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Abstract

BACKGROUND—The goal of this work is to develop intelligent systems to monitor the well

being of individuals in their home environments.

OBJECTIVE—This paper introduces a machine learning-based method to automatically predict

activity quality in smart homes and automatically assess cognitive health based on activity quality.

METHODS—This paper describes an automated framework to extract set of features from smart

home sensors data that reflects the activity performance or ability of an individual to complete an

activity which can be input to machine learning algorithms. Output from learning algorithms

including principal component analysis, support vector machine, and logistic regression

algorithms are used to quantify activity quality for a complex set of smart home activities and

predict cognitive health of participants.

RESULTS—Smart home activity data was gathered from volunteer participants (n=263) who

performed a complex set of activities in our smart home testbed. We compare our automated

activity quality prediction and cognitive health prediction with direct observation scores and

health assessment obtained from neuropsychologists. With all samples included, we obtained

statistically significant correlation (r=0.54) between direct observation scores and predicted

activity quality. Similarly, using a support vector machine classifier, we obtained reasonable

classification accuracy (area under the ROC curve = 0.80, g-mean = 0.73) in classifying

participants into two different cognitive classes, dementia and cognitive healthy.

CONCLUSIONS—The results suggest that it is possible to automatically quantify the task

quality of smart home activities and perform limited assessment of the cognitive health of

individual if smart home activities are properly chosen and learning algorithms are appropriately

trained.
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1. Introduction

The maturing of ubiquitous computing technologies has opened the doors for application of

these technologies to areas of critical need. One such area is continuous monitoring of an

individual’s cognitive and physical health. The possibilities of using smart environments for

health monitoring and assistance are perceived as “extraordinary” [1] and are timely given

the global aging of the population [2–5].

We hypothesize that cognitive impairment can be evidenced in everyday task performance.

We also postulate that differences in task performance can be automatically detected when

comparing healthy individuals to those with cognitive impairment using smart home and

machine learning technologies. This work investigates approaches for automatically

quantifying task performance based on sensor data for identifying correlation between

sensor-based assessment and assessment based on direct observation. Clinicians are

interested in understanding everyday functioning of individuals to gain insights into

difficulties that affect quality of life and to assist individuals in completing daily activities

and maintaining independence. Everyday functioning encompasses a range of daily

functional abilities that individuals must complete to live competently and independently

such as cooking, managing finances, and driving. In addition, deficits and changes in

everyday functioning are considered precursors to more serious cognitive problems such as

mild cognitive impairment (MCI) and dementia [6, 7].

Mild cognitive impairment is considered a transitional stage between normal cognitive aging

and dementia [8], and has been associated with impairments in completing complex

everyday activities [9]. To date, much of our understanding of everyday activity completion

for individuals with cognitive impairment has come from proxy measures of real-world

functioning including self-report, informant-report and laboratory-based simulation

measures. Though these methods are commonly used to reflect activity performance in

realistic settings, such assessment techniques are widely questioned for their ecological

validity [10]. For example, self-report and informant-report are subject to reporter bias [11],

while data that is collected via simulation measures in a lab or clinical setting may not

capture subtle details of activity performance that occur in a home setting [12,13]. Among

these methods, direct observation of the individual to determine everyday functional status

has been argued to be the most ecologically valid approach [10,14].

During direct observation, clinicians determine how well individuals perform activities by

directly observing task performances. If important steps are skipped, performed out of

sequence or performed incorrectly, for example, the activity may be completed inaccurately

or inefficiently and this may be indicate a cognitive health condition. Such errors may

include forgetting to turn off the burner, leaving the refrigerator door open, or taking an

unusually long time to complete a relatively simple activity.
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However, direct observation methods are conducted in the laboratory and trained clinicians

administer them. Often, patients visit the lab to get tested. This is a significant limitation of

the direct observation methods. In contrast, smart home sensor systems continuously

monitor individuals in their natural environment and thus can provide more ecologically

valid feedback [10] about their every day functioning to clinicians or caregiver. Clinicians

can use such sensor-derived features that reflect everyday behavior to make informed

decisions.

The primary aims of this study are 1) to provide automated task quality scoring from sensor

data using machine learning techniques and 2) to automate cognitive health assessment by

using machine learning algorithms to classify individuals as cognitively healthy, MCI, or

dementia based on the collected sensor data. In this paper, we describe the smart home and

machine learning technologies that we designed to perform this task. This approach is

evaluated with 263 older adult volunteer participants who performed activities in our smart

home testbed. The automated scores are correlated with standardized cognitive

measurements obtained through direct observation. Finally, the ability of the machine

learning techniques to provide automated cognitive assessment is evaluated using the

collected sensor data.

2. Related work

A smart home is an ideal environment for performing automated health monitoring and

assessment since no constraints need to be made on the resident’s lifestyle. Some existing

work has employed smart home data to automate assessment. As an example, Pavel et al.

[15] hypothesized that change in mobility patterns are related to change in cognitive ability.

They tested this theory by observing changes in mobility as monitored by motion sensors

and related these changes to symptoms of cognitive decline. Lee and Dey [16] also designed

an embedded sensing system to improve understanding and recognition of changes that are

associated with cognitive decline.

The ability to provide automated assessment in a smart home has improved because of the

increasing accuracy of automated activity recognition techniques [17,18]. These techniques

are able to map a sequence of sensor readings to a label indicating the corresponding activity

that is being performed in a smart home. In our experiments we rely upon environmental

sensors including infrared motion detectors and magnetic door sensors to gather information

about complex activities such as cooking, cleaning and eating [18,20,21]. However, the

techniques described in this paper can just as easily make use of other types of sensors such

as wearable sensors (i.e., accelerometers) which are commonly used for recognizing

ambulatory movements (e.g., walking, running, sitting, climbing, and falling) [22].

More recently, researchers have explored the utility of smart phones, equipped with

accelerometers and gyroscopes, to recognize movement and gesture patterns [23]. Some

activities, such as washing dishes, taking medicine, and using the phone, are characterized

by interacting with unique objects. In response, researchers have explored using RFID tags

and shake sensors for tracking these objects and using the data for activity recognition

[24,25]. Other researchers have used data from video cameras and microphones as well [20].

Dawadi et al. Page 3

Technol Health Care. Author manuscript; available in PMC 2014 August 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



While smart environment technologies have been studied extensively for the purposes of

activity recognition and context-aware automation, less attention has been directed toward

using the technologies to assess the quality of tasks performed in the environment. Some

earlier work has measured activity accuracy for simple [26] and strictly sequential [27]

tasks. Cook and Schmitter-Edgecombe [27] developed a model to assess the completeness of

activities using Markov models. Their model detected certain types of step errors, time lags

and missteps. Similarly, Hodges et al. [26] correlated sensors events gathered during a

coffee-making task with an individual’s neuropsychological score. They found a positive

correlation between sensor features and the first principal component of the standard

neuropsychological scores. In another effort, Rabbi et al. [13] designed a sensing system to

assess mental and physical health using motion and audio data.

3. Background

3.1. The smart home testbed

Data are collected and analyzed using the Washington State University CASAS on-campus

smart home test bed, an apartment that contains a living room, a dining area, and a kitchen

on the first floor and two bedrooms, an office, and a bathroom on the second floor. The

apartment is instrumented with motion sensors on the ceiling, door sensors on cabinets and

doors, and item sensors on selected kitchen items. In addition, the test-bed contains

temperature sensors in each room, sensors to monitor water and burner use, and a power

meter to measure whole-home electricity consumption. Item sensors are placed on a set of

items in the apartment to monitor their use.

Sensor events are generated and stored while participants perform activities. Each sensor

event is represented by four fields: date, time, sensor identifier, and sensor message.

CASAS middleware collects sensor events and stores in SQL database. All software runs

locally using a small Dream Plug computer. Figure 1 shows the sensor layout in the CASAS

smart home testbed. All of the activities for this study were performed in the downstairs of

the apartment while an experimenter monitored the participant upstairs via a web camera

and remotely communicated to the participant using a microphone and speaker.

3.2. Smart home activities

During the experiment, each participant was introduced to the smart home testbed and

guided through a preliminary task in order to familiarize the participant with the layout of

the apartment. The participant was then asked to perform a sequence of eight activities.

Instructions were given before each activity and no further instructions were given unless

the participant explicitly asked for assistance while performing the activity. The eight

activities are:

1. Household Chore: Sweep the kitchen and dust the dining/living room using

supplies from the kitchen closet.

2. Medication Management: Retrieve medicine containers and a weekly medicine

dispenser. Fill the dispenser with medicine from the containers according to

specified directions.
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3. Financial Management: Complete a birthday card, write monetary check, and

write an address on the envelope.

4. General Activity: Retrieve the specified DVD from a stack and watch the news clip

contained on the DVD.

5. Household Chore: Retrieve the watering can from the closet and water all of the

plants in the apartment.

6. Telephone Use/Conversation: Answer the phone and respond to questions about the

news clip that was watched previously.

7. Meal Preparation: Cook a cup of soup using the kitchen microwave and following

the package directions.

8. Everyday Planning: Select clothes appropriate for an interview from a closet full of

clothes.

These activities represent instrumental activities of daily living (IADLs) [28] that can be

disrupted in MCI, and are more significantly disrupted in AD. As there is currently no gold

standard for measuring IADLs, the IADL activities were chosen by systematically reviewing

the literature to identify IADLs that can help discriminate healthy aging from MCI [29,30].

All IADL domains evaluated in this study rely on cognitive processes and are commonly

assessed by IADL questionnaires [31,32] and by performance-based measures of everyday

competency [33,34]. Successful completion of IADLs requires intact cognitive abilities,

such as memory and executive functions. Researchers have shown that declining ability to

perform IADLs is related to decline in cognitive abilities [19].

In this study, we examine whether sensor-based behavioral data can correlate with the

functional health of an individual. Specifically, we hypothesize that an individual without

cognitive difficulties will complete our selected IADLs differently than an individual with

cognitive impairment. We further postulate that sensor information can capture these

differences in quality of activities of daily living and machine learning algorithms can

identify a mapping from sensor-based features to cognitive health classifications.

3.3. Experimental setup

Participants for this study completed a three hour battery of standardized and experimental

neuropsychological tests in a laboratory setting, followed approximately one week later by

completion of everyday activities in the smart home. The participant pool includes 263

individuals (191 females and 72 males), with 50 participants under 45 years of age

(YoungYoung), 34 participants age 45–59 (MiddleAge), 117 participants age 60–74

(YoungOld), and 62 participants age 75+ (OldOld). Of these participants, 16 individuals

were diagnosed with dementia, 51 with MCI, and the rest were classified as cognitively

healthy. Participants took 4 minutes on average to complete each activity while the testing

session for eight activities lasted approximately 1 hour.

As detailed in Table 1, the initial screening procedure for the middle age and older adult

participants consisted of a medical interview, the clinical dementia rating (CDR) instrument

[35], and the telephone interview of cognitive status (TICS) [36].
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Interview, testing and collateral medical information (results of laboratory and brain

imaging data when available) were carefully evaluated to determine whether participants

met clinical criteria for MCI or dementia. Inclusion criteria for MCI (see Table 1) were

consistent with the criteria outlined by the National Institute on Aging-Alzheimer’s

Association workgroup [37] and the diagnostic criteria defined by Petersen and colleagues

[38, 39]. The majority of participants met criteria for amnestic MCI (N = 45), non-amnestic

(N = 6), as determined by scores falling at least 1.5 standard deviations below age-matched

(and education when available) norms on at least one memory measure (see Table 1).

Participants with both single-domain (N = 18) and multi-domain (N = 33) MCI (attention

and speeded processing, memory, language, and/or executive functioning) are represented in

this sample. Participants in the dementia group met diagnostic and statistical manual of

mental disorders (DSM-IV-TR) criteria for dementia [40] and scored 0.5 or higher on the

clinical dementia rating instrument. The TICS scores for individuals with dementia ranged

from 18 to 29 (M=24, std=3.71).

Before beginning each of the 8 IADL activities in the smart home, participants were

familiarized with the apartment layout (e.g., kitchen, dining room, living room) and the

location of closets and cupboards. Materials needed to complete the activities were placed in

their most natural location. For instance, in the sweeping task a broom was placed in the

supply closet and the medication dispenser along with cooking tools were placed in the

kitchen cabinet.

As participants completed the activities, two examiners remained upstairs in the apartment,

watching the activities through live feed video. As the participant completed the activities,

the examiners observed the participant and recorded the actions based on the sequence and

accuracy of the steps completed. The experimenters also recorded extraneous participant

actions (e.g., searching for items in wrong locations). Experimenter-based direct observation

scores were later assigned by two coders who had access to the videos. The coders were

blind to diagnostic classification of the older adults. Each activity was coded for six different

types of errors: critical omissions, critical substitutions, noncritical omissions, non-critical

substitutions, irrelevant actions and inefficient actions. The scoring criteria listed in Table 2

were then used to assign a score to each activity. A correct and complete activity received a

lower score, while an incorrect, incomplete, or uninitiated activity received a higher score.

The final direct observation score was obtained by summing the individual activity scores

and ranged from 8 to 32. Agreement between coders for the overall activity score remained

near 95% across each diagnostic group, suggesting good scoring reliability.

Figure 2 shows the distribution of the direct observation scores grouped by participant age

and cognitive classification. As participants completed the activities, the examiners recorded

the time each subtask began and ended. These timings were later confirmed by watching

video of the activity. Using this information, a research team member annotated raw sensor

events in the data with the label of the subtask that the individual was performing when the

event was triggered. Figure 3 shows a sample of the collected raw and annotated sensor data.
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4. Extracting features from smart home sensor data

Based on the objectives of the study, we define features that can be automatically derived

from the sensor data, reflect activity performance, and can be fed as input to machine

learning algorithms to quantify activity quality and assess cognitive health status. These

features capture salient information regarding a participant’s ability to perform IADLs.

Table 3 summarizes the 35 activity features that our computer program extracts and uses as

input to the machine learning algorithms. The last feature, Health status, represents the

target class label that our machine-learning algorithm will identify based on the feature

values.

As Table 3 indicates, we included the age of the participant as a discriminating feature

because prior research showing age-related effects on the efficiency and quality of everyday

task completion [14, 46].

During task completion, participants sometimes requested help from the experimenter

triggering a microphone, and this additional help is noted as a feature value. The

experimenters also assigned poorer observed activity quality ratings when the participant

took an unusually long time to complete the activity, the participant wandered while trying

to remember the next step, the participant explored a space repeatedly (e.g., opened and shut

a cabinet door multiple times) as they completed a step, or the participant performed a step

in an incorrect manner (e.g., used the wrong tool). The smart features are designed to

capture these types of errors. The length of the event is measured in time (duration) and in

the length of the sensor sequence that was generated (sequence length).

To monitor activity correctness, the number of unique sensor identifiers that triggered events

(sensor count) is captured as well as the number of events triggered by each individual

sensor (motion, door, and item sensor counts). Finally, for each activity the smart home

software automatically determines the sensor identifiers that are related to the activity, or are

most heavily used in the context of the activity, by determining the probability that they will

be triggered during the activity. The sensors that have a probability greater than 90% of

being triggered (based on sample data) are considered related to the activity the rest are

considered unrelated. Therefore, the number of unrelated sensors that are triggered is noted

as well as the number of sensor events caused by these unrelated sensors while a participant

is performing the activity.

Our feature extraction method does not consider individual “activity steps” while extracting

features from the activities. As a result, the features are generalizable to any activity and not

fine-tuned to the characteristics of a particular task. This means that the method does not

have to be fine-tuned for a particular activity and its steps, but rather will consider features

of any activity as a whole. As a result, the technique will be more generalizable to new

activities. In addition, it is sometimes difficult to differentiate activity steps from

environmental sensors. For example, it is difficult to detect individual steps of the outfit

selection activity (moving to the closet, choosing and outfit, and laying out clothes) using

only motion sensor data.
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The list of features shown in Table 3 is extracted for all eight activities. Our machine

learning algorithm receives as input a list of values for each of these 35 sensor-derived

features and learns a mapping from the feature values to a target class value (health status).

In order to train the algorithm and validate its performance on unseen data, ground truth

values are provided for the participants in our study. Ground truth data for a participant is

generated from a comprehensive clinical assessment, which includes neuropsychological

testing data (described previously), interview with a knowledgeable informant, completion

of the clinical dementia rating [35, 47], the telephone interview of cognitive status [36], and

a review of medical records. Figure 4 highlights the steps of the automated task assessment.

We observe that participants with cognitive disabilities often leave activities incomplete.

Features of incomplete activities as thus denoted as missing. In the final dataset, we only

include participants completing 5 or more activities (more than half of the total activities).

The final dataset contains 47 (2%) missing instances.

5. Automated task assessment

5.1. Method

The first goal of this work is to use machine learning techniques to provide automated

activity quality assessment. Specifically, machine-learning techniques are employed to

identify correlation between our automatically derived feature set based on smart home

sensor data and the direct observation scores. To learn a mapping from sensor features to

activity scores, two different techniques are considered: a supervised learning algorithm

using a support vector machine (SVM) [51] and an unsupervised learning algorithm using

principal component analysis (PCA) [52]. Support vector machines are supervised learning

algorithms that learn a concept from labeled training data. They identify boundaries between

classes that maximize the size of the gap between the boundary and the data points. A one

vs. one support vector machine paradigm is used which is computationally efficient when

learning multiple classes with possible imbalance in the amount of available training data for

each class.

For an unsupervised approach, PCA is used to model activities. PCA is a linear

dimensionality reduction technique that converts sets of features in a high-dimensional space

to linearly uncorrelated variables, called principal components, in a lower dimension such

that the first principal component has the largest possible variance, the second principal

component has the second largest variance, and so forth. PCA is selected for its widespread

effectiveness for a variety of domains. However, other dimensionality reduction techniques

could also be employed for this task.

The eight activities used for this study varied dramatically in their ability to be sensed, in

their difficulty, and in their likelihood to reflect errors consistent with cognitive impairment.

Therefore, instead of learning a mapping between the entire dataset for an individual and a

cumulative score, we build eight different models, each of which learns a mapping between

a single activity and the corresponding direct observation score. Because the goal is to

perform a direct comparison between these scores and the direct observation scores, and

because the final direction observation scores represent a sum of the scores for the
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individual activities, the score output from our algorithm is also a sum of the eight

individual activity scores generated by the eight different learning models.

5.2. Experimental results

Empirical testing is to evaluate the automated activity scoring and compare scores with

those provided by direct observation. The objective of the first experiment is to determine

how well an automatically-generated score for a single activity correlates with the direct

observation score for the same activity. In the second experiment, similar correlation

analyses are performed to compare the automatically-generated combined score for all

activities with the sum of the eight direct observation scores. In both cases support vector

machines with bootstrap aggregation are used to output a score given the sensor features as

input.

In addition to these experiments, a third experiment is performed to compare the

automatically-generated combined score with the sum of the eight direct observation scores

without using demographic features (age, was help provided) in the feature set. This

provides greater insight on the role that only sensor information plays in automating task

quality assessment. The bootstrap aggregation improves performance of an ensemble

learning algorithm by training the base classifiers on randomly-sampled data from the

training set. The learner averages individual numeric predictions to combine the base

classifier predictions and generates an output for each data point that corresponds to the

highest-probability label.

Table 4 lists the correlation coefficient between automated scores and direct observation

scores for individual activities and selected participant groups (cognitive healthy, MCI, and

dementia) derived using SVM models. We note that correlation scores are stronger for

activities that took more time, required a greater amount of physical movement and

triggered more sensors such as Sweep as compared to activities such as Card. For activities

like Card, errors in activity completion were more difficult for the sensors to capture. Thus,

the correlation scores between automated sensor-based scores and direct observation scores

in these activities are low. Similarly, we note that the correlation score also varies based on

what groups (cognitively health, MCI, dementia) of participants are included in the training

set. In almost all activities, the correlation is relatively strong when the training set contains

activity sensor data for all three cognitive groups of participants.

Next a combination of all of the performed activities is considered. Table 5 lists the

correlation between a sum of the individual activity scores generated by the eight activity

SVM models and the direct observation score. Correlations between two variables are

relatively strong when the learning algorithm is trained using data from all three cognitive

groups. Differences in correlation strength may be attributed to diversity present in the data.

A majority of the cognitive healthy participants complete the eight tasks correctly so the

training data from this group contains examples of only “well-performed” activities and thus

exhibits less diversity. Learning algorithms tend to generalize poorly when data contains

little variation and thus classification performance may degrade.
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Table 5 also lists the correlation between a sum of individual activity scores generated by

eight SVM models and the direct observation score without considering non-sensor-based

features (age, help provided). Both Pearson linear correlation and Spearman rank correlation

coefficient are calculated to assess relationship between variables. The correlation

coefficients are statistically significant when correlations are derived only from the sensor-

based feature set and duration does improve the strength of the sensor-based correlation. We

conclude that demographic and experimenter-based features do contribute toward the

correlation, but a correlation does exist as well between purely sensor-derived features and

the direct observation score.

Tables 6 and 7 list the correlation coefficients between our automated scores and direct

observation scores when we utilize PCA to generate the automated scores based on sensor

features. Similar to the results in Tables 4 and 5, some activities have much stronger

correlations than others and the strength of the correlations varies based on which groups are

included in the training set. Furthermore, the correlation scores obtained using PCA are

statistically significant but not as strong as those obtained from the SVM models. Given the

nature of the activities and given that the dimension of sensor derived features is reduced to

a single dimension using a linear dimensionality reduction technique, it is likely that during

the process some information is lost that otherwise produces a satisfactory correlation

performance between direct observation scores and sensor based features. Note that

experiments are not performed which involve only participants from the dementia group

because the sample size is small. Table 7 list the correlation coefficients between the

automated scores and direct observation scores when PCA is utilized to generate the

automated scores based on sensor features excluding non-sensor-based features. As before,

we note that there is little difference between the sets of correlation coefficients.

These experiments indicate that it is possible to predict smart home task quality using smart

home-based sensors and machine learning algorithms. We observe moderate correlations

between direct observation score, which is a task quality score assigned by trained clinical

coders, and an automated score generated from sensor features. We also note that the

strength of the correlation depends on the diversity and quantity of training data. Finally, we

also note that apart from the age of the participants, all of the features that are input to the

machine-learning algorithm are automatically generated from smart home sensor events.

6. Automated cognitive health assessment

6.1. Method

The second goal of this work is to perform automated cognitive health classification based

on sensor data that is collected while an individual performs all eight activities in the smart

home testbed. Here, a machine learning method is designed to map the sensor features to a

single class label with three possible values: cognitively healthy (CH), mild cognitive

impairment (MCI), or dementia (D).

When sensor data that was gathered for the population is visualized (shown in Figure 5), we

see the heterogeneity of the data as well as specific differences in activity performance

across the eight selected activities. As a result, we hypothesize that a single classifier would
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not be able to effectively learn a mapping from the entire data sequence for an individual to

a single label for the individual. This is because individual activities vary in terms of

difficulty, duration, and inherent variance.

Machine learning researchers use ensemble methods, in which multiple machine learning

models are combined to achieve better classification performance than a single model [53].

Here, eight base classifiers are initially created, one for each of the activities, using both a

non-linear classifier (in this case, a support vector machine learning algorithm) and a linear

classifier (in this case, a logistic regression classifier).

We observe that there is a class imbalance in our training set for cognitive health prediction:

there are only 16 individuals in the Dementia group and 51 in the MCI group, relative to the

196 participants in the cognitively healthy group. We note in advance that such imbalance

may adversely affect predictive performance as many classifiers tend to label the points with

the majority class label. To address this issue, cost sensitive versions of the machine

learning algorithms are used for each of the base classifiers. A cost sensitive classifier

assigns misclassification costs separately for individual class labels and reweights the

samples during training according to this cost. This allows the classifier to achieve overall

strong performance even when the training points are not evenly divided among the

alternative classes [54], as is the case with this dataset. A meta-classifier then outputs a label

(CH, MCI, or D) based on a vote from the base learners.

6.2 Evaluation metrics

A number of evaluation metrics are utilized to validate the proposed methodology. The first,

ROC curves, assess the predictive behavior of a learning algorithm independent of error cost

and class distribution. The curve is obtained by plotting false positives vs. true positive at

various threshold settings. The area under the ROC curve (AUC) provides a measure that

evaluates the performance of the learning algorithm independent of error cost and class

distribution.

In a data set with an imbalanced class distribution, g-mean measures the predictive

performance of a learning algorithm for both the positive and a negative classes. It is defined

as:

where the true positive rate and true negative rate represents the percentage of instances

correctly classified to their respective classes. Furthermore, we also report if the prediction

performance of a learning algorithm is better than random in both negative and positive

classes. The classifier predicts a class better than random if the prediction performance, true

positive rate, true negative rate, and the AUC value are all greater than 0.5.
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6.3. Experimental results

Several experiments are performed to evaluate our automated cognitive health classifier. For

all of the experiments we report performance based on overall area under the ROC curve

(AUC) and g-mean scores. Values are generated using leave one out validation.

To better understand the differences between each class, this situation is viewed as a set of

binary classification problems in which each class is individually distinguished from

another. The first experiment evaluates the ability of the classifier to perform automated

health assessment using sensor information from individual activities using the support

vector machine and logistic regression classifier algorithms.

Tables 8 and 9 summarize the results. Classification performance for cognitively healthy vs.

dementia is better than the other two cases. Similarly, performance for classifying MCI and

cognitively healthy using SVM learning algorithm in all eight activities is not better than

random prediction. Figure 2 shows that there is overlap between the direct observation

scores of the healthy older adults and those diagnosed with MCI. MCI is often considered as

a transition stage from cognitively healthy to dementia [35, 38]. It is possible that no reliably

distinct differences exist between activity performances, or sensors are not able to capture

subtle differences in activity performance between those two cognitive groups. Thus,

additional experiments are not performed to distinguish between these two groups.

Similar to the results summarized in Section 5, we see that prediction performance for some

activities such as Sweep, Dress, and Cook is better than for other activities such as DVD and

Medicine. As explained previously, some of the activities took longer to complete and

triggered more sensor events than others making it easier to identify errors, unrelated sensor

events, and taking longer to perform the activity. Thus, differences exist in patterns of

activity performance and sensors capture them. Our learning algorithm may be able to

quantify these differences to distinguish between the different participant groups.

The second experiment evaluates the ability of the ensemble learner to automate health

assessment using information from the combined activity set. The results are summarized in

Table 10 and Table 11. The classification performance for classifying dementia and

cognitively healthy is better than for classifying MCI vs. dementia. In addition, in Table 8

only a few base classifiers have better than random prediction. For each of these tables, costs

are reported that yield the most promising results for the classifier. In a third experiment,

only base classifiers that have better than random performance are selected. The results are

summarized in Table 12 and 13. As shown in Table 12, for predicting MCI vs. dementia

only 4 base classifiers are selected while for predicting dementia vs. cognitively healthy 5

base classifiers are selected. Similarly, for the results summarized in Table 13, only 2 base

classifiers are selected for predicting dementia vs. cognitively healthy, while 6 base

classifiers are selected for predicting MCI vs. dementia and 2 are selected for predicting

dementia vs. cognitively healthy. The classification performance of MCI vs. dementia and

dementia vs. cognitively healthy improves as compared to the previous two cases.

These experiments indicate that it is possible to perform limited automated health

assessment of individuals based on task performance as detected by smart home sensors.
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The feature extraction technique described here along with the learning algorithm design

achieves good performance at differentiating the dementia and cognitively healthy groups as

compared to the other binary comparisons. This limitation might be due to the current

coarse-grained resolution of the environment sensors and the current smart home activity

design. It might be possible to improve accuracy using different tasks, additional features,

more sensors and those sensors that provide finer resolution such as wearable sensors.

7. Discussion and Conclusions

In this work, we have introduced a method to assist with automated cognitive assessment of

an individual by analyzing the individual’s performance on IADLs in a smart home. We

hypothesize that learning algorithms can identify features that represent task-based

difficulties such as errors, confusion, and wandering that an individual with cognitive

impairment might commit while performing everyday activities. The experimental results

suggest that sensor data collected in a smart home can be used to assess task quality and

provide a score that correlates with direct observation scores provided by an experimenter.

In addition, the results also suggest that machine-learning techniques can be used to classify

the cognitive status of an individual based on task performance as sensed in a smart home.

One must carefully interpret the correlation results that are mentioned here. The correlation

(r) between smart home features and direct observation score is statistically significant. The

correlation coefficient is squared to obtain the coefficient of determination. A coefficient of

determination of 0.29 (r=0.54) means that the nearly 30% of the variation in the dependent

variable can be explained by the variation in the independent variable. The current results

show that this method explains nearly 30% variations in the direct observational scores.

Unexplained variation can be attributed to limitations of sensor system infrastructures and

algorithms.

We have seen that the predictive performance of a learning algorithm varies based on the

activity being monitored and the condition of the individual performing the activities. As

expected, the prediction accuracies of complex activities that triggered more sensor events

were better than the accuracies for activities that trigger fewer sensor events and required

less time to complete. Learning algorithms generalize better when trained from sensor rich

data and when they are provided with data from a large segment of the population.

In addition, the prediction performance of the learning algorithm is affected by several

factors. A primary factor is the class imbalance in our data set. Another contributing factor is

missing values that are introduced in the cases when individuals (almost always individuals

in the MCI and Dementia groups) do not attempt some of the activities. Finally, the ground

truth values are based on human observation of a limited set of activities and may be prone

to error. Based on these observations, we conclude that in a testing situation an experimenter

needs to select activities with caution, balancing tradeoff between a difficult activity that

results in good prediction performance and one that is easy enough for participants with

cognitive impairments to complete.

The current approach uses between-subjects differences in activity performance to perform

cognitive health assessment and is based on set of non-obtrusive environmental sensors such
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as door sensors, motion sensors, and item sensors. The current work demonstrates that it is

possible to automatically quantify the task quality of smart home activities and assist with

assessment of the cognitive health of individual with a reasonable accuracy given the proper

choice of smart home activities and appropriate training of learning algorithms. However,

before sensor-based scores would be acceptable for clinical practice, future studies will be

needed to increase the strength of correlations between sensor-based and direct observation

scores. Given the variability in functional performance evident across individuals,

longitudinally collected sensor-based data, which uses the individual as their own control,

will likely increase sensitivity to detecting change in functional status and is an avenue that

we are pursuing.

Our long term goal is to develop an automated system that assesses activities of daily living

in a home environment by using person’s own behavioral characteristics to track their

activity performance over time and identify changes in activity performance that correlate

with changes in their cognitive health status. This current work is a first step in developing

such technique. This work supports the hypothesis that the sensors can assist with automated

activity assessment. In future work, activity recognition algorithms can be employed to

automatically recognize activities performed in a home setting and repeat this experiment in

participants’ own homes. In addition, we will analyze longitudinal behavioral and activity

data collected by installing environmental sensors in real homes. Activity recognition

algorithms will be used to recognize activities and avoid manual annotation. We also plan to

develop algorithms based on time series analysis to assess activity quality and correlate

detected behavioral changes with changes in cognitive or physical health.
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Figure 1.
CASAS smart home test-bed floor plan and sensor layout. The test-bed is a two-story

apartment with three bedrooms, a bathroom, a living room, dining room, and kitchen.
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Figure 2.
Distribution of the direct observation scores grouped by participant’s cognitive diagnosis.

Participants are organized by age on the x axis and the y axis represents the corresponding

score.
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Figure 3.
Sensor file format and sample annotation. Sensor IDs starting with M represent motion

sensors, D represents door sensors, I represents item sensors, and P represents power usage

sensors. The data is annotated with the start and end points of the activity (in this case,

Medicine) and the individual step numbers within the activity.
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Figure 4.
Steps involved in perform sensor-assisted cognitive health assessment. The process starts

with a comprehensive neuropsychology assessment of the participant. The participant then

performs IADLs in a smart home monitored by trained clinicians and smart home

environmental sensors. The raw sensor data is annotated with activity labels. From the

annotated sensor data, we extract features and analyze it with machine learning algorithms

to derive the quality of the activity. The results are used by a clinician or by a computer

program to perform cognitive health assessment.

Dawadi et al. Page 21

Technol Health Care. Author manuscript; available in PMC 2014 August 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5.
Scatter plot of sensor features for each of the eight activities. Each grid cell in the plot

represents a combination of two of the sensor features (duration, sensor frequency, unrelated

sensors, and unrelated sensor count).
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Table 1

Inclusionary and exclusionary criteria for the MCI, healthy older adult and dementia groups.

Initial screening for all middle age and older adult participants:

a. Medical interview to rule out exclusionary criteria of history of brain surgery, head trauma with permanent brain lesion, current or
recent (past year) self-reported history of alcohol or drug abuse, stroke, or a known medical, neurological or psychiatric cause of
cognitive dysfunction (e.g., epilepsy, schizophrenia).

b. Clinical dementia rating instrument to assess dementia staging [35].

c. Telephone interview of cognitive status [36] to assess cognitive status and exclude significantly impaired participants who would be
unable to complete the assessment.

Inclusion criteria for MCI group:

a. Self-report or knowledgeable informant report of subjective memory impairment for at least 6 months, as assessed by direct
questioning during initial screening interview.

b. Objective evidence of impairment in single or multiple cognitive domains (memory, executive, speeded processing, and/or
language), with scores falling at least 1.5 standard deviations below age-matched (and education when available) norms. Test listed
by domain with reference to norms used in parentheses:

Memory: Memory Assessment Scale list learning and long- delayed free recall [42]; Brief Visual Memory Test learning and
long-delayed free recall [41]

Executive: Delis-Kaplan Executive Functioning Scale total correct from the Letter Fluency and Design Fluency subtests [43];
Trail Making Test, Part B total time [44]; Wechsler Adult Intelligence Scale-Third Edition Letter-Number Sequencing subtest
total correct [46]

Speeded processing: Trail Making Test, Part A total time [44]; Symbol Digit Modalities Test total correct written and oral
[45]

Language: Boston Naming Test total correct [44]; Delis-Kaplan Executive Functioning Scale Category Fluency subtest total
correct [43]

c. Preserved general cognitive functions as confirmed by a score of 27 or above on the TICS (equivalent to the normality cutoff score
of 24 on the Mini Mental Status Exam) [48].

d. No significant impact of cognitive deficits on the participant’s daily activities, as confirmed by a total CDR score of no greater than
0.5, which is consistent with minimal change in the participant’s habits.

e. Nonfulfillment of the DSM–IV-TR criteria for dementia (American Psychiatric Association, 2000), confirmed by reviewing
screening data, neuropsychological testing data, and any available medical records.

Inclusion criteria for healthy older adult controls:

a. Reported no history of cognitive changes.

b. Scored within normal limits on the TICS.

c. Scored a 0 on the clinical dementia rating.

Inclusion criteria for dementia patients:

a. Met DSM IV-TR criteria for dementia [40]

b. Scored 0.5 or higher on the clinical dementia rating.
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Table 2

Coding scheme to assign direct observation scores to each activity.

Score Criteria

1 Task completed without any errors

2 Task completed with no more than two of the following errors: non-critical omissions, non-critical substitutions, irrelevant actions,
inefficient actions

3 Task completed with more than two of the following errors: non-critical omissions, non-critical substitutions, irrelevant actions,
inefficient actions

4 Task incomplete, more than 50% of the task completed, contains critical omission or substitution error

5 Task incomplete, less than 50% of the task completed, contains critical omission or substitution error
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Table 3

Sensor-based feature descriptors for a single activity.

Feature # Feature Name Feature Description

1 Age Age of the participant

2 Help An indicator that experimenter help was given so that the participant could complete the task

3 Duration Time taken (in seconds) to complete the activity

4 Sequence length Total number of sensor events comprising the activity

5 Sensor count The number of unique sensors (out of 36) that were used for this activity

6..31 Motion sensor count A vector representing the number of times each motion sensor was triggered (there are 26 motion
sensors)

32 Door sensor count Number of door sensor events

33 Item sensor count Number of item sensor events

34 Unrelated sensors Number of unrelated sensors that were triggered

35 Unrelated sensor count Number of unrelated sensor events

36 Health status Status of the patient: Healthy, MCI, or Dementia
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Table 5

Pearson correlation and Spearman rank correlation between the summed sensor-based scores and direct

observation scores for sample subsets using SVM. Samples are cognitive healthy (CH) participants,

participants with mild cognitive impairment (MCI), and participants with dementia (D) (*p < 0.05, **p <

0.005, ╪ p<0.05 with Bonferroni correction for the three sample groups). The first correlation coefficient

listed is the Pearson correlation coefficient while the second value is the Spearman rank correlation

coefficient.

Sample N r(all features) r(sensor features) r(sensor features without duration)

CH 196
0.39**╪ 0.22**╪ 0.20**

0.42**╪ 0.25**╪ 0.22**

MCI 51
0.50**╪ 0.35* 0.26*

0.48**╪ 0.31* 0.20

D,CH 212
0.50**╪ 0.47**╪ 0.46**╪

0.48**╪ 0.39**╪ 0.39**╪

MCI,CH 247
0.49**╪ 0.34**╪ 0.32**╪

0.48**╪ 0.32**╪ 0.30**╪

MCI,D 67
0.59**╪ 0.60**╪ 0.53**╪

0.63**╪ 0.60**╪ 0.52**╪

CH,MCI,D 263
0.54**╪ 0.51**╪ 0.49**╪

0.52**╪ 0.44**╪ 0.43**╪

The column r(all features) lists correlation coefficients obtained using all features, r(sensor features) lists correlation coefficients obtained using
only sensor based features, and r(sensor features without duration) lists correlation coefficients obtained using all sensor based features without the
duration feature.
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Table 7

Pearson correlation and Spearman rank correlations between the summed sensor-based scores and direct

observation scores for sample subsets using principal component analysis. We standardize data before

applying PCA. The samples are cognitive healthy (CH) participants, participants with mild cognitive

impairment (MCI), and participants with dementia (D) (*p < 0.05, **p < 0.005, ╪ p<0.05 with Bonferroni

correction for the three sample groups). The first value listed is the Pearson correlation coefficient while the

second value is the Spearman rank correlation coefficient.

Sample Sample size r(all features) r(sensor features) r(sensor features without duration)

CH 196
0.13 0.12 0.11

0.12 0.10 0.08

MCI 51
0.10 0.08 0.09

−0.03 −0.08 −0.08

D,CH 212
0.13 0.11 0.10

0.12 0.09 0.08

MCI,CH 247
0.18**╪ 0.16*╪ 0.15*

0.08 0.07 0.05

MCI,D 67
0.12 0.10 0.10

0.09 0.08 0.07

CH,MCI,D 263
0.16*╪ 0.14* 0.13

0.07 0.05 0.03

The column r(all features) lists correlation coefficients obtained using all features, r(sensor features) lists correlation coefficients obtained using
only sensor based features, and r(sensor features without duration) lists correlation coefficients obtained using all sensor based features without the
duration feature.
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Table 10

Combined cost-sensitive health classification performance with all activities classified using a SVM classifier.

Sample Sample size Costs AUC G mean

MCI,D 67 (2, 1) 0.56 0.43

D,CH 212 (5, 1) 0.72 0.65
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Table 11

Combined cost-sensitive health classification performance with all activities classified using a logistic

regression classifier.

Sample Sample size Costs AUC G mean

MCI,D 67 (2, 1) 0.53 0.40

MCI,CH 247 (5,1) 0.66 0.62

D,CH 212 (5, 1) 0.83 0.75
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Table 12

Combined cost-sensitive health classification with selected activities classified using a SVM classifier.

Sample Sample size Costs AUC G mean

MCI,D 67 (2, 1) 0.59 0.53

D,CH 212 (6, 1) 0.80 0.73
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Table 13

Combined cost-sensitive health classification with selected activities classified using a logistic regression

classifier.

Sample Sample size Costs AUC G mean

MCI,D 67 (3, 1) 0.62 0.54

MCI,CH 247 (3,1) 0.65 0.60

D,CH 212 (3, 1) 0.87 0.75
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