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Abstract

Measuring similarities between objects based on their attributes has been an important problem in many disciplines.
Object-attribute associations can be depicted as links on a bipartite graph. A similarity measure can be thought as a
unipartite projection of this bipartite graph. The most widely used bipartite projection techniques make assumptions that
are not often fulfilled in real life systems, or have the focus on the bipartite connections more than on the unipartite
connections. Here, we define a new similarity measure that utilizes a practical procedure to extract unipartite graphs
without making a priori assumptions about underlying distributions. Our similarity measure captures the relatedness
between two objects via the likelihood of a random walker passing through these nodes sequentially on the bipartite
graph. An important aspect of the method is that it is robust to heterogeneous bipartite structures and it controls for the
transitivity similarity, avoiding the creation of unrealistic homogeneous degree distributions in the resulting unipartite
graphs. We test this method using real world examples and compare the obtained results with alternative similarity
measures, by validating the actual and orthogonal relations between the entities.
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Introduction

An object can be described by its attributes. Given a set of

objects, it is often desirable to quantify the similarity between any

two objects based on the attributes that they possess. A similarity

measure is then used to predict the events in which these two

objects behave similarly. For instance, one can ask whether two

senators would vote concordantly given the similarity between

their voting records. Or one can quantify the likelihood of a person

switching occupations based on the task similarities between the

occupations.

Here, we think of the object attribute associations as a bipartite

graph of two types of nodes (i.e., objects and attributes), where a

link is present (often with a weight) between an object and the

attribute if the object possesses that attribute. Then, the object-

object similarities can be modeled as a unipartite graph. Most of

the recent interest in large-scale social, biological, and communi-

cation networks has been devoted to unipartite graphs [1,2]. As a

result, unipartite graphs are well understood in literature [3]. An

impressive number of tools helps us extracting knowledge from

such structures.

The methodology presented in this paper can be thought as a

unipartite projection of an underlying bipartite graph. Many

complex systems have an underlying bipartite representation: a

scientist can be connected to papers that she wrote [7], an actor

can be connected to a movie that he/she acted in [8], a country

may be connected to the products it exports [9]; flavors can be

connected to the food that they are tested in [10], human diseases

can be connected to the genes that cause them [11] and many

others (e.g., [4–6]). To exploit the richness of the methods

developed for analysis of unipartite graphs in recent years, and,

therefore, to gain an improved vantage point over the influence or

interdependence of entities in bipartite structures, a unipartite

projection becomes useful. For instance, projections of the

bipartite graphs that we mentioned above has resulted in the

scientific collaboration network [7], co-actorship network [8], the

product space [9]; flavor network [10] or human disease network

(diseasome) [11], respectively.

In network analysis, techniques aimed at uncovering the actual

similarity value between entities in complex networks are popular.

Some examples are the network back-boning technique to

evaluate the significance of a link in weighted graphs [12]; or

the graph deconvolution method to evaluate the direct connec-

tions between not directly connected entities [13]. Here, we are

focusing on projecting bipartite graphs into unipartite entities. In

the following, we refer to the graph projection as the construction

of a unipartite graph map exploiting connections in a bipartite

graph and allowing us to evaluate the similarity between the

objects, for instance predicting which occupations are similar by

looking at their common tasks.

Projection techniques make use of distance measures and/or

counting common elements [7,14,15]. The projection criteria are

very important as they affect the usefulness of the graph itself.

Suppose we want to create a network map of nodes of class I from

Figure 1. Each node of class J can be considered as a vectorial
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element. Then, the link strength in the bipartite graph would

reflect the load of the class I node in that dimension. Using this

vectorial representation, then a classical spatial distance can be

calculated, such as Euclidean or Cosine distance measures, which

have been extensively used in adaptive filtering [16]. We can also

represent a I node as a set that contains all the J type nodes which

it connects to. Then a set difference measure like the Jaccard

measure can be calculated between all possible I node pairings.

Issues arise with these approaches. Simpler distance measures like

the Jaccard measure cannot cope with what is known as the

saturation effect: an additional shared J node between two I nodes

that share only one J node should count more than between two

nodes who already share 100 J nodes [17]. Moreover, in a scale

free bipartite graph, the degree of each node decays as k{a in both

sets of nodes I and J . Therefore, few hubs from set I connect with

many nodes in set J , which on average have a low degree, as a

consequence of the scaling of the power-law. If we project the

structure to connect nodes from set J , the low degree nodes will

connect one with the other, as their few connections cannot

outweigh their common I hub connection. Moreover, the

similarity is transitive: i1*i2 and i2*i3 implies i1*i3. As a result,

unipartite projections using these measures end up having a

normal degree distribution, which is different than most real-world

scenarios [18].

Some of these drawbacks do not affect other techniques. In [19]

and subsequent papers by the same group [20,21], authors

propose to overcome the saturation problem by using a resource

allocation process. In practice, each node in I is considered to be a

bearer of a certain quantity of resources, which it scatters equally

to all its J neighbors. Then, each node in J will disseminate

equally all the resources it gathered back to I nodes. Using this

process, we can quantify the information originated form an I
node and ended up in another I node. This amount is the degree

of similarity of that node to the other I nodes. This approach,

however, belittles crucial structural properties of the graph

structure as a whole. The position of a node in the graph and

the structural importance of the connections between I and J

nodes influence their significance when projecting the graph,

beyond what the simple degree can capture. In fact, the focus in

[19] is to use bipartite graph projection as a tool for personal

recommendation. In other words, the aim is not to predict an I{I
edge, but an I{J edge. In this case, the structural properties of

the graph as a whole are not important, as the focus is in the direct

neighborhood of the node. For example, in a customer-product

bipartite graph where customers connect to the products they buy,

the method presented in [19] aims to understand which products a

customer will likely buy next, given what other customers similar

to her purchased.

We have a different aim, namely to predict I{I edges, that is

equivalent of building the unipartite graph. In such scenario, we

cannot just rely on the immediate neighbors but take into account

the overall structure of the complex network. For this reason, we

propose an approach that is alternative to [19], with a

complementary application. In this method, we let a random

walker explore the bipartite structure. In doing so, we can

overcome most of the problems of traditional similarity measures.

Two nodes from set I are similar if they frequently appear as

successive visiting sites of the random walker. Since hubs in J are

connected to many nodes in I , their contribution to each node pair

in I is low, as the probability of consistently choosing the same

endpoints can be considered insignificant. In this way, the random

walker gives us information taking into account the overall

structural properties of the graph. Random walkers have been

extensively used in literature with this precise aim. For example,

they are at the basis of the modular organization detection of

many community discovery algorithms [22,23]. Other applica-

tions include centrality measures, used to rank nodes according to

their structural importance [24].

The numerical simulations indicate that this approach is able to

predict I{I edges with higher confidence, when the unipartite

graph maps extracted from the bipartite graphs are tested against

the real world knowledge about the I{I connections. This

happens in four different realms, including occupation flows,

industry employee flows, political activities in the US Congress

and a citation graph between international aid agencies. We also

tested our method in ranking I{J edges and it functions equally

well as the other methods.

Methods

The proposed approach consists of projecting the bipartite

graph into a unipartite graph by creating a weighted edge between

two nodes in the unipartite graph from the information present in

the bipartite graph. The weight is directly proportional to how

often one would observe a random walker on the bipartite graph

visiting the two nodes consequently. Formally, let us assume that in

the bipartite graph there are two types nodes indexed with i and j,
respectively. Assume that there are n (m) i (j) type nodes that form

the set I~fi1,:::,ing (J~fj1,:::, jmg). An edge in the bipartite

graph is defined as a link between an i type and j type node. We

can define the n|m adjacency matrix, B, whose (i, j)th entry

represents the strength of the links between node i and node j. In

the binary case, Bi, j will be 1 if there is an edge between i and j,

and 0 otherwise. In general, a bipartite graph can be represented

by the triplet fI ,J,Bg. The unipartite projection of this bipartite

graph onto I domain requires defining an n|n edge matrix, U ,

from the bipartite edge matrix B.

Here, we propose to build the U matrix as the number of times

a random walker (RW) passes through a pair of I type nodes on

the bipartite graph, separated by a single J type node. Suppose the

RW is on the node i. Then, the RW would end up to any j type

Figure 1. Toy example. This is a simple graph representation of a
bipartite graph. Nodes in the class I connect exclusively with nodes in
the class J with I{J edges.
doi:10.1371/journal.pone.0104813.g001
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node with probability:

P i?jð Þ~ Bi, jP
j’[J Bi, j’

ð1Þ

Once on a j type node, the probability that the RW goes to

node the i’ is:

P j?i’ð Þ~ Bi’,jP
i’’[I Bi’’,j

ð2Þ

Therefore, the probability of moving between nodes i and i’ will

be the sum of all paths i?j?i’ that pass through Vj[J:

P i?i0ð Þ~
X

j

P i?j?i0ð Þ

~
X

j

P i?jð ÞP j?i0ð Þ

~
X

j

Bi, jP
j0[J Bi, j0

Bi0 , jP
i00[I Bi00 , j

ð3Þ

We can rewrite the transition probabilities in terms of a Markov

transition matrix T , such that Ti,i’~P i?i’ð Þ. The frequency of

observing the path i?i’ also depends on how often the RW visits

node i in general. Suppose that ~PPn denotes the probability vector

whose ith element is the probability of the RW being on the node i

in the nth step of the random walk. We initialize the process with

~PP0~
1
DI D
~11 where ~11 denotes a row vector of ones. Therefore:

~PPn~
1

DI D
~11Tn ð4Þ

Since T is a right-stochastic matrix (i.e., its elements are non-

negative and sum of its rows is always 1), the stationary

distribution, ~pp will satisfy:

~ppT~~pp ð5Þ

Here, we will assume that the transition matrix is irreducible

(i.e., every node can communicate with each other in finite step)

and aperiodic (i.e., there is no ~xx and integer mw1 such that

~xxTm~~xx but ~xx=T~xx). If any of these properties are violated, then

we will not be able to ensure a unique stationary distribution. In

our case, we would ensure that the bipartite graph is connected,

which would satisfy the irreducibility property. Moreover, we only

work with bipartite graphs with non-directed edges which justifies

the aperiodicity property. With these properties at hand, the

Perron-Frobenius theorem guarantees the existence of unique

stationary distribution, which is the left eigenvector of T matrix

with eigenvalue 1.

Given that we calculated the stationary distribution ~pp, then as

the RW moves infinitely many times, the random-walk similarity

between nodes i and i’ is:

Ui,i’~piTi,i’ ð6Þ

We would like to remark that Zhou et al. [19] defines a similar

metric based on their ProbS methodology but they they do not

include pi in their definition. The pi element is the one that

contributes information about the overall graph structure. It allows

the similarity to consider not only the immediate neighbors of a

node, but also its position in the graph, enabling T to avoid the

saturation and transitivity issues described in the Introduction.

Other Projection Techniques
In this section we provide our implementation of the methods

we compared our technique with. In each technique, the entities of

the bipartite graph N are considered as binary vectors. Suppose

that we have a bipartite graph with two classes of entities

A~fa1,a2,a3g and B~fb1,b2,b3,b4,b5g. Suppose that a1 is

connected to b1, b4 and b5. Then a1~f1,0,0,1,1g. In the

following discussion, we adopt the convention of always projecting

onto nodes of class A.

ProbS. This is the bipartite projecting technique presented in

[19]. The assumption at the basis of this measure is the same we

implemented, namely that the relatedness of a1 and a2 depend on

the resource flow from a1 and a2 to the B nodes and back. Instead

of implementing this idea with random walks, Zhou et al. decided

to pass the entire resource equally to all B nodes and back.

So, in the first step, all the resource flows from A to B as:

f (bl)~
XDAD

i~1

Nil|f (ai)

k(ai)
,

where k(ai) is the degree of ai and N is the DAD|DBD adjacency

matrix representing the bipartite graph, containing 1 if ai is

connected to bl , 0 otherwise. In the next step, all the resource flows

back to A, and the final resource located on ai reads:

f ’(ai)~
XDBD

l~1

Nil|f (bl)

k(bl)
~
XDBD

l~1

Nil

k(bl)

XDAD

j~1

Njl|f (aj)

k(aj)
:

This can be rewritten as:

f ’(ai)~
XDAD

j~1

s(ai,aj)f (aj),

where:

s(ai,aj)~
1

k(aj)

XDBD

l~1

NilNjl

k(bl)
, ð7Þ

which sums the contribution from all two-step paths between ai

and aj , and it is ultimately the similarity between the two nodes.

Using a standard example that will be adopt from now on, we

assume that a1~fb1,b4,b5g and a2~fb1,b3g, and all B nodes do

not have any other connection with any other A node. Then,

s(a1,a2)~1=4.
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HeatS. Heats method, introduced by Zhou et al. in [20], is

related to the ProbS method but instead of normalizing by

column, it is normalized by the row. Mathematically,

s(ai,aj)~
1

k(ai)

XDBD

l~1

NilNjl

k(bl)
, ð8Þ

The difference between HeatS (Eq. 8) and ProbS similarity

measures (Eq. 7) is the first fraction. For the example introduced

above, HeatS similarity would be 1/6, lower than ProbS similarity

of 1/4.

Hybrid. The Hybrid methodology, introduced in [21],

hybridized ProbS and HeatS, by taking a geometric average of

the first normalizing parameters. The similarity in this measure is

defined as:

s(ai,aj)~
1

k(ai)
1{lk(aj)

l

XDBD

l~1

NilNjl

k(bl)
, ð9Þ

Assuming l~1=2, the similarity will be 1=2
ffiffiffi
6
p

, a value between

ProbS and HeatS similarities.

Jaccard. In this bipartite projecting technique, each class A

node is seen as a set of elements. So, if a1~f1,0,0,1,1g, then we

consider it equivalent to a1~fb1,b4,b5g. Then, the similarity

between two nodes a1 and a2 is equivalent to the Jaccard

similarity:

s(a1,a2)~
Da1\a2D
Da1|a2D

:

For instance, if a2~fb1,b3,b5g, then s(a1,a2)~2=4.

Cosine. This bipartite projecting technique is based on the

Cosine similarity. The Cosine distance between two vectors of

same length is defined as:

s(a1,a2)~
a1
:a2

Ea1EEa2E
~

P
b[B

a1(b)|a2(b)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
b[B

(a1(b))2
r

|
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
b[B

(a2(b))2
r :

We recall that a1 and a2 are both binary vectors. For each b[B

where either (or both) nodes are not attached, the overall

contribution to the sum is 0. Only when both a1(b) and a2(b)
are equal to 1 there is a contribution of 1 to the sum.

Again considering our standard example a1~f1,0,0,1,1g and

a2~f1,0,1,0,1g, we obtain s(a1,a2)~2=3.

Euclidean. The Euclidean projecting technique takes advan-

tage of the concept of Euclidean distance. The a1 and a2 vectors

are seen as points in a DBD-dimensional space. We then calculate

the Euclidean distance between points a1 and a2 as follows:

d(a1,a2)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
b[B

(a1(b){a2(b))2
r

:

The Euclidean similarity is inversely proportional to the

Euclidean distance, thus s(a1,a2)~1=d(a1,a2). Euclidean similar-

ity gives more weight not only to the co-presence of 1 s in a1 and

a2, but also in co-presence of 0 s.

Keeping fixed a1~f1,0,0,1,1g and a2~f1,0,1,0,1g, we obtain

s(a1,a2)~1=
ffiffiffi
2
p

.

Pearson. This is the bipartite projecting technique based on

the well-known Pearson correlation coefficient. We calculate the

correlation coefficient of a1 and a2 vectors as follows:

s(a1,a2)~
cov(a1,a2)

sa1
sa2

,

where cov(a1,a2) is the covariance of a1 and a2, and sa1
and sa2

are the variance of the a1 and a2 vectors, respectively. Just like in

the Euclidean case, also the Pearson similarity gives some weight

to the co-absence of a connection, not only a co-presence.

We calculate the Pearson similarity for our standard example in

which a1~f1,0,0,1,1g and a2~f1,0,1,0,1g, obtaining as result

s(a1,a2)~:05=(:3|:3).

Results

We create two different sets for our experiments. In the first one,

we compare the performances of all the methods using the

experiments described in [19], on the very same dataset extracted

from MovieLens and processed as described there. We then refer

to [19] for the details of this experiment. Aim of the first

experiment is to test the efficiency of different methods in ranking

I{J edges. In a second set of experiments, we study the

projection of four real-world bipartite graphs. In this case, we also

have unipartite graphs with observed relations between I entities.

Aim of this experiment is to show that the I{I edges, as ranked

by the proposed methodology, are closer to the observed relations

than any other methodology.

In both experiments, we compare the obtained results with the

seven alternative projecting techniques presented in the previous

section. Four of them are based on distance measures: Jaccard,

Cosine, Euclidean and Pearson. The other three alternatives are

ProBs [19], HeatS [25] and Hybrid [20]. We refer to the proposed

method as Bipartite Projection via Random-walk, or ‘‘BPR’’.

I-J Edges
In this numerical simulation, we have user-to-movie connec-

tions if a user (I ) liked the movie (J) and the aim is to suggest other

movies to the user (a I{J edge). To test the efficiency of the

methods, a random subset of connections are removed from the

original bipartite graph. Then we calculate movie to movie

similarity in the remaining graph using the measures presented

above. Finally, for each user i and movie j we average (for Cosine,

Euclidean, Jaccard and Pearson) or sum (for ProbS, HeatS,

Hybrid and BPR) the movie similarities to j of all movies which are

liked by i. At the end of the procedure, for each user i we have a

list of J nodes, sorted by the computed value. We calculate the

quality of this suggestion list in two ways. First, given a user i and a

movie j that was removed from the graph, ri,j is equal to the rank

of j in i’s suggested list over the length of the list. Second, we

shorten the suggested list to different lengths (including 10, 20 and

50 elements) and we record the share of the randomly removed

movies that are included in the list - we refer to this measure as Hit

Rate (HR-X , where X is the length of the recommendation list).

Hybrid method also includes a parameter of choice (l in Equation

9). We selected l~0:2, which maximized the predictive power.

The results of this numerical simulation are reported in

Figures 2 and 3, and Table 1. In Figure 2 we report the

Random Walks and Object Associations

PLOS ONE | www.plosone.org 4 August 2014 | Volume 9 | Issue 8 | e104813



cumulative value of r as the recommendation lists grows. A lower

value here indicates a better prediction method. In Figure 2,

ProbS, Hybrid, BPR and HeatS appear to easily outperform all

other methods, with Hybrid performing the best. BPR performed

better than HeatS but was slightly worse than ProbS. In the first

column of Table 1 we report the overall average value of r. The

ranking of the methodologies remains the same.

In Figure 3 we report the hit rate at different lengths of the

recommendation list. Again, the result is confirmed: Hybrid,

ProbS and BPR outperform in the task with respective order. The

hit rates at different list length are reported in the HR-X columns

of Table 1. All these results confirm that BPR works in I{J but

there are more efficient methodologies, namely Hybrid and ProbS

in this task.

I-I Edges
For the task of predicting I{I edges we consider four different

bipartite graphs:

(i) Occupations connected to the tasks they fulfil, from the O-

Net database [26,27] (referred here as ‘‘O-Net’’).

(ii) Industries connected to the fields of educations of the

people they employ, from the IPUMS dataset [28]

(referred here as ‘‘IPUMS’’).

(iii) International aid organizations connected to the countries

and the development issues they talk about in their

websites [29] (referred here as ‘‘Aid’’).

(iv) Congressmen from the 111th US Congress, connected to

the topics they wrote a bill on (referred here as

‘‘Congress’’).

For additional information about how we built the bipartite and

the unipartite graphs used, see Material S1.

For each of this bipartite graph we have a corresponding

unipartite graph that we use to evaluate the goodness of the

projection. The test graphs are:

(i) For O-Net dataset, the occupation-occupation job flows.

(ii) For IPUMS dataset, the job flows across industries.

(iii) For Aid dataset, the mentions of other aid organizations in

an organization’s website.

(iv) For Congress dataset, the co-sponsorship of bills.

The procedure is the same presented in the previous section: for

each pair of I nodes we calculate the similarity using one of the

proposed measures. For each node i, we obtain a ordered list of

similarities. We use this list to predict actual I{I edges, observed

in the corresponding unipartite graphs. In Figure 4 and Table 2

we report the performance in the prediction task for all methods

and for all graphs. Figure 4 presents the receiver operating

characteristic (ROC) curves of the various methods. We can see

that BPR comes as winner or a close second in most cases. Table 2

reports the area under the ROC curve, that summarizes the

overall quality of the predictions shown Figure 4. Table 2

confirms that BPR is the best predictor of the I{I edges, based

on the observed I{J edges in the test graphs, with the exception

of the O-Net graph. However, in that case, BPR is beaten by

Pearson, which scores poorly in the other scenarios. The second

best predictor is different for each graph, while BPR’s perfor-

mance across all graphs is constantly on top. Since we are dealing

with the weighted graphs, we need a threshold, d, to determine

when an observed weight is significant and when it is not. d
influences prediction scores, but not the performance ranking of

the methods (see Material S1 and Figure S1).

Prediction quality is not the only quality criterion to evaluate the

unipartite projections. We also want the unipartite graph map to

have topological properties comparable to the real-world complex

graphs in the literature. One of such properties is the small-world

property [30]: the distribution of shortest paths are normally

distributed around a mean much lower than the random Erdös-

Renyi graphs, usually * log n where n is the number of nodes in

the graph [3]. Figure 5 shows the distribution of the shortest path

lengths in different bipartite graph projections. Each graph map

has been generated by extracting the maximum spanning tree

from all the I{I edge similarities returned by each method, and

then adding edges until the average degree reaches 3. We can see

that BPR is the only method which constantly generates unipartite

graphs with the expected distribution of shortest path lengths.

With the exception of the Euclidean method in the O-Net dataset,

Figure 2. The predicted position of each entry in the probe
ranked in the ascending order. On the y-axis, r measures the
position of an I{J edge (i{j) in the ordered result of the prediction.
For example, if there are 1500 uncollected J connections for i, and i{j
is the 30th strongest prediction, we say the position of (i, j) is the top
30/1500, denoted by r~0:02. Lower r values indicate better
predictions.
doi:10.1371/journal.pone.0104813.g002

Figure 3. The hitting rate as a function of the length of
recommendation list. We shorten the recommendation list to
increasing values, in the x-axis, and we report the share of actual
I{J edges predicted, on the y-axis. The higher the hit rate, the better
the prediction.
doi:10.1371/journal.pone.0104813.g003
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the other methods have usually either higher averages or

distributions more skewed on higher values, or both.

Another property of real-world graphs is a broad degree

distribution. Real-world graphs are characterized by few hubs with

high degree and many nodes with degree equal to one [18].

However, transitive similarity measures may be prone to boost

transitivity beyond what is reasonable, creating large cliques and

inflating the degree of most nodes. Therefore, for a similarity

measure, higher skewed distribution is a desirable property

because it is a signal of the absence of large cliques, that lowers

the practicality of the network map. We depict the cumulative

degree distributions of the graph projections in Figure 6. We can

see that BPR has very broad degree distributions, clearly the

broadest in the Aid graph and the broadest in Congress and O-Net

after the Euclidean graph. However, we saw that for practical

purposes the only contestant was ProbS (Figure 4 and Table 2).

Here, ProbS is affected exactly by the problems of very

homogeneous degree distribution: in all graphs the nodes with

Table 1. Average predicted position (,r.) and hit rate for recommendation lists of length 10 (HR-10), 20 (HR-20) and 50 (HR-50).

Distance ,r. HR-10 HR-20 HR-50

BPR 0.12336 14.65% 23.02% 38.68%

ProbS 0.11417 15.97% 24.57% 40.99%

Jaccard 0.21086 7.97% 12.30% 22.05%

Cosine 0.24151 7.87% 12.16% 20.35%

Euclidean 0.50581 0.06% 0.16% 0.53%

Pearson 0.46280 2.62% 3.59% 5.68%

HeatS 0.15221 0.21% 1.55% 13.28%

Hybrid 0.08814 17.94% 27.61% 46.08%

doi:10.1371/journal.pone.0104813.t001

Figure 4. ROC Curves. The receiver operating characteristic (ROC) curves for the four datasets in our experimental set up: O-Net (top left), IPUMS
(top right), Aid (bottom left) and Congress (bottom right). Each predicted I{I edge is sorted according to the prediction confidence and it is tested
against the observed real-world graph.
doi:10.1371/journal.pone.0104813.g004
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degree lower than 3 are very few (always less than 10%), while the

most connected nodes have half or a third the degree they have in

BPR.

Discussion

The proposed bipartite projection technique gives differential

weights to elements by their commonality. The methodology

generates an edge in the graph map whenever the random walker

frequently visit the two nodes in the same path, traversing their

common elements, which ensures that hubs do not artificially drive

up the similarity measure. As a result, the random walk similarity

allows the creation of significant and meaningful graph maps, who

are structurally very similar to the corresponding real-world

graphs. Consequently, the resulting graph projections carry some

fundamental properties that are observed in many other naturally

occurring graphs.

Table 2. AUC Values.

Distance O-Net IPUMS Aid Congress

BPR 0.84627 0.62831 0.69724 0.93063

ProbS 0.84528 0.61966 0.64224 0.90438

Jaccard 0.80507 0.52031 0.66255 0.91908

Cosine 0.79768 0.52101 0.65484 0.91806

Euclidean 0.68452 0.50441 0.53616 0.80787

Pearson 0.85186 0.50380 0.65881 0.85145

HeatS 0.78843 0.53862 0.52121 0.88540

Hybrid 0.67216 0.56061 0.51862 0.57986

The AUC is the integral of the area below the ROC curve, as shown in Figure 4. If we obtain an AUC equal to.5, then the prediction is said to have a performance
equivalent to a random predictor.
doi:10.1371/journal.pone.0104813.t002

Figure 5. Path distributions. The distribution of the shortest paths in the unipartite graphs generated with each technique, for all datasets: O-Net
(top left), IPUMS (top right), Aid (bottom left) and Congress (bottom right). We count the number of paths (y-axis) with a given length in number of
edges (x-axis).
doi:10.1371/journal.pone.0104813.g005
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As a criticism, one could say that it only works in the case of

bipartite graphs that exhibits non-overlapping scale free degree

distributions, where there are hubs in one or all classes of nodes. In

any case, any projecting technique has limitations, and the choice

between one algorithm over another has to be made considering

the objective of the exercise. We do not exclude the existence of a

scenario in which our methodology will not yield significant

results. Yet, it has been proved that broad (scale free or

exponential) degree distributions are ubiquitous in real world

graphs: from social graphs to scientific co-authorship, from the

physical Internet infrastructure to the virtual hyperlinks in the

World Wide Web, from financial graphs to protein interactions.

Therefore, we conclude that our methodology may be applied in

this wide range of scenarios.

Supporting Information

Figure S1 Threshold sensitivity. AUC values for different

threshold (d) choices in four datasets: O-Net (top left), IPUMS (top

right), Aid (bottom left) and Congress (bottom right). See Material

S1 for details.
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