously unreported peptide with mass
1338.7 (peptide 9). However, it is not connected to peptides 3,
4, 6, and 7 since they differ from peptide 1 by multiple
modifications. Six of these nine tyrocidines (1, 2, 3, 5, 7, 8) are
contained in the database of putative NRPs generated by
NRPSpredictor2 (without modifications), and three more differ
from these variants by one or two modifications/mutations.
In reality, we are not given peptides P1 , ..., Pm but only their

spectra S1, ..., Sm. Nevertheless, one can approximate the
peptide network by constructing the spectral network on nodes
S1, ..., Sm, where spectra Si and Sj are connected by an edge if
they can be aligned against each other.29 For linear peptides,
the spectral alignment algorithm23,30 reveals the lion’s share of
spectra that correspond to peptides differing by a single
mutation/modification, and similar approaches are proposed
for nonlinear peptides.13 Figure 2 shows the spectral network of
nine tyrocidines and illustrates that it captures all edges from
the peptide network (shared edges between peptide and
spectral networks are shown by thick lines). While the spectral
network in Figure 2a is not identical to the peptide network in
Figure 2b, their shared edges usually allow one to interpret the
peptides corresponding to the nodes of the spectral network

Figure 2. Peptide network (a), spectral network (b), and annotations of nodes in the spectral networks (c) in the case of tyrocidines. The multitag
algorithm13 for rescoring PSMs starts from a node with a known annotation in the spectral network and propagates annotations from known to
unknown peptides through the edges in the network. The peptide network and spectral network of the tyrocidines are shown in parts (a) and (b). In
part (c), annotations of each node in the spectral network are shown. Note that the nine nodes in the spectral network correspond to nine singly
charged tyrocidines shown in Table S2. The spectral network revealed two novel tyrocidine variants at masses 1294.7 Da (node 6) and 1338.7 Da
(node 9).
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using the spectral network dereplication algorithm.13 NRPquest
requires a p-value threshold to report reliable PSMs, and with a
threshold of 10−10, four of nine peptides in this spectral
network were identified (Figure 2c).
Below we illustrate how spectral networks allow us to

confidently identify less reliable PSMs. The nine PSM peptides
found by NRPquest have p-values ranging from 4.7 × 10−16

(extremely reliable identification) to 1.6 × 10−8 (less reliable
identification). However, since NRPquest reports only PSMs
with low p-values (otherwise, many statistically insignificant
PSMs would be reported), some of these PSMs are deemed
problematic and are not reported as identified peptides. For
example, the spectrum corresponding to node 4 (with mass
1371.6 Da) was not identified by NRPquest (its p-value exceeds
the threshold 10−10), but it is connected to spectrum 7,
corresponding to the reliably identified peptide tyrocidine C
(mass 1348.7 Da), with a low p-value of 2.7 × 10−12. Thus,
peptide 4 differs from tyrocidine C by a modification with mass
23.1 Da. The variable dereplication algorithm13 further predicts
the site of this modification at the tyrosine residue. This means
the change is likely to be a mutation of tyrosine to tryptophan,
and the peptide at node 4 is tyrocidine D.31

After constructing the spectral network, we extract their
connected components (that correspond to families of related
peptides) and further consider two possible scenarios: (i) no
node (spectrum) in the connected component has been
identified by NRPquest and (ii) at least one node in the
connected component has been identified by NRPquest. In the
former case, we use the multitag algorithm13 for multiplexed de
novo sequencing of peptides represented by spectra forming
this connected component. In the latter case (like in Figure 2),
we use a variable dereplication version of the multitag
algorithm.
Variable dereplication8 via peptide propagation through a

spectral network29 allows one to identify peptides with more
than two modifications that NRPquest missed during blind

searches of individual spectra (as blind searches with more than
two modifications become prohibitively time-consuming and
increase the number of false PSMs). In the example in Figure
2a, four out of nine tyrocidines were identified (with p-values
below 10−10) even before constructing the spectral network.
After peptide propagation through the spectral network, all
nine peptides were identified by the multitag algorithm with p-
values below the 10−7 threshold.13 The case of the tyrocidines is
somewhat special because many of them form statistically
significant PSMs with exceptionally low p-values. For other
spectral networks, the number of statistically significant PSMs is
smaller; for example, in the case of arylomycins, no PSMs were
identified as statistically significant before applying spectral
networks.
Figure 3 shows the connected components of the spectral

networks corresponding to six peptide families representing
previously sequenced peptides. Daptomycin32 and arylomycin33

are identified from S. roseosporous, surfactin34 and plipastatin35

are identified from B. subtilis, pristinamycin36 is identified from
S. pristinaespiralis, and tyrocidine37,38 is identified from B. brevis.
For example, the spectral networks for the tyrocidines consist
of nine peptides in the case of charge +1 spectra shown in red
(eight peptides in the case of charge +2 spectra shown in
green). Six out of these nine peptides have been previously
sequenced in various studies,38 while others have not been
reported in the literature yet (some of them may represent
chemical adducts of known peptides). Similarly, only a small
fraction of peptides in the spectral networks for daptomycin,
arylomycin, surfactin, and plipastatin have been previously
identified. The ability to identify known NRPs in a blind
experiment and to discover previously unknown variants of
known NRPs illustrates the power of NRPquest.
We have described how spectral networks help in identifying

PSMs with high p-values (that would otherwise be discarded)
that are adjacent to statistically significant PSMs with low p-
values in the spectral networks. Another contribution of

Figure 3. Spectral networks of six NRP families identified by NRPquest: (a) daptomycin, (b) arylomycin, (c) pristinamycin, (d) plipastatin, (e)
surfactin, and (f) tyrocidine (Table S1). Only spectra forming the most statistically significant PSMs are shown. Each node in these spectral networks
may represent either a single spectrum or a group of very similar spectra (with similar precursor masses) compressed into a single node to simplify
the network (in the latter case, the m/z of a cluster is the average of m/z of spectra in the cluster). The thickness of the edges indicates the level of
similarity between the nodes in the spectral networks. Two connected components (in the case of plipastatin and tyrocidine) correspond to two
different charge states (currently, the spectral alignment algorithm may fail to connect spectra from related peptides with different charges by an
edge).
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spectral networks is reranking and potentially reusing the entire
spectral network of PSMs even if all PSMs in this spectral
network have high p-values. Starting from a PSM PSM(P1,S1)
and a spectral network with nodes S1, ..., Sm, the dereplication
algorithm determines unknown peptides P1, ..., Pm that form
PSMs with spectra S1, ..., Sm and computes the SpecNetScore:

∑= − ‐
=

P P S S p P SSpecNetScore( , ..., , , ) log value( , )m m
m

i

i i1 1

1

Afterward, it reports all found PSMs (P1,S1), ..., (Pm,Sm) if the
SpecNetScore exceeds a threshold.
Benchmarking NRPquest. We analyzed bacterial extracts

from Streptomyces roseosporous NRRL 15998 (SR), Streptomyces
pristinaespiralis ATCC 25486 (SP), Bacillus subtilis subsp.
subtilis NCIMB 3610 (BS), and Bacillus brevis (BB). Table S1
illustrates that peptides with the lowest p-values that were
identified by NRPquest in a blind experiment correspond to
previously sequenced NRPs and provides confidence that some
other PSMs that NRPquest finds may correspond to novel
variants of known NRPs. While it is not possible to verify these
low-abundance NRP variants by NMR, we were able to verify
that these novel compounds are related to known NRPs using
spectral networks (Figure 3). We further verified the
significance of the resulting PSMs by computing their p-values
(Table S1).
NRPquest constructs spectral networks (Figure 3) to

improve the identification of individual spectra and to enlarge
the set of identified PSMs (Table S2). After annotating spectra
in the spectral network, we removed all nodes corresponding to
PSMs with high p-values above 0.0001, as some large networks
are difficult to visualize. Table S2 illustrates that spectral
networks allow one to confidently sequence all spectra in a
connected component of a spectral network via peptide
propagation as long as even a single spectrum in this
component is identified at the previous MS/MS database
search step.
In addition to NRPs, peptide natural products include RiPPs.

In a separate paper, Mohimani et al., 2013,40 described
RiPPquest, an automated genome mining approach for RiPP
identification. As NRPquest and RiPPquest are complementary
tools searching completely different protein databases, the sets
of peptides they identify do not overlap. Thus, the cases when
NRPquest reports RiPPs (or RiPPquest reports NRPs) are not
expected to occur in practice.
For example, in the case of S. roseosporous NRRL 15998, the

spectral data set has 4355 spectra, out of which only six are
assigned to NRPs with a p-value smaller than 10−10. In this
particular data set, two RiPPs, called SRO-2212 and SRO-3108,
were previously discovered.17 NRPquest correctly discards
spectra of these RiPPs since they have a low score against the
putative NRPs.
The identification of arylomycin via spectral networks

illustrates the power of combining genome mining with
spectral networks. Arylomycin is an antibiotic that selectively
binds type I signal peptidases (SPases). Despite in vivo activity,
and the fact that SPase is conserved and easily accessible as a
drug target, arylomycin was dismissed as a drug candidate in the
past, as it was perceived to have a narrow spectrum of activity.
However, recent studies39 demonstrated that modified
arylomycins are actually broad-spectrum antibiotics and that,
if optimized to bind their targets with slightly more affinity,
arylomycins would have a spectrum of activity that supports

their progression as broad-spectrum therapeutics. Currently,
RQx Pharmaceuticals is proceeding with clinical trials of
arylomycin variants. Our study reveals a variety of arylomycins,
opening the possibility to examine some of them as potential
therapeutic agents. The limited number of fragmentation sites
observed in some arylomycin MS/MS spectra makes it difficult
to identify them individually. Table S2(A) illustrates that no
arylomycin was identified with a p-value below the threshold.
However, simultaneous analysis of different variants of
arylomycin enables identification of seven arylomycin variants,
as Table S2 and Figure 3b illustrate. Note that identification of
arylomycins was based solely on their MS/MS and genomic
information, and no prior information about known arylomycin
peptides was used.
The effort involved in NRP discovery from MS/MS can be

divided into three steps. The first step is determining which of
the MS/MS spectra represent NRPs. This is a crucial step in
natural product discovery because most of the time bacterial
extracts also include endogenous peptides, RiPPs, PKs, and
other chemical molecules in addition to NRPs. The second step
is the correlation of MS/MS spectra to NRPSs in the genome.
The third step is the annotation of spectra by assigning
modifications to individual NRP residues. Our results in Table
S1 show that while NRPquest has succeeded in the first two
steps, the last step remains problematic and needs a better
understanding of NRPS modification enzymes and NRP
fragmentation. We hope that bioinformatics methods such as
NRPquest will enable this progress by helping in the
development of large data sets of annotated NRPS gene
clusters.
Papers describing NRPs are usually limited to the analysis of

a single peptide or a very few peptides. The first application of
NRPquest revealed nearly a hundred NRPs (including
unknown variants of previously known peptides) in a single
study. This result provides hope that NRPquest can potentially
make NRP identification as robust as peptide identification in
traditional proteomics with popular spectral identification tools.
NRPquest utilizes NRPSpredictor2 for predicting NRPs from

the bacterial genome. Because at most two blind modifications
are considered, NRPquest would fail if NRPSpredictor2
prediction differs from the correct peptide by more than two
modifications or mutations. Thus, users of NRPquest should be
aware that it can work only within the limitations of genome
mining tools (such as NRPSpredictor2 and antiSMASH),
which in turn depend on accurate genome sequence
information.

■ EXPERIMENTAL SECTION
Bacterial Metabolite Extraction. We analyzed bacterial strains of

Streptomyces roseosporous NRRL 15998, Streptomyces pristinaespiralis
ATCC 25486, Bacillus subtilis subsp. subtilis NCIMB 3610, and Bacillus
brevis ATCC 8185. Each agar plate was inoculated with each bacterial
strain by four parallel streaks. The plates were incubated for 10 days at
28 °C. The agar was sliced into small pieces, then put in a 50 mL
centrifuge tube, covered with equal amounts of Milli-Q H2O and
nBuOH/MeOH for 12 h at 28 °C, and shaken at 225 rpm. The
nBuOH/MeOH layer was collected using a transfer pipet and dried
with a rotary evaporator.

Genome Data Sets. Genomes of S. roseosporous and S.
pristinaespiralis were recently sequenced at the Broad Institute and
are available from the Actinomycetales database Web site.41 Genomes of
B. subtilis and B. brevis are available from NCBI.

Spectral Data Sets. Collision-induced dissociation (CID) MS/MS
data sets were collected with or without liquid chromatography (LC)
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separation in-line with mass spectrometry. For LC-MS, capillary
columns were prepared by drawing a 360 μm o.d., 100 μm i.d.
deactivated, fused silica tubing (Agilent) with a model P-2000 laser
puller (Sutter Instruments) (Heat: 330, 325, 320; Vel, 45; Del, 125)
and were packed at 600 psi to a length of about 10 cm with C18
reversed-phase resin suspended in MeOH. The column was
equilibrated with 95% solvent A (H2O, 0.1% AcOH) and loaded
with 10 μL (10 ng/μL in 10% CH3CN) of bacterial BuOH/MeOH
extract by flowing 95% of solvent A and 5% of solvent B (CH3CN,
0.1% AcOH) at 200 μL/min for 15 min. A gradient was established
with a time-varying solvent mixture [(min, % of solvent A): (20, 95),
(30, 60), (75, 5)] and directly electrosprayed into the LTQ-FT MS
inlet (source voltage, 1.8 kV; capillary temperature, 180 °C). The first
scan was a high-resolution broadband scan. The subsequent six scans
were low-resolution scans data-dependent on the first scan. In each
data-dependent scan, the top intensity ions were selected to be
fragmented by CID, which generated hundreds of fragmentation
spectra collected as individual data events. The resulting .RAW files
were converted to .mzXML using the program ReAdW (http://tools.
proteomecenter.org).

■ ASSOCIATED CONTENT
*S Supporting Information
A user manual on how to use the NRPquest Web server for
discovering NRPs from genomic and mass spectral data and
scoring tables are included in the Supporting Information. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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