Skip to main content
. 2014 Jun 17;8(Suppl 1):S65. doi: 10.1186/1753-6561-8-S1-S65

Table 4.

Concordance, sensitivity, specificity, clinical net benefit, and overall AUCs.

Probability cutoff Standard logistic regression Robust logistic regression


Concordance
N (%)
Sensitivity Specificity Clinical net benefit Concordance
N (%)
Sensitivity Specificity Clinical net benefit
0.0 43 (33.1) 1.00 0.00 0.33 43 (33.1) 1.00 0.00 0.33
0.1 79 (60.8) 0.95 0.44 0.27 82 (63.1) 0.88 0.51 0.26
0.2 90 (69.2) 0.86 0.61 0.22 97 (74.6) 0.86 0.69 0.23
0.3 98 (75.4) 0.81 0.72 0.19 99 (76.2) 0.81 0.74 0.19
0.4 98 (75.4) 0.70 0.78 0.13 102 (78.5) 0.72 0.82 0.16
0.5 101 (77.7) 0.60 0.86 0.11 107 (82.3) 0.67 0.90 0.15
0.6 97 (74.6) 0.40 0.92 0.05 102 (78.5) 0.51 0.92 0.09
0.7 99 (76.2) 0.35 0.97 0.06 100 (76.9) 0.42 0.94 0.05
0.8 93 (71.5) 0.19 0.98 0.00 97 (74.6) 0.30 0.97 0.01
0.9 91 (70.0) 0.12 0.99 −0.03 93 (71.5) 0.19 0.98 −0.08
1.0 87 (66.9) 0.00 1.00 - 87 (66.9) 0.00 1.00 -


AUC 0.835 0.830

These characteristics rely on the age-genotype models for standard and robust logistic regression estimated based on leave-one-out cross-validation.