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Abstract

In classic category learning studies, subjects typically learn to assign items to one of two

categories, with no further distinction between how items on each side of the category boundary

should be treated. In real life, however, we often learn categories that dictate further processing

goals, for instance with objects in only one category requiring further individuation. Using

methods from category learning and perceptual expertise, we studied the perceptual consequences

of experience with objects in tasks that rely on attention to different dimensions in different parts

of the space. In two experiments, subjects first learned to categorize complex objects from a single

morphspace into two categories based on one morph dimension, and then learned to perform a

different task, either naming or a local feature judgment, for each of the two categories. A same-

different discrimination test before and after each training measured sensitivity to feature

dimensions of the space. After initial categorization, sensitivity increased along the category-

diagnostic dimension. After task association, sensitivity increased more for the category that was

named, especially along the non-diagnostic dimension. The results demonstrate that local

attentional weights, associated with individual exemplars as a function of task requirements, can

have lasting effects on perceptual representations.
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The visual world is complex, with objects comprised of many visual features that we can

selectively attend to, depending on current goals. The mushroom enthusiast on a walk in the

woods might choose to disregard anything that does not fall in the mushroom category,

temporarily attending to perceptual information found in mushrooms and not other

categories. As she develops expertise, she would probably want to learn to identify

individual species, a feat that would be supported by a host of changes in perceptual

strategies and of neural responses in visual areas when looking at mushrooms. She may also

learn to distinguish edible from non-edible mushrooms, which would be greatly facilitated if

a perceptual dimension existed that predicted edibility. But if she learns more about cooking

with wild mushrooms, she may also learn about other dimensions that may speak to the
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freshness of the mushroom, dimensions that may not be relevant to identify species or

categorize them as edible or not, but that would only be relevant for edible mushrooms. Our

goals with objects, often multifaceted, influence how we perceive them.

Psychologists have long been interested in the interplay between categorization and

perception and how they support these sorts of complex behaviors. Studies that investigate

the behavioral and neural mechanisms of these experience-driven abilities come from two

broad literatures (Palmeri & Gauthier, 2004). On the one hand, work in the field of

categorization has led to models that make simplifying assumptions about object

representations but offer detailed accounts of the mechanisms used to make decisions about

objects (e.g., Nosofsky, 1986; Ashby, 1992). Many experiments in category learning are

relatively short, on the order of one experimental session, which is sufficient to show how

observers attend to different stimulus dimensions depending on the categorization task they

are engaged in. On the other hand, research in the field of object recognition, including the

area of perceptual expertise, places less emphasis on decisions: instead, models have

focused on describing the format of object representations (e.g., Biederman, 1987; Edelman,

1997; Riesenhuber & Poggio, 1999). While brief learning studies with novel objects have

been conducted, for instance to test sensitivity of the representations to various

manipulations (e.g., viewpoint, Bülthoff, Edelman, & Tarr, 1995; Tarr, Williams, Hayward,

& Gauthier, 1998), more extensive training studies have also investigated more permanent

changes that occur with the acquisition of expertise in a domain (e.g., Gauthier, Tarr,

Anderson, Skudlarski, & Gore, 1999; Wong, Palmeri, & Gauthier, 2009a; Wong, Palmeri,

Rogers, Gore, & Gauthier, 2009b).

Over the last twenty years, research in these two fields has contributed to our understanding

of how experience with objects affects our long-term perception of them. A general trend is

for phenomena to first be investigated during training itself, with subsequent studies asking

whether mechanisms that are engaged by task demands have long-term effects for

perception. The present study extends this research tradition to expand our understanding of

how learning to categorize and identify objects influences our perception. To place our work

in context, we highlight how some phenomena originally obtained during category learning

were later shown to have long-term effects outside of category learning. We then proceed to

discuss one effect that has been obtained during category learning, and why we believe

studying its long-term influence on perception may be important.

Exemplar models of categorization include mechanisms for changing representations

according to the demands of the current tasks. Assuming that objects are points in a

multidimensional space defined by different visual feature dimensions, learning to

categorize an object exaggerates the importance of particular features that are diagnostic of

category membership, while minimizing the importance of other features that are not

diagnostic for category learning (Kruschke, 1992; Nosofsky, 1986; Nosofsky & Palmeri,

1997). For instance, if objects that vary in size and color are categorized into large vs. small

objects, then size is diagnostic of category membership while color is not. During

categorization, the similarity of objects along the diagnostic dimension is typically found to

decrease, while it may increase or at least be unaffected for the non-diagnostic dimension.

These changes are implemented as shifts in the attentional weights assigned to different
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dimensions (Nosofsky, 1986). While such a mechanism was originally conceived of as

operating online to account for current task demands, later work demonstrated that

attentional “stretching” of a dimension that is diagnostic during categorization can have

lasting effects for perception outside of categorization judgments. Goldstone (1994)

elegantly demonstrated that after categorizing greyscale squares according to their size (or

alternatively, their brightness), perceptual discrimination judgments for pairs of these

squares (when categorization was now entirely irrelevant) were facilitated for the dimension

that was diagnostic during earlier categorization. While perceptual learning typically follows

practice discriminating along the relevant discrimination (Fine & Jacobs, 2002), in this case

perceptual improvements follow attention shifts to a dimension that was useful in the

previous categorization task. This phenomenon was termed acquired distinctiveness.

Building on these early results, later work considerably extended the reach of the idea that

learning to categorize depends on selective attention to relevant dimensions by showing that

it also applied to more complex stimuli and especially, more complex dimensions.

Goldstone and Steyvers (2001) created a space of faces using two randomly selected pairs of

bald men and morphing each pair to create an arbitrary dimension. These two dimensions

were then combined in an orthogonal fashion to create a matrix of faces that can be

categorized along one or the other axis. The experiments demonstrated that subjects could

learn to categorize along these novel dimensions, suggesting that selective attention did not

require existing knowledge of dimensions, nor dimensions to be particularly simple or

verbalizable, to operate during category learning. Subsequent work using morphspaces of

cars extended these findings by showing that stretching of complex morphspaces during

category learning causes perceptual stretching during a discrimination task (Folstein,

Gauthier, & Palmeri, 2012a; Folstein, Palmeri, & Gauthier, 2012b), and in one case the

influence on perception was observed for several days after category learning (Folstein,

Newton, Van Gulick, & Palmeri, 2012c).

These demonstrations that selective attention during category learning can have effects

outside of categorization, for a relatively long time after the categorization experience,

increase the relevance of these effects for understanding how long-term object

representations are created. Another line of research addressing how experience influences

object representations includes studies that manipulate not the dimension along which

subjects categorize objects, but the task that they perform (Nishimura & Maurer, 2008;

Scott, Tanaka, Sheinberg, & Curran, 2006; Tanaka, Curran, & Sheinberg, 2005; Wong et al.,

2009a; Wong et al., 2009b; Wong, Folstein, & Gauthier, 2011; 2012). These studies have

generally used between-subjects comparisons to study the effect of associating different

tasks with the same objects. The results have suggested that qualitative aspects of perception

(as well as of neural representations) are not fully determined by the visual appearance of

the objects. For instance, Wong and colleagues (Wong et al., 2009a; 2009b) used a between-

subjects design to study the effects of learning novel visual objects called Ziggerins in two

different ways. One group learned to individuate Ziggerins, labeling each one with a unique

name, while another group learned to categorize Ziggerins into one of six basic-level

families that differed in their part structure. Those who learned to individuate Ziggerins

improved at subordinate-level categorization and showed increased holistic processing,

which is a hallmark of face processing and expertise (Richler, Palmeri & Gauthier, 2012;
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Bukach, Phillips, & Gauthier, 2010), while those who learned to categorize Ziggerins at the

basic-level only improved at basic-level categorization and showed no holistic processing

(these effects were accompanied by differential changes in the visual system, Wong et al.,

2009b). These considerations raise the question of whether categorization and task

associations are sufficient to explain the sort of specialization we might see in the visual

system for various object categories. Do the representations in different domains of objects

such as faces (Kanwisher, McDermott, & Chun, 1997), scenes (Epstein & Kanwisher,

1998), tools (Mahon, Schwarzbach, & Caramazza, 2010), letters (James, James, Jobard,

Wong, & Gauthier, 2005), numbers (Shum et al., 2013), and musical notation (Wong &

Gauthier, 2010) get differentiated due to associations between these categories and the tasks

we generally perform with them? Whereas animals and tools are very dissimilar, there are

domains like letters, numbers, and musical notation that contain exemplars that are much

less distinctive across categories. For instance, letters and numbers are perceived as more

similar to one another by Canadian mail sorters who see them co-occurring more frequently

(Polk & Farah, 1995). Thus, it is possible to think of a single space (alphanumeric

characters) that could be divided by a category boundary (into letters and numbers), and

each category could then be associated with different tasks.

In the current work, we wanted to create a paradigm that would allow us to begin to study

the long-term perceptual effects when subjects learn to process objects that are visually

similar in different ways. In the category learning studies we reviewed above, dimensional

modulation was the same on both sides of the category boundary, as would be expected

since the categories were not dissociated in any other way then having received different

labels. In other words, after categorizing according to brightness, discrimination of squares

that differ in brightness is facilitated, but there is no sense in which bright and dark squares

are treated qualitatively differently. In such situations, and the models designed to explain

them, changes in attentional weights apply to an entire dimension and equally on both sides

of the category boundary (Kruschke, 1992; Love, Medin, & Gureckis, 2004; Nosofsky,

1986). But there is another line of work which argues that categorization may sometimes

require attentional weights that are associated with specific exemplars rather than with entire

dimensions, affording learning of more complex categories with exception items, and

providing more flexibility to adapt to context (Aha & Goldstone, 1992; Blair, Watson,

Walshe, & Maj, 2009; Sakamoto, Matsuka, & Love, 2004; Yang & Lewandowsky, 2004).

As we described above, the mushroom enthusiast may pay attention to some aspects of the

mushrooms that are diagnostic for freshness, but only if the mushroom is edible (because

freshness is not relevant to non-edible mushrooms). Aha & Goldstone (1992) created a

stimulus space in which different dimensions were relevant for categorization in different

parts of the space. Categorization of transfer exemplars in this space was used to

demonstrate that different dimensions were stretched in different parts of the stimulus space.

Several models of categorization can account for these sorts of contextual effects using

stimulus-specific attentional weights (Aha & Goldstone, 1992; Kruschke, 2001; Love &

Jones, 2006; Rodrigues & Murre, 2007).

Just as prior demonstrations of selective attention during category learning were extended by

demonstrating that the effects have long-term influences on perception, we wish to study the
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long-term perceptual effects of a learning situation where subjects first learn to divide a

space of objects according to a category boundary (as in other category learning tasks with

complex and novel dimensions), and then learn to perform different tasks with objects on

either side of the category boundary. This second aspect of our training protocol is

essentially a within-subject version of between-subjects manipulations performed in several

expertise studies (e.g., the Ziggerin work described above). It adds the interesting

complication that objects that are visually quite similar are learned in the context of tasks

that, in a between-subjects design, have been used to simulate what are often considered

qualitatively different kinds of object recognition (i.e., processes that tend to be associated

with face-like vs. non-face like processing).

Experiments designed to look at contextual effects have investigated categorization

performance itself during learning, without measuring its effects on a different

discrimination task, in a task for which the learned categories are no longer relevant.

Stimulus-specific attentional mechanisms may eventually help explain how objects that are

highly similar (such as numbers, letters and, musical notations) can come to be processed in

different ways, regardless of current task instructions. But for this mechanism to be able to

account for such category specialization, we first need to test whether stimulus–specific

weighing of different dimensions can have lasting implications for perception outside of

categorization behavior. To do so, in a novel training paradigm, we taught subjects to

perform different tasks on either side of a category boundary. On one side, the objects

should be individuated, and on the other side they should be categorized on the basis of a

binary local feature (See Figure 1). Following such task learning, we assessed perceptual

discrimination of transfer objects positioned throughout the trained space, specifically

comparing discrimination along the diagnostic and non-diagnostic dimensions.

We should clarify at the outset that when we manipulate the task, we also manipulate the

stimulus dimensions that are relevant. Schneider & Logan (in press) define a task as “a

representation of the instructions required to achieve accurate performance of an activity”,

which is, essentially, the subject’s perspective in an experiment like ours. As experimenters,

we have knowledge of the stimulus manipulations and ideal strategy that subjects do not

have. There are demonstrations in category learning of variation among individuals in the

specific rules and exceptions they may store (e.g., Nosofsky et al., 1994), and other evidence

that simply presenting response mappings as “tasks” can have important consequences over

and above learning specific response mappings (Dreisbach, Goschke, & Haider, 2006, 2007;

Dreisbach & Haider, 2008). In the present work we are not implying that the specifics of

how the tasks are presented are critical - for instance, we using naming in the identification

task, but there is recent work suggesting naming is not necessary for effects of identification

(Bukach et al., 2012). However, to reflect the fact that what subjects experienced is learning

to perform different tasks with objects in two similar categories, we refer to our

manipulation as a task manipulation, but it would not be wrong to think of these tasks as

essentially defined by the dimensions that are useful to carry them out.

To preview our analyses, we will seek evidence of three different phenomena. First, we will

assess whether learning the primary category boundary that divides the space in two halves

leads to acquired distinctiveness, operationalized as better discriminability for pairs of
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objects that vary along the dimension diagnostic for category learning (i.e., diagnostic pairs),

relative to pairs of objects that vary along the non-diagnostic dimension (non-diagnostic

pairs) (Goldstone, 1994). We expect to replicate this classical finding but it should be noted

that there are only a handful of demonstrations of acquired distinctiveness with complex

stimuli in a multidimensional space (Folstein et al, 2012a; 2012b; Goldstone & Steyvers,

2001; Gureckis & Goldstone, 2008; Livingston and Andrews, 2005)1. However, as would be

the case for similar results in prior studies with simple or complex dimensions, acquired

distinctiveness could be attributed to attention being selectively directed toward the entire

dimension. Therefore we considered two other effects that can speak to more local changes

in similarity space.

In particular, in a second analysis, we will investigate whether changes in discriminability

depend on the side of the space as a function of having learned different tasks on each side

of the space. We expect more improvement in discriminability with training on the

individuation side, especially for the “non-diagnostic” dimension, which is only relevant for

individuation. These results could not be accounted for by stretching of global dimensions,

because they would be local to one part of the space only. Thus, differential discriminability

within this space as a function of task associations would suggest that stimulus-specific

attentional weights (Aha & Goldstone, 1992; Kruschke, 2001; Love & Jones, 2006;

Rodrigues & Murre, 2007) have long-lasting effects in perceptual discrimination.

Finally, we will also assess evidence of acquisition of categorical perception. Categorical

perception is defined as better discriminability for objects in different categories relative to

those within category, when physical distance is equal (Harnad, 1987). Practically speaking,

categorical perception is a local stretching of the space for exemplars near a category

boundary. Using category learning of brightness vs. size, Goldstone (1994) found evidence

for increased discriminability across the category boundary (learned categorical perception)

above and beyond evidence of stretching of the entire relevant dimension. Others have

found evidence of learned categorical perception with simple shapes or more complex

shapes that varied in local features, and with color patches (Livingston, Andrews, & Harnad,

1998; Özgen & Davies, 2002). However in prior work using category learning with complex

objects morphed along different dimensions, no evidence for categorical perception was

obtained (Freedman, Riesenhuber, Poggio, & Miller, 2003; Gillebert, Op de Beeck, Panis, &

Wagemans, 2009; Jiang et al., 2007; Folstein et al., 2012a). Here, because we used morphed

stimuli we expected no categorical perception after the initial category learning phase of our

training, which resembles the procedure in these studies. However we asked whether

learning different tasks on the two sides of the space might differentiate the categories

further, such that categorical perception might emerge. On the other hand, to the extent that

categorical perception depends on learned equivalence (or compression) of stimuli on each

side of a category boundary (Livingston et al., 1998), teaching subjects to individuate

objects on one side of the space in the second phase of our training paradigm may work

against categorical perception.

1Recent work specifically addressed methodological reasons why some studies do not obtain this result (Folstein et al., 2012a).
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Experiment 1

Subjects first learned to categorize objects into two categories, then learned a different task,

individuation vs. local feature judgment, for each category. We measured discriminability

along different dimensions of the shape space for pairs of objects within and across

categories at three time points, before training, after category learning and after task

association.

Methods

Subjects—Subjects were recruited from the Vanderbilt University and Nashville, TN

community; they gave informed consent and received monetary compensation for their

participation. The study was approved by the local IRB. Thirty-two subjects (12 male) aged

21–32 (mean = 24.84, SD = 3.47) completed all 10 sessions of the study. This sample size

was chosen on the basis of a pilot study in which 24 subjects were trained for 5 sessions in a

simpler version of the training paradigm used here (details and data available upon request).

The interaction between day (Day 5 vs. Day 1) and task assignment (individuation task vs.

local task as in Experiment 1) had an effect size of ηp
2=.036. Since in Experiment 1 we

increased training to 10 days and added an explicit category learning phase before the task

association training, we assumed that the effect size would be at least 50% larger than in the

pilot. Given this, our sample size of 32 will yield power of .9 to obtain an effect of this size

at an alpha of .05. All subjects reported normal or corrected to normal visual acuity.

Stimuli and equipment—The experiment was conducted on Apple Mac Minis (OSX

10.6.5, 2Ghz Intel core 2 duo) using 20-inch CRT monitors (1,024×768 pixel screen

resolution) with MATLAB R2009b (Mathworks, Natick, MA, USA) and the Psychtoolbox

(http://psychtoolbox.org/; Brainard, 1997). Subjects were allowed to sit a comfortable

distance from the monitor (approximately 40cm).

The stimuli were geometric, realistically-shaded novel objects, Ziggerin-morphs, created by

morphing (using Norrkross MorphX software, Martin Wennerberg) 4 parent objects that

shared a common configuration of parts, selected from a set used by Wong and colleagues

(2009a) (Figure 2). Thus, objects varied within the morphspace along two dimensions, each

defined by the changes in shape and shading along the morph line from one parent object to

the other for each pair of parent objects. Objects were 148–150 pixels wide and 154–162

pixels in height and subtended approximately 6×6 degrees of visual angle. An 8×8 set of

objects, evenly spaced in the morphspace, was used in training (Figure 1A). All 64 training

objects were used for category learning. For task-association training, a subset of 16 objects

on each side of the space was used. On the side of the space assigned to individuation for a

given subject, 8 of the 16 objects were given individual names (Figure 1C), and the other 8

objects were used as “no-name” foils. On the side of the space assigned to the local feature

judgment for a given subject, all 16 objects were used in the same manner in the local

feature task (Figure 1D). A separate 4×4 set of 16 objects (Figure 1B), evenly interspersed

among the training objects, was used for the discrimination tests.

Each Ziggerin-morph also had two lines on its main body (in the same location for all

objects) that were used for the local feature task (Vernier discrimination judging in which
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direction two lines are misaligned). These were two black vertical lines that were each 1

pixel wide, 20 pixels long, and had opacity of 30%. The two lines were separated by 2 pixels

from left to right, a small misalignment since this is a perceptual learning task, and by 14

pixels from the bottom of the top line to the top of the bottom line. Two versions of the local

feature were created for each object in the space, top line left and top line right, which were

used with equal frequency in all parts of the experiment, such that the local feature was not

diagnostic of either category membership or individual object identity (Figure 1D).

Procedure

The experiment consisted of 10 sessions, with two sessions never more than 7 days apart

(mean = 1.57, SD = 0.92) and sessions completed in a period of 12–21 days (mean = 15.34,

SD = 2.90) – see Table 1. There were two between-subjects counterbalancing factors, the

dimension assigned for the category boundary in the morphspace, and the category-task

assignments to each side of the space, which resulted in four counterbalanced groups. All

examples given here illustrate a vertical category boundary in which the left-hand category,

Vits, was named and the right-hand category, Mogs, was associated with the local feature

task (Figure 1A).

Discrimination test—The discrimination test was administered on Days 1 (before

training), 3 (after category learning), and 10 (after task association). The objects and trials

were identical in all sessions, although the trial order was randomized each time.

Each discrimination trial began with a 500msec fixation cross followed by the first object

presented for 1000msec, a 500msec inter-stimulus interval blank screen, and then the second

object, which remained on the screen until a response was made. The subject had to indicate

if the two objects were the same (‘S’ key) or different (‘L’ key). The first object appeared in

the center of the screen and the second object appeared in an offset location (10–30 pixels in

one of 8 directions). Subjects were asked to respond as quickly as they could while still

being accurate.

For each discrimination test, subjects completed 20 blocks of 56 unique trials. Sixteen trials

in each block were same trials, using all 16 test objects (Figure 1B). The 40 different trials

showed 40 distinct pairs of objects that varied in distance and direction in the object space.

Twenty of these trials showed objects varying along the diagnostic dimension and 20 along

the non-diagnostic dimension, with 12 critical trials for each dimension. For the diagnostic

critical trials, the objects either fell within the same category (4 trials on each side) or

crossed the category boundary (4 trials). For the non-diagnostic critical trials, all 12 pairs

fell within a given category, 6 trials on each side.

Category learning—On Days 1– 3, subjects learned to categorize objects according to a

boundary that divided the space in half (counterbalanced across subjects).

Each trial began with a 500msec fixation cross and then a single object was presented in the

center of the screen until the subject indicated if the object was a Vit (‘V’ key) or a Mog

(‘M’ key). Initially, they had to simply guess the object’s category. Subjects received

feedback on all trials while the object was still on screen (e.g. “Correct. That is a Mog”).
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Each block consisted of 128 trials with each of the 64 training objects shown twice; 8 blocks

on Days 1 and 3, and 12 blocks on Day 2.

Task association, name learning—Subjects learned to name 4 objects from the named

category (e.g., Vits in our example) on Day 4 and 8 names on Day 5. The names were novel

four-letter words (Zigo, Kipa, Cami, Jepu, Milo, Tana, Raho, Fado). The order in which

objects were learned and object-name pairings were randomly chosen for each subject. Each

time subjects learned new objects (introduced in groups of 2), each object was presented

together with its name (e.g. “This is Raho”) 6 times. In naming blocks, each trial began with

a 500msec fixation cross then a single object was shown on the screen until the subject made

a response. Subjects responded with the first letter of the object’s name (e.g. ‘R’ key for

Raho). Twenty-four foil objects that did not have names were also included (20% of trials)

and subjects had to press the ‘N’ key for “No Name” on these trials. After incorrect trials,

subjects received feedback with the object and its name shown.

Task association, local feature learning—On Days 4 and 5, after completing the

name learning task, subjects learned to do the local feature task with objects from the other

category (e.g., Mogs in our example). The local feature task was a simple Vernier line

judgment, in which subjects had to judge if the top line was to the left or right of the bottom

line (Figure 1D). Each trial began with a 500msec fixation cross then a single object was

presented in the center of the screen until the subject made a response (‘Q’ key for top line

left and ‘P’ key for top line right right). After incorrect trials, subjects received feedback

with the object and the correct response shown. Half of the trials were top line right and half

were top line left. On Days 4 and 5, subjects completed 10 blocks of 96 trials (16 local

feature objects × 6).

Task association, alternating blocks—On Day 6, subjects completed 20 alternating

blocks of naming and the local feature task. At the beginning of each block the task was

presented for 1sec. Each trial began with a 500msec fixation cross and then a single object

was presented in the center of the screen until the subject made a response (‘Q’ or ‘P’ in

local feature blocks, letter corresponding to first letter of a name or ‘N’ in naming blocks).

There were 10 naming blocks of 108 trials each (8 named objects × 12, plus 12 foil trials)

and 10 local feature blocks of 96 trials each (16 local feature objects × 6). Feedback was

given on incorrect trials.

Task association, mixed trials—The goal of the training is to encourage subjects to

associate objects with different tasks, rather than with instructions. To promote such

associations, on Days 7–10, subjects completed mixed trials that included objects from both

categories randomly intermixed. Without explicit task instructions, subjects had to perform

the category-appropriate task, naming or local feature, for each object. Each trial began with

a 500msec fixation cross and then a single object appeared on the screen until the subject

made a response (‘Q’ or ‘P’ for aligned or misaligned local feature or the first letter of the

object’s name or ‘N’ for “no name”). “No Name” foil objects occurred on 20% of naming

trials, or 10% of total trials. Subjects received feedback on incorrect trials. For example, if

the object was a named object and was “Jepu” but the subject pressed ‘Q’ for “aligned”
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thinking it was a local feature object, the feedback would say, “That object is a Vit and is

supposed to be named. That is Jepu.”

Eight objects were used from each side of the space, such that the objects associated with

each task were from mirrored locations. On Days 7–10 subjects completed 10 blocks of 96

trials (48 trials per task, 8 objects × 6). The words “naming” or “local feature” were included

on each trial for the first 5 blocks on Day 7 to help subjects learn the task.

Results

Due to computer problems, data from a few category learning sessions were lost (~4.24% of

the all category learning trials for 5/32 subjects): critically, although data were not saved,

subjects completed these trials. In addition, one subject experienced only 8 out of 20 blocks

in the Day 1 discrimination test. Analyses were conducted including all available data for all

subjects to preserve counterbalancing of the design.

Training results—Subjects successfully learned to categorize objects, name them,

perform the local feature task, and later to perform the category-appropriate task for an

object (See supplemental materials for detailed analyses of the training results; Table S1).

Discrimination test results—Mean discriminability (d′; Green & Swets, 1966) was

calculated for pairs within the space on the object discrimination tests on Day 1 (before any

training), Day 3 (after category learning), and Day 10 (after category-task association

training) (Figure 3). Trials with extreme reaction times (less than 100msec or greater than

5000msec) were removed from the analysis (.4% of the trials). We also searched for extreme

values in mean d′ by subject for each session defined as individual session d′ scores that

were more than the 25th or 75th percentile plus 3 times the 75-25 percentile range. These

criteria identified 3 extreme values, which were winsorized (Wilcox, 2005) to the next

highest (or lowest) value in the data set.

We analyzed discrimination trials by their diagnosticity (category diagnostic or non-

diagnostic) and their location, either across the category boundary or within either the

naming category or the local feature category. This allowed us to test for global stretching

and shrinking of feature sensitivity along dimensions of the space but also to see if there

were more local changes in discriminability in just one part of the object space. Only pairs

of test objects that were adjacent in the space (24 out of 40 total different pairs) were

included in this analysis so that we could compare performance for across versus within

category pairs2.

Diagnosticity effect due to category learning: In a first analysis, we compared

discriminability for diagnostic and non-diagnostic pairs on Day 3 (following category

2Sixteen trials (8 diagnostic and 8 non-diagnostic) were included in Experiment 1 but not used in the analyses: on these trials, the
objects were further apart in the space (with one of the 16 test objects in between the two test objects in the discrimination pair). These
trials were considerably easier and were excluded because there were no diagnostic pairs where the two objects were in the same
category. We included these more distant, and thus more different, pairs because our stimulus set is so similar it was unclear if we
would be able to observe discrimination changes with the most similar object pairs. However, given that we were, it is more
interesting to consider only closer pairs, which differ on task and require more careful discrimination.
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learning) to Day 1. Across-category diagnostic pairs were not included in this analysis

because task (or rather “future task assignment”) was included as a factor to assess for any

baseline difference that would need to be taken into account on Day 10, but the diagnosticity

effect was essentially unchanged when all diagnostic trials were compared to all non-

diagnostic trials. Performance on Day 1 was better for pairs that were later non-diagnostic

than diagnostic. This is likely a spurious result since the design was fully counterbalanced

and no secondary tasks had been learned by Day 3.

From Day 1 to Day 3, performance improved along the diagnostic dimension on both sides

of the space, while performance on the non-diagnostic dimension did not change. This was

supported by a 2×2×2 ANOVA on discriminability with day (Day 1, Day 3), diagnosticity

(diagnostic, non-diagnostic) and task (name, local feature) as within-subjects factors. We

found an effect of day (F1,31=5.85, MSE=1.560, p=.022, ηp
2=.15) and a nearly significant

interaction of diagnosticity and day (F1,31=3.78, MSE=1.003, p=.061, ηp
2=.10)

demonstrating the greater change in the diagnostic compared to the non-diagnostic direction

between Days 1 and 3. Post-hoc Tukey LSD tests (p<.05) showed a significant change from

Day 1 to Day 3 on the diagnostic dimension but not for the non-diagnostic dimension. There

were no significant effects of or interactions with task, which was expected given that

subjects had not yet learned the category-specific tasks.

These results replicate stretching of a dimension diagnostic for learned categories, relative to

a non-diagnostic dimension (Folstein et al., 2012a; Goldstone, 1994; Goldstone & Styvers,

2001) and extend this finding from familiar categories such as faces and cars to a space of

novel objects.

Differences on the two sides of the space following task association: In a second analysis,

we measured the influence of having learned different tasks on discrimination performance.

Because both the diagnostic and non-diagnostic dimensions are relevant to naming but

neither is relevant to the local feature task (after categorization), we might expect superior

learning on the Naming side. We initially compared performance on Day 10, after task

association training, to that on Day 3, after category learning. Across-category diagnostic

pairs were again not included because task was included as a factor, but the effect in

performance between sessions is essentially unchanged when all diagnostic trials were

compared to all non-diagnostic trials.

We conducted a 2×2×2 ANOVA on discriminability with within-subjects factors of day

(Day 3, Day 10), diagnosticity (diagnostic, non-diagnostic) and task (name, local feature).

This ANOVA revealed a main effect of day (F1,31=36.37, MSE=7.545, p=.0001, ηp
2=.54)

and a significant interaction between day and task (F1,31=4.54, MSE=0.318, p=.041, ηp
2=.

13). Post-hoc Tukey LSD tests (p<.05) revealed a significant improvement from Day 3 to

Day 10 on both sides of the space (for both tasks). These changes did not interact with

diagnosticity (F1,31=1.18, MSE=.106, p=.287, ηp
2=.04).

We also performed the same analysis comparing Day 10 to Day 1, to take into account the

spurious dimensional differences on Day 1 that could contribute to final performance on

Day 10. Again, we found a significant main effect of day (F1,31=78.33, MSE=15.966, p=.
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0001, ηp
2=.72) and a significant interaction between day and task (F1,31=6.68, MSE=.578,

p=.015, ηp
2=.18). These changes were not influenced by diagnosticity, and the 3-way

interaction between day, task, and diagnosticity was not significant (F1,31=1.17,

MSE=0.106, p=.287, ηp
2=.04).

When Day 10 is contrasted to Day 3, discriminability improved along both dimensions,

which makes sense since both are used for the naming task and thus are relevant at this

stage. These changes are greater on the naming side of the space but extend to the local

feature side of the space as well, even though the non-diagnostic dimension and the

diagnostic dimension within the category are not relevant for the local feature task. When

we consider the omnibus ANOVA with all three discrimination test time points, there is a

significant interaction between day and task (F2,62=3.76, MSE=.311, p=.029, ηp
2=.11). This

effect is the result of increased discriminability on Day 3, and while there is change along

both dimensions on Day 10, there is also more change along the non-diagnostic dimension

on the Naming side.

These results suggest both local and general learning effects within the space. On the one

hand, performance improved more for pairs on the Naming than the Local Feature side. On

the other hand, performance – even for the non-diagnostic dimension – also improved on the

Local Feature side. Given there was no learning on the non-diagnostic dimension on Day 3,

this is likely due to the relevance of this dimension in the Naming task, generalizing to the

other side of the space. However, the learning does not appear to be general to all parts of

the space, based on the results for the diagnostic-across pairs, which did not improve

between Day 3 and Day 10, as discussed in the next section.

Categorical perception: We evaluated whether categorical perception was observed at any

point during the experiment by comparing performance on across versus within category

diagnostic pairs on both sides of the space (we report the contrast across vs. within,

collapsed across sides, because in no case was the difference between the two sides

significant). In no case did we find evidence for categorical perception. If anything,

whenever the difference was significant, the change in performance was larger for within

category pairs (see Table 2). As can be appreciated from Figure 4, no significant learning

occurred on across pairs after category learning. By Day 10, discriminability shows the

opposite of a categorical perception effect in that performance is better for within category

vs. across category pairs.

To test whether this effect may be due to subjects somehow learning less in the center than

on the outside of the space, we considered performance and learning for pairs that differed

on the non-diagnostic dimension, comparing those pairs that were either near or far from the

category boundary (Table 3). If the reverse categorical perception effect for the diagnostic

pairs was associated with the specific objects in these pairs, we would expect that when the

same objects are part of the non-diagnostic trials, performance for far pairs would also be

worse than for the near pairs. This was not found in any of the contrasts. In other words,

after Day 3, while objects compared in an across pair evidenced learning when they are

compared to other objects in the same category, the same objects do not evidence any

learning when they are compared to objects from a different category. Therefore, it seems
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that what drove the reverse categorical perception effect is a local improvement in

discriminability for the diagnostic dimension on each side of the space.

Discussion

In Experiment 1, we asked how distinct task associations for objects on each side of a

category boundary might alter discriminability along complex feature dimensions. First, we

replicated the diagnosticity effect obtained following category learning (Folstein et al.,

2012a; Goldstone, 1994; Goldstone & Styvers, 2001). The experience of categorizing these

objects produced stretching along the dimension orthogonal to the category boundary,

leading to improvements on perceptual judgments.

Second, we observed an influence of learning different tasks on discriminability, in different

parts of the same similarity space. After task association, subjects showed increased

discriminability along both dimensions on both sides of the space, but this change was

greater on the Naming side. On the one hand, perceptual improvements on the local feature

side suggest an effect of practice with the tasks, which results in global stretching of the

entire diagnostic and non-diagnostic dimensions. Note that neither of these dimensions is

relevant to the local feature task, and only the diagnostic dimension is relevant to the

categorization requirements of the training (i.e., to know which task needs to be performed,

subjects must decide which side the objects falls in). Therefore, this improvement on the

local feature side of the space, especially for the non-diagnostic dimension, appears to

reflect generalization from learning about the non-diagnostic dimension on the Naming side,

a global effect of training on the similarity space. On the other hand, the fact that more

learning took place on the Naming side suggests a local effect of learning, with more

stretching in the part of the space where these dimensions were relevant to individuation. A

local stretching over and above a more global stretching is similar to what was reported by

Goldstone (1994), except in that case the local effect occurred at the category boundary (and

was deemed evidence for categorical perception).

Third, we therefore explored whether local stretching occurred at the category boundary.

Learning different tasks on each side of the space resulted in a reversed categorical

perception effect, such that objects within a category became even easier to discriminate

than those between categories. Local effects at the category boundary have been observed as

local expansion of the representations near the boundary (relative to baseline) in some

studies (Goldstone, 1994) and in other cases as a compression of the representations on

either sides of the category boundary, leaving representations unchanged (relative to

baseline) near the category boundary (Livingston et al., 1998). We would not expect

compression to occur, at least not on the Naming side of the space, since while subjects

learned these objects are part of a category, they were not to ignore the differences between

them. As far as we know, the perceptual learning that resulted from task associations is the

first example of expansion on both sides of the category boundary while leaving the

representations at the boundary unchanged. This occurred despite the fact that exemplars

near the boundary were seen during this training phase just as much as exemplars far from

the boundary.
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Note that in Experiment 1, it is impossible to know whether changes in discrimination were

due to performing different tasks on different exemplars vs. having to actually associate the

tasks with these exemplars. This is because in the initial phase of training in Experiment 1,

task instructions were provided on each training trial such that subjects were not required to

know the task to perform for an object, whereas in the later phase of training, subjects were

shown an object without instructions and had to perform the correct task. This limitation was

addressed in Experiment 2.

Experiment 2

Experiment 2 uses the same general design as Experiment 1, with the addition of another

discrimination test on Day 5 before the start of the mixed trials learning phase, the first point

at which subjects are expected to know which task to perform for a given object without

instructions.

In this Experiment, we mainly sought to replicate and extend our finding of local changes in

perceptual learning due to task associations. We also began to address which aspect of the

training was necessary for the asymmetry in discrimination improvement. Experiment 2

therefore includes an additional discrimination test after the first phase of training, but

before subjects are required to learn the task associations, to reveal how much perceptual

learning if any can be attributed to the initial phase of training where the two tasks were

done separately (first all of the naming trials then all of the local feature trials) such that task

instruction is explicitly provided. To further distinguish the two phases of training in

Experiment 2, speed was emphasized during the second training phase by shortening

stimulus presentation times and adding response deadlines. These changes should encourage

subjects to learn the object-task mappings that need not be learned (although they could be)

in phase 1 because trials are blocked by task.

Methods

Subjects—Subjects were recruited from the Vanderbilt University and Nashville, TN

community; they gave informed consent and received monetary compensation for their

participation. The study was approved by the local IRB. Thirty-six subjects (19 male) aged

18–39 (mean = 22.83, SD = 5.54) completed all 10 sessions of the study. Data are reported

here for 32 subjects (15 male, mean age = 22.53, SD = 5.71); four subjects were excluded

for exceedingly poor accuracy during training (accuracy of zero for more than 3 blocks in

the mixed trials on Days 7, 8 or 9). Three more subjects began the study but did not

complete all of the sessions. All subjects reported normal or corrected to normal visual

acuity.

Stimuli and equipment—The set-up and equipment was the same as Experiment 1 with

the exception of the monitors; Experiment 2 used 21.5-inch LCD monitors (1920×1080

resolution). Ziggerin-morph stimuli were the same as in Experiment 1 and shown about 25%

larger on the screen than in Experiment 1 in hopes of making them a bit easier to

individuate. In Experiment 2, the Vernier lines were tilted and subjects had to judge if the

two lines were aligned or misaligned. This was done to reduce the facilitation from using the

distance of the edge of the object for the local feature task. Misaligned lines were separated
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by 2 pixels from left to right and by 24 pixels from the bottom of the top line to the top of

the bottom line. Both lines were tilted +10 degrees to the right of vertical. We hoped that

tilting the lines would increase the difficulty of the local feature task, to better equate the

naming and local feature tasks in Experiment 2.

Procedure

The experiment consisted of 10 sessions (see Table 4), with two sessions never more than 4

days apart (mean = 1.97, SD = 1.37), and subjects completed all sessions within a period of

12–21 days (mean = 17.72, SD = 3.67).

Discrimination test—The dependent measure was identical to that in Experiment 1 and

was administered four times, on Days 1 (before training), 2 (after category learning), 5 (after

task learning alone), and 10 (after mixed trials). See Table 4 for number of trials in this and

all other tasks.

Category learning—The category learning procedure was the same as in Experiment 1,

but it was shorter and only administered on Day 1 with a short review on Day 2.

Task association, name learning—The names and name learning procedure were the

same as Experiment 1. The percentage of “No Name” foil trials was 20% for all training

blocks.

Task association, local feature learning—The local feature learning procedure was

the same as that used in Experiment 1 but used an aligned/misaligned judgment (instead of

left/right).

Task association, mixed trials—On Days 6–10, subjects completed blocks of mixed

trials with objects from both categories in the same block using the same procedure as

Experiment 1. However, we further manipulated stimulus presentation time and response

deadline: On Day 6, as subjects learned the mixed task the object remained on the screen

until a response was made and there was no time limit for a response. On Days 7–10, the

stimulus was presented on the screen for only 1.5sec and subjects had a limited response

window that began with the stimulus onset of 3sec on Day 7, and which decreased to 2sec

on Day 8 and 1.5sec on Days 9 and 10. If subjects did not make a response within the given

window they received feedback to go faster and were advanced to the next trial.

Results

Due to computer problems, two subjects did not complete a small portion of the training;

one subject missed 11% of the Day 4 name learning trials and another 11% of the Day 3

local feature learning trials. Also, one subject completed only 11 out of 14 blocks of the Day

5 discrimination test. Data that were collected for these subjects for the trials they completed

was included in the analyses since they missed such a small part of the training and to

preserve counterbalancing.
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Training results—Subjects successfully learned to categorize objects, name them,

perform the local feature task and later to perform the category-appropriate task for an

object (see Supplemental materials for detailed results; Table S2).

Discrimination test results—Figure 5 shows the mean discriminability (d′) on the

object discrimination test on Day 1 (before any training), Day 2 (after category learning),

Day 5 (after task learning), and Day 10 (after mixed trials training). Trials with extreme

reaction times (less than 100msec or greater than 5000msec) were removed from the

analysis (less than 1% of the trials).

Diagnosticity effects due to category learning: Between Day 1 and Day 2, discriminability

improved along the diagnostic dimension on both sides of the space, with no change along

the non-diagnostic dimension. This is seen in 2×2×2 ANOVA of discrimination

performance (d′) with day (Day 1, Day 2), diagnosticity (diagnostic, non-diagnostic) and

task (name, local feature) as within-subject factors. There was a significant effect of day

(F1,31=5.96, MSE=1.494, p=.021, ηp
2=.16) as well as an interaction between day and

diagnosticity (F1,31=9.42, MSE=1.569, p=.004, ηp
2=.23) demonstrating greater change in

sensitivity in the diagnostic compared to the non-diagnostic direction between Days 1 and 2.

At this point, as expected, there was no significant effect of task (F1,31=.21, MSE=.054, p=.

647, ηp
2=.01).

Differences on the two sides of the space following task association: In Experiment 2, we

introduced an additional discrimination test at the end of Day 5, after tasks were practiced

separately in different blocks for each category, but before mixed trials required subjects to

know the task associated with each exemplar.

We first compared performance on Day 5 to that on Day 2, to look at the perceptual learning

following blocked task practice. As can be seen in Figure 5, similar to Experiment 1, there

was an increase in sensitivity along both dimensions, on both sides of the space, but there

was a greater increase on the Naming side. We conducted a 2×2×2 ANOVA on

discrimination performance (d′) with within-subjects factors of day (Day 2, Day 5),

diagnosticity (diagnostic, non-diagnostic) and task (name, local feature). We found a main

effect of day (F1,31=8.996, MSE=4.309, p=.005, ηp
2=.225) and a significant interaction

between day and task (F1,31=4.835, MSE=.355, p=.036, ηp
2=.135). As in Experiment 1, the

interaction between day and diagnosticity was not significant, although the effect size for the

interaction is larger than in Experiment 1(F1,31=3.514, MSE=.646, p=.070, ηp
2=.102).

Second, we compared discrimination performance after Day 10 following mixed trials,

relative to Day 5. As seen in Figure 5, despite 4 additional days of practice there was very

little change between Day 5 and Day 10. This is supported by a 2×2×2 ANOVA on

discrimination performance (d′) with within-subjects factors of day (Day 5, Day 10),

diagnosticity (diagnostic, non-diagnostic) and task (name, local feature) in which we found a

main effect of task (F1,31=4.646, MSE=1.749, p=.039, ηp
2=.130) resulting from better

overall discrimination on the Naming side compared to the Local Feature side, but no

significant effects of day or diagnosticity (p>.25). Thus, it appears that the changes in

discriminability in Experiment 1 at the end of the entire training protocol did not require 10
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days, nor did they require practice in mixed trials. It should be noted that this lack of

perceptual learning after Day 5 was observed even though learning on the training tasks was

still evidenced in faster reaction times (Table S2).

Categorical perception: We assessed if categorical perception was observed at any point

during the experiment by comparing performance on across vs. within category diagnostic

pairs on both sides of the space (we report the contrast across vs. within for both tasks

together because in no case was the difference between the two sides significant).

Across all comparisons of time points, we found no evidence for categorical perception (see

Table 5). As in Experiment 1, when the difference between across and within pairs was

significant, performance, or change in performance, was greater for within pairs than across

pairs.

To test whether this reverse categorical perception for diagnostic pairs was due to objects on

the outside of the space being easier than those in the inside, we considered performance for

pairs that varied on the non-diagnostic dimension, comparing those that were near the

category boundary to those that were far from the category boundary (Table 6). For these

non-diagnostic pairs, performance was comparable for far and near pairs in all comparisons,

clarifying that the reverse categorical perception effect was specific to the diagnostic

dimension. Learning after Day 2 was only found for comparisons of objects within a

category, and not objects across two categories, providing further evidence of local within-

category learning.

Discussion

Overall, the results of Experiment 2 replicate the effects we observed in Experiment 1 and

demonstrate that sensitivity to features of complex objects changes with experience

categorizing objects, but also following task associations in different parts of the space. We

again observed evidence of acquired distinctiveness as a result of the initial category

learning, improvements in discrimination both globally and locally in the similarity space

following task association, and reversed categorical perception with greater improvement in

discrimination of pairs within than across categories.

By adding another discrimination test after task learning but before mixed trials, we found

that the changes associated with practicing different tasks with each object category could be

observed after 3 days of blocked practice, and did not increase with further training that

required subjects to associate a task directly with these objects. It is possible that strong

associations between exemplars and tasks are created automatically even during blocked

practice, we simply cannot tell in the current design.

General Discussion

Our primary goal was to study the changes in perceptual discrimination in a similarity space

following the association of visually similar objects to different tasks. Prior work had shown

that the same objects associated with different tasks through learning could be processed

differently by different subjects (Wong et al., 2009a; Wong et al., 2009b). However those
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results, just like the global acquired distinctiveness obtained here and in other studies as a

function of category learning, could be explained by attentional weights selectively applied

to an entire dimension. Here, we were specifically interested in more local effects in the

similarity space, which some models of categorization explain using attentional weights

associated with each exemplar (Aha & Goldstone, 1992; Kruschke, 2001; Love & Jones,

2006; Rodrigues & Murre, 2007). Such local effects have in the past been obtained during

category learning (Aha & Goldstone, 1992; Blair et al., 2009; Sakamoto et al., 2004; Yang

& Lewandowsky, 2004) but here we demonstrate local expansion of similarity space during

perceptual judgments. As such, we suggest that models with stimulus specific attentional

weights, which can account for local effects, are not only important to explain category

learning, but they are also important for perceptual learning.

First, we replicated the diagnosticity effect due to category learning that has been obtained

previously in morphspaces of faces and cars (Folstein et al., 2012a; Goldstone, 1994;

Goldstone & Styvers, 2001). Following category learning we observed an increase in

sensitivity specific to the diagnostic dimension. This result was seen in Experiment 1 after 3

category learning sessions (3,584 total trials), and also in Experiment 2 where the category

learning was significantly shorter (just one session and a short review, 1,792 total trials).

This stretching specific to the diagnostic dimension is a robust effect of learning a category

boundary within an object feature space that applies as well to novel objects as familiar ones

and that develops relatively rapidly.

Second, the changes we observed following task associations suggested both global and

local changes to feature sensitivity in the space. In both Experiments 1 and 2, we saw

changes in discrimination for both the diagnostic and non-diagnostic directions in all parts of

the space, but these changes also differed in their magnitude on each side of the space

depending on task. In both experiments, we observed a significant day x task interaction

revealing greater improvement on the Naming side of the space. At the same time, we did

not find evidence for a significant 3-way interaction of day x task x diagnosticity, although

the effect size was larger in Experiment 2 than Experiment 1. It is possible that a study with

a larger sample size and/or an improved training protocol can yield such an interaction,

which would provide even stronger evidence that objects can be processed differently on

each side of the space.

Lastly, we observed what we called, for lack of a better term, reverse categorical perception

in both experiments. Essentially, no further expansion of the similarity space took place

once objects were no longer explicitly categorized, even though 1) there was considerable

pressure to “categorize” objects to perform different tasks during mixed trials practice and 2)

there was ample evidence of perceptual learning due to task practice, even learning that

involved comparisons of the near boundary exemplars to the more distant ones. Prior work

using the same category learning procedure in a space of morphed cars found either no

evidence of categorical perception (Folstein et al., 2012b) or a small advantage for across

pairs relative to within pairs regardless of diagnosticity (Folstein et al., 2012a). Consistent

with this, we only observed reverse categorical perception following task associations.
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These results illustrate what we believe may be the earliest stages of category

differentiation, whereby a homogenous stimulus space can be parsed into qualitatively

different categories that recruit different processing strategies and perhaps even different

neural substrates in the brain. While our paradigm is unlikely to capture exactly how real-

world categories may emerge due to differential experience with objects that may be

visually similar (e.g., letters and numbers, or same vs. other race faces), it serves as a first

approximation of this process in the laboratory. In the real world, an object category and its

associated task may be learned less sequentially, but separating these two stages of category

creation in our design allowed us to separate their effects on perceptual learning. Despite our

best efforts to encourage automatic associations of different tasks with objects, subjects may

have employed a two-step process in the final stages of training, first categorizing an object

as a Vit or a Mog, and then performing the appropriate task. This may not match what

happens with real-world object categories, at least not categories of expertise that can

engage a specialized process extremely fast (Curby & Gauthier, 2009; Richler, Mack,

Gauthier, & Palmeri, 2009). Our discrimination measure in Experiment 2 did not reveal any

change in discriminability following mixed trial training, but future work, perhaps with

objects that are more easily discriminated, could be more sensitive. More experience with

these object categories may be required to achieve the sort of expertise observed in real-

world domains, but such expertise may also depend on categories being further

differentiated in semantic space through associations with non-perceptual information (for

instance, letters are associated with phonological representations, while musical notation can

be associated with multimodal information depending on the specific musical training).

Conclusions

We developed a paradigm fit to study how object categories associated with different tasks

can be learned in a continuous similarity space. Our work bridges between traditions in

category learning and perceptual expertise, to suggest that an important way to extend

models of categorization is to consider that many category boundaries result in different

perceptual goals on either side of the boundary. Experience performing a specific task with

objects in a category can change the psychological space such that later perceptual decisions

with these objects are affected. We observed evidence for local changes in similarity across

the psychological space in addition to the global changes typically obtained following

category learning, suggesting that perceptual learning in a subpart of a similarity space relies

on stimulus-specific attentional weights (Love & Jones 2006; Kruschke, 2001).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by National Eye Institute Grants P30-EY008126, T32-EY07135 and 2 RO1
EY013441-06A2 and by the Temporal Dynamics of Learning Center, NSF grant SBE-0542013. We thank Magen
Speegle, Lisa Weinberg, and Jackie Floyd for help with data collection and Jonathan Folstein, Tom Palmeri, and
Jenn Richler for their comments.

Van Gulick and Gauthier Page 19

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



References

Aha, D.; Goldstone, R. Concept learning and flexible weighting. Proceedings of the 14th Annual
Conference of the Cognitive Science Society; 1992. p. 534-539.

Ashby, FG., editor. Multidimensional Models of Perception and Cognition. Hillsdale, New Jersey:
Lawrence Erlbaum Associates Inc; 1992.

Biederman I. Recognition-by-components: a theory of human image understanding. Psychol Rev.
1987; 94(2):115–147. [PubMed: 3575582]

Blair MR, Watson MR, Walshe RC, Maj F. Extremely selective attention: Eye-tracking studies of the
dynamic allocation of attention to stimulus features in categorization. Journal of Experimental
Psychology: Learning, Memory, and Cognition. 2009; 35(5):1196–1206.10.1037/a0016272

Brainard DH. The Psychophysics Toolbox. Spatial Vision. 1997; 10(4):433–436. [PubMed: 9176952]

Bukach CM, Phillips WS, Gauthier I. Limits of generalization between categories and implications for
theories of category specificity. Atten Percept Psychophys. 2010; 72(7):1865–1874.10.3758/APP.
72.7.1865 [PubMed: 20952784]

Bukach CM, Vickery TJ, Kinka D, Gauthier I. Training experts: Individuation without naming is
worth it. Journal of Experimental Psychology: Human Perception and Performance. 2012; 38(1):
14–17.10.1037/a0025610 [PubMed: 21967271]

Bülthoff HH, Edelman SY, Tarr MJ. How are three-dimensional objects represented in the brain?
Cereb Cortex. 1995; 5(3):247–260. [PubMed: 7613080]

Curby KM, Gauthier I. The temporal advantage for individuating objects of expertise: Perceptual
expertise is an early riser. Journal of Vision. 2009; 9(6):7, 1–13.10.1167/9.6.7 [PubMed: 19761298]

Dreisbach G, Goschke T, Haider H. Implicit task sets in task switching? Journal of Experimental
Psychology: Learning, Memory, and Cognition. 2006; 32:1221–
1233.10.1037/0278-7393.32.6.1221

Dreisbach G, Goschke T, Haider H. The role of task rules and stimulus–response mappings in the task
switching paradigm. Psychological Research. 2007; 71:383–392.10.1007/s00426-005-0041-3
[PubMed: 16397812]

Dreisbach G, Haider H. That’s what task sets are for: Shielding against irrelevant information.
Psychological Research. 2008; 72:355–361.10.1007/s00426-007-0131-5 [PubMed: 18057961]

Edelman S. Computational theories of object recognition. Trends Cogn Sci. 1997; 1(8):296–
304.10.1016/S1364-6613(97)01090-5 [PubMed: 21223932]

Epstein R, Kanwisher N. A cortical representation of the local visual environment. Nature. 1998;
392(6676):598–601. [PubMed: 9560155]

Fine I, Jacobs RA. Comparing perceptual learning across tasks: A review. J Vis. 2002; 2(2):190–203.
10:1167/2.2.5. [PubMed: 12678592]

Folstein JR, Gauthier I, Palmeri TJ. How Category Learning Affects Object Representations: Not All
Morphspaces Stretch Alike. Journal of Experimental Psychology: Learning, Memory, and
Cognition. 2012a; 38(4):807–820.10.1037/a0025836

Folstein JR, Palmeri TJ, Gauthier I. Category Learning Increases Discriminability of Relevant Object
Dimensions in Visual Cortex. Cerebral Cortex. 2012b10.1093/cercor/bhs067

Folstein J, Newton A, Van Gulick A, Palmeri T. Category learning causes long-term changes to
similarity gradients in the ventral stream: A multivoxel pattern analysis at 7T. Journal of Vision.
2012c; 12(9):1106–1106.10.1167/12.9.1106

Freedman DJ, Riesenhuber M, Poggio T, Miller EK. A comparison of primate prefrontal and inferior
temporal cortices during visual categorization. J Neurosci. 2003; 23(12):5235–5246. [PubMed:
12832548]

Gauthier I, Tarr MJ, Anderson AW, Skudlarski P, Gore JC. Activation of the middle fusiform “face
area” increases with expertise in recognizing novel objects. Nat Neurosci. 1999; 2:568–573.
[PubMed: 10448223]

Gillebert CR, de Beeck HPO, Panis S, Wagemans J. Subordinate Categorization Enhances the Neural
Selectivity in Human Object-selective Cortex for Fine Shape Differences. Journal of Cognitive
Neuroscience. 2009; 21(6):1054–1064.10.1162/jocn.2009.21089 [PubMed: 18752400]

Van Gulick and Gauthier Page 20

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Goldstone R. Influences of categorization on perceptual discrimination. Journal of Experimental
Psychology General. 1994; 123(2):178–200. [PubMed: 8014612]

Goldstone RL, Styvers M. The sensitization and differentiation of dimensions during category
learning. Journal of Experimental Psychology: General. 2001; 130(1):116–139. [PubMed:
11293456]

Green, DM.; Swets, JA. Signal detection theory and psychophysics. New York: Wiley; 1966.

Gureckis, TM.; Goldstone, RL. The effect of the internal structure of categories on perception.
Proceedings of the 30th annual conference of the cognitive science society; 2008. p. 1876-1881.

Harnad, SR. Categorical Perception. Cambridge, England: Cambridge Univ Press; 1987.

James KH, James TW, Jobard G, Wong ACN, Gauthier I. Letter processing in the visual system:
Different activation patterns for single letters and strings. Cognitive Affective Behavioral
Neuroscience. 2005; 5(4):452–466.10.3758/CABN.5.4.452

Jiang X, Bradley E, Rini RA, Zeffiro T, Vanmeter J, Riesenhuber M. Categorization training results in
shape- and category-selective human neural plasticity. Neuron. 2007; 53(6):891–903.10.1016/
j.neuron.2007.02.015 [PubMed: 17359923]

Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module in human extrastriate cortex
specialized for face perception. Journal of Neuroscience. 1997; 17(11):4302–4311. [PubMed:
9151747]

Kruschke JK. ALCOVE: an exemplar-based connectionist model of category learning. Psychological
Review. 1992; 99(1):22–44. [PubMed: 1546117]

Kruschke JK. Toward a unified model of attention in associative learning. Journal of Mathematical
Psychology. 2001; 45(6):812–863.

Livingston KR, Andrews JK, Harnad S. Categorical perception effects induced by category learning.
Journal of Experimental Psychology: Learning, Memory, and Cognition. 1998; 24(3):732.

Livingston KR, Andrews JK. Evidence for an age-independent process in category learning.
Developmental Science. 2005; 8(4):319–325. [PubMed: 15985065]

Love, BC.; Jones, M. The emergence of multiple learning systems. Proceedings of the 28th Annual
Conference of the Cognitive Science Society; 2006. p. 507-512.

Love BC, Medin DL, Gureckis TM. SUSTAIN: A Network Model of Category Learning.
Psychological Review. 2004; 111(2):309–332.10.1037/0033-295X.111.2.309 [PubMed:
15065912]

Mahon BZ, Schwarzbach J, Caramazza A. The Representation of Tools in Left Parietal Cortex Is
Independent of Visual Experience. Psychol Sci. 2010; 21(6):764–771.10.1177/0956797610370754
[PubMed: 20483823]

Nishimura M, Maurer D. The effect of categorisation on sensitivity to second-order relations in novel
objects. Perception. 2008; 37(4):584–601.10.1068/p5740 [PubMed: 18546665]

Nosofsky RM. Attention, similarity, and the identification-categorization relationship. Journal of
Experimental Psychology: General. 1986; 115(1):39–61. [PubMed: 2937873]

Nosofsky RM, Palmeri TJ. An exemplar-based random walk model of speeded classification.
Psychological Review. 1997; 104(2):266–300. [PubMed: 9127583]

Nosofsky RM, Palmeri TJ, McKinley SC. Rule-plus-exception model of classification learning.
Psychological Review. 1994; 101(1):53–79. [PubMed: 8121960]

Özgen E, Davies IRL. Acquisition of categorical color perception: A perceptual learning approach to
the linguistic relativity hypothesis. J Exp Psychol Gen. 2002; 131(4):477–
493.10.1037//0096-3445.131.4.477 [PubMed: 12500859]

Palmeri TJ, Gauthier I. Visual object understanding. Nat Rev Neurosci. 2004; 5(4):291–303.10.1038/
nrn1364 [PubMed: 15034554]

Polk TA, Farah MJ. Late experience alters vision. Nature. 1995; 376(6542):648–
649.10.1038/376648a0 [PubMed: 7651514]

Richler JJ, Mack ML, Gauthier I, Palmeri TJ. Holistic processing of faces happens at a glance. Vision
Research. 2009; 49(23):2856–2861.10.1016/j.visres.2009.08.025 [PubMed: 19716376]

Richler JJ, Palmeri TJ, Gauthier I. Meanings, mechanisms, and measures of holistic processing.
Frontiers in Psychology. 2012; 3:553.10.3389/fpsyg.2012.00553 [PubMed: 23248611]

Van Gulick and Gauthier Page 21

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;
2:1019–1025. [PubMed: 10526343]

Rodrigues PM, Murre JMJ. Rules-plus-exception tasks: a problem for exemplar models? Psychonomic
Bulletin & Review. 2007; 14(4):640–646.10.3758/BF03196814 [PubMed: 17972726]

Sakamoto, Y.; Matsuka, T.; Love, BC. Dimension-wide vs. exemplar-specific attention in category
learning and recognition. Proceedings of the Sixth International Conference on Cognitive
Modeling; Mahwah, NJ. 2004. p. 261-266.

Schneider, DW.; Logan, GD. Tasks, Task Sets, and the Mapping Between Them. In: Grange, JA.;
Houghton, G., editors. Task switching and cognitive control. New York: Oxford University Press;
In press

Scott LS, Tanaka JW, Sheinberg DL, Curran T. A reevaluation of the electrophysiological correlates of
expert object processing. Journal of Cognitive Neuroscience. 2006; 18(9):1453–1465.10.1162/
jocn.2006.18.9.1453 [PubMed: 16989547]

Shum J, Hermes D, Foster BL, Dastjerdi M, Rangarajan V, Winawer J, et al. A Brain Area for Visual
Numerals. J Neurosci. 2013; 33(16):6709–6715.10.1523/JNEUROSCI.4558-12.2013 [PubMed:
23595729]

Tanaka JW, Curran T, Sheinberg DL. The training and transfer of real-world perceptual expertise.
Psychol Sci. 2005; 16(2):145–151.10.1111/j.0956-7976.2005.00795.x [PubMed: 15686581]

Tarr MJ, Williams P, Hayward WG, Gauthier I. Three-dimensional object recognition is viewpoint
dependent. Nature Neuroscience. 1998; 1(4):275–277.

Wilcox, RR. Introduction to Robust Estimation and Hypothesis Testing. 2. San Diego, CA: Academic
Press; 2005.

Wong ACN, Palmeri TJ, Gauthier I. Conditions for face like expertise with objects: becoming a
Ziggerin expert--but which type? Psychological Science. 2009a; 20(9):1108–1117.10.1111/j.
1467-9280.2009.02430.x [PubMed: 19694980]

Wong ACN, Palmeri TJ, Rogers BP, Gore JC, Gauthier I. Beyond Shape: How You Learn about
Objects Affects How They Are Represented in Visual Cortex. PLoS ONE. 2009b;
4(12):e8405.10.1371/journal.pone.0008405.g004 [PubMed: 20027229]

Wong YK, Folstein JR, Gauthier I. Task-irrelevant perceptual expertise. Journal of Vision. 2011;
11(14 3):1–15.10.1167/11.14.3

Wong YK, Folstein JR, Gauthier I. The nature of experience determines object representations in the
visual system. Journal of Experimental Psychology: General. 2012; 141(4):682–698.10.1037/
a0027822 [PubMed: 22468668]

Wong YK, Gauthier I. A multimodal neural network recruited by expertise with musical notation.
Journal of Cognitive Neuroscience. 2010; 22(4):695–713.10.3758/CABN.10.4.541 [PubMed:
19320551]

Yang LX, Lewandowsky S. Knowledge Partitioning in Categorization: Constraints on Exemplar
Models. Journal of Experimental Psychology: Learning, Memory, and Cognition. 2004; 30(5):
1045–1064.10.1037/0278-7393.30.5.1045

Van Gulick and Gauthier Page 22

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
A. Morphspace of novel objects, Ziggerin-morphs, created from four parent Ziggerins (P1–

P4, see Figure 2) along two morph lines. The morphspace can be divided into two

categories, creating a diagnostic feature dimension and non-diagnostic dimension; category

boundary and category-task assignment were counterbalanced between subjects. Ziggerin-

morphs not underlined with a dotted line (8×8 set) were used for the training tasks. Ziggerin-

morphs underlined with a dotted line (4×4 set) within the training set were used in the

discrimination test. B. Ziggerin-morphs used for the discrimination task. Same and different

pairs were used. Different pairs were within and across the category boundary and in both

the diagnostic and non-diagnostic direction. C. Examples of the eight Ziggerin-morphs from

the Vit category that were learned as individuals with unique names. D. The Vernier lines

used as the local feature judgment task for the Mog category. In Experiment 1, lines were

judged as top line left or right, and in Experiments 2 lines were judged as aligned or

misaligned (regardless of whether misaligned left or right).
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Figure 2.
Four parent Ziggerins (P1–P4 in Figure 1A) used to create the Ziggerin-morphs. Changes

between Parents 1 and 2 make up one dimension of the morphspace and changes between

Parents 3 and 4 make up the other dimension. To create each Ziggerin-morph for the

training and testing sets two intermediate morphs, one from each parent pair (e.g. 20%

Parent 1, 80% Parent 2 and 40% Parent 3, 60% Parent 4), are morphed together to populate

the space. Vernier lines are added after morphing. In the center is an example Ziggerin-

morph from the training set with the local feature misaligned to the left.
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Figure 3.
Discrimination test results in Experiment 1 on Days 1, 3 and 10, for each location and

direction of object pair in the space: named category, across category, and local feature

category in the diagnostic and non-diagnostic directions. Error bars are 95% confidence

intervals of the within subjects effects.
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Figure 4.
Change in d′ in Experiment 1 between Day 3 (post-category learning) and Day 10 (post-task

association training) in the diagnostic direction only: within the name category, across the

category boundary, and within the local feature category. Error bars are 95% confidence

intervals.

Van Gulick and Gauthier Page 26

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5.
Discrimination test results in Experiment 2 on Days 1 (pre-training), 2 (post-category

learning), 5 (post-task learning), and 10 (post mixed trials) shown by location and direction

of object pair in the space: named category, across category, and local feature category in

the diagnostic and non-diagnostic directions. Error bars are 95% confidence intervals.
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Table 1

Tasks and number of trials for each session of Experiment 1.

Session Task(s) Number of trials

Day 1 Discrimination test 1 1,120

Category learning 1,024

Day 2 Category learning 1,536

Day 3 Category learning 1,024

Discrimination test 2 1,120

Day 4 Name learning part 1 840

Local feature learning 1 960

Day 5 Name learning part 2 1,200

Local feature learning 2 960

Day 6 Alternating blocks of naming and LF 1,080 Name/960 LF

Day 7 Mixed trials with task instruction 480

Mixed trials with no task instruction 480

Day 8 Mixed trials with no task instruction 960

Day 9 Mixed trials with no task instruction 960

Day 10 Mixed trials with no task instruction 960

Discrimination test 3 1,120
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Table 4

Tasks and number of trials for each session of Experiment 2.

Session Task(s) Number of trials

Day 1 Discrimination test 1 784

Category learning 1,536

Day 2 Category review 256

Discrimination test 2 784

Day 3 Name learning part 1 1,000

Local feature learning 1 960

Day 4 Name learning part 2 1,200

Local feature learning 2 960

Day 5 Name review 120

Local feature review 128

Discrimination test 3 784

Day 6 Mixed trials with task instruction 400

Mixed trials with no task instruction 800

Day 7 Mixed trials speeded, 3 sec response 1,200

Day 8 Mixed trials speeded, 2 sec response 1,200

Day 9 Mixed trials speeded, 1.5 sec response 1,200

Day 10 Mixed trials speeded review 240

Discrimination test 4 784
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