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Abstract

Bistable systems play an important role in the functioning of living cells. Depending on the

strength of the necessary positive feedback one can distinguish between (irreversible) “one-way

switch” or (reversible) “toggle-switch” type behavior. Besides the well established steady state

properties, some important characteristics of bistable systems arise from an analysis of their

dynamics. We demonstrate that a supercritical stimulus amplitude is not sufficient to move the

system from the lower (off-state) to the higher branch (on-state) for either a step or a pulse input.

A switching surface is identified for the system as a function of the initial condition, input pulse

amplitude and duration (a supercritical signal). We introduce the concept of bounded autonomy

for single level systems with a pulse input. Towards this end, we investigate and characterize the

role of the duration of the stimulus. Furthermore we show, that a minimal signal power is also

necessary to change the steady state of the bistable system. This limiting signal power is

independent of the applied stimulus and is determined only by systems parameters. These results

are relevant for the design of experiments, where it is often difficult to create a defined pattern for

the stimulus. Furthermore, intracellular processes, like receptor internalization, do manipulate the

level of stimulus such that level and duration of the stimulus is conducive to characteristic

behavior.
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I. INTRODUCTION

Living cells must continually sense their external and internal environment and induce

changes on the basis of this information. In this way they are able to adapt to their

environment, continue or stop their development, and form more complex structures through

intercellular communication (Wolkenhauer et al., 2005b). This processing of information in

living cells is carried out by signalling networks (Downward, 2001; Wolkenhauer and

Mesarović, 2005). The character of information and the corresponding responses include a

wide range of physical and chemical quantities, changes in temperature, pressure, water

balance, concentration gradients, and pH-level.

Within these networks, information is transmitted by dynamic changes in protein

concentrations. Besides continuously varying signals, some cellular processes lead to

discontinuous, switch-like responses (Bhalla and Iyengar, 1999; Ferrell and Xiong, 2001;

Huang and Ferrell Jr., 1996; Melen et al., 2005). Such a bistable system toggles between

two discrete, alternative stable steady states, in contrast to monostable systems (Ferrell Jr.,

1998; Ferrell Jr. and Machleder, 1998; Markevich et al., 2004). Their separated branches of

the steady-state response allow the implementation of switches in biochemical networks.

Other examples include cell cycle oscillations and mutually exclusive cell cycle phases

(Pomerening et al., 2003; Tyson, 1991; Tyson et al., 2002) as well as the generation of

biochemical “memory” (Eißing et al., 2004; Lisman, 1985; Xiong and Ferrel Jr., 2003). Due

to their properties, bistable systems also play an important role in development (Melen et al.,

2005), cell differentiation, and evolution of biological systems (Laurent and Kellershohn,

1999; Thomas and Kaufman, 2001).

Bistability may arise in signalling pathways that contain at least one feedback loop or a

combination of feedback loops whose sum of signs is positive with respect to the considered

response component (Cinquin and Demongeot, 2002; Thomas, 2004). The existence of

positive feedback is a necessary but not a sufficient condition for bistability (Angeli et al.,

2004). A standard graphical test in the phase plane can be used to analyze these conditions,

especially the parameter values, under which the system is bistable. Nevertheless, the

analysis of complex positive-feedback systems is difficult. In (Angeli, 2006; Angeli et al.,

2004), a method to investigate systems with arbitrary order was presented within the

framework of monotone systems. In this so-called ‘open-loop approach’, the feedback loop

is cut and treated as an additional input. The system can then be treated as a simple input/

output system. A generalization to more complex feedback structures is possible, if the

feedback can be summed up in one single apparent feedback loop.

Positive feedback in signalling pathways has to be highly nonlinear in order to create two

asymptotically stable steady states in the system. In biological signalling networks such

behavior is often realized through ultrasensitive structures, such as covalent modification

cycles (Goldbeter and Koshland Jr., 1981; Tyson et al., 2003), protein cascades with

multiple steps (Asthagiri and Lauffenburger, 2001; Bhalla and Iyengar, 1999; Heinrich et

al., 2002; Huang and Ferrell Jr., 1996), or inhibitor ultrasensitivity (Ferrell Jr., 1996; Thron,

1994). A simple autocatalytic reaction can also bring about bistability (Schlögl, 1972).
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In the present paper we do not focus on the investigation of possible mechanisms creating

multistability but investigate the dynamics of a bistable system independent from the

underlying mechanism. Hence, we assume, that the considered system is bistable or in

general multistable. Furthermore, we are not interested in a general investigation of

parameter dependencies but focus on stimulation patterns that influence the bistable

behavior as this is relevant for the design of cell signalling experiments.

The paper is organized as follows. In Section II, we introduce a minimal model to discuss

dynamic properties of bistable systems and provide necessary definitions. In Section III,

steady state properties of bistable systems are reviewed. In the following section we discuss

the dynamic behavior of bistable systems, using the introduced model of a bistable system.

The concept of “bounded autonomy” is defined for the system considered in Section V.

From the example we derive characteristic time scales, which are important for the signal

duration of the stimulus and the system’s low-pass filter characteristics. The results obtained

in the previous sections are generalized to multistable systems. Finally, we summarize our

results in the last section.

II. THE MODEL

Throughout this study we use as an example the mutually-activated enzyme network, as

described in (Tyson et al., 2003) (Fig. 1). In this network, a linear system is coupled with a

sigmoidal system through a positive feedback loop. The corresponding mathematical

representation is given as

(1a)

(1b)

where the response component is R(t) and the external stimulus or input is S(t). For

notational convenience, we do not show the dependence on time for these two variables

from now on. The kinetic constants ki and the Michaelis-Menten constants Ji (Cornish-

Bowden, 2004; Segel, 1993) determine the chemical properties of the involved biochemical

species. Further, R(0) ≡ R0 denotes the initial condition, and G(·) the Goldbeter-Koshland

function (Goldbeter and Koshland Jr., 1981; Tyson et al., 2003) defined for system (1) as:

(2)

where

This function describes the concentration of the modified form E*(R) as a steady state

equation. It is frequently used considering (de)modification cycles, see Fig. 1 and Appendix
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A. The Goldbeter-Koshland function (2) has a typical sigmoidal shape, as shown in Fig. 2.

Due to its highly nonlinear behavior it can cause multiple steady states in the investigated

system (1). The use of the Goldbeter-Koshland function assumes that the modification of

enzyme E is much faster than the change of the response component R. This allows us to use

a quasi-stationary approximation (Millat et al., 2007). From Eq. (1a), the production rate of

R is separated into a stimulus dependent and enzyme dependent contribution. Due to the

positive feedback loop the production rate is regulated in an autocatalytic fashion. More on

modeling of activation/deactivation cycles in signaling pathways can be found in (Salazar

and Höfer, 2006).

We consider two types of input stimulus S. The first one is a step input defined as:

(3)

where Smax is the signal amplitude or strength, and u(t) represents the step function

(Bracewell, 1999) with u(t) = 1 for t ≥ 0, and u(t) = 0 for t < 0.

For a cellular environment, one would not expect a stimulus that maintains a constant level

over prolonged periods of times. If changes in the stimulus are much slower than the

response of the system one can assume a quasi-stationary state (Millat et al., 2007) but in

many cases one deals with various input profiles. We therefore also analyze the system

using a pulse input:

(4)

where Δτ > 0, is the pulse width or duration.

In the following section, we review steady-state properties of the bistable system (1). The

nominal parameter values used for numerical simulations can be found in Appendix E.

III. STEADY-STATE PROPERTIES

In this section, we briefly summarize the steady state properties of the bistable system we

are considering. We obtain the steady state of system (1) with a step input (3) as a solution

of the balance equation,

where production and degradation rates are balanced such that no macroscopic net change is

measurable. Specifically, for system (1) the balance equation can be written as,

(5)

where RSS refers to the steady states.
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The steady-state properties of a dynamic system provide us with a wide range of information

on bifurcation, stability and control analysis (Fell, 1997; Heinrich and Schuster, 1996). For

complex reaction networks, the balance Eq. (5) can have multiple solutions. The

classification of the associated roots and their relevance cannot be determined analytically,

but requires knowledge of the particular biological system under consideration. Since we are

dealing with measurable physical quantities, i.e., biochemical concentrations that are non-

negative, the feasible solutions should be real and non-negative. A mathematical proof for

the existence of steady states and their stability analysis is given in (Tyson and Othmer,

1978). The steady states, as a function of a step input with stimulus strength Smax, can be

computed by simply solving Eq. (5) numerically and selecting only the feasible solutions.

This is visualized in the step stimulus response curve (Fig. 3) for various feedback strengths.

As seen from the figure there are either one or three steady states for different parameter

values.

On further investigation, we realize that for bistable behavior, the balance equation must

have at least three biophysically realizable solutions. Of these, two stable branches are

separated by an unstable branch as shown in the bifurcation plot (Fig. 3). This unstable

branch plays an important role in the dynamics of bistable systems. From these

considerations, the characteristic Eq. (5) has to be a polynomial of at least third degree, or a

highly nonlinear function. With a proper chosen set of parameters, the sigmoidal Goldbeter-

Koshland function (2) fulfils this condition. It is clear from Fig. 3 that we can define

(6)

where we drop the direct dependence on Smax for representational convenience. RSU and

RSL are the stable upper and lower steady state respectively and RUN is the middle unstable

state (indicated by the dashed line in Fig. 3).

What the bifurcation diagram does not reflect is the transient behavior between the previous

and the new steady state. The transient phase plays an important role in various biological

processes, including cell differentiation (Laurent and Kellershohn, 1999) and apoptosis

(Aldridge et al., 2006).

As the feedback strength in system (1), represented by the ratio k0/k1, is varied, the steady

state step response has different characteristics (Fig. 3). If the ratio is k0/k1 ≥ 29.4, the

system acts as a one-way switch. Once activated it remains in this state. In an intermediate

range of the feedback strength, the system is a reversible switch and shows hysteresis-like

behavior (Angeli et al., 2004; Ferrell Jr., 1998; Tyson et al., 2003). In both cases, the

solution of balance Eq. (5) consists of three branches (Tyson and Othmer, 1978), two stable

ones (solid lines for RSU and RSL), separated by an unstable branch (dashed lines for RUN),

as described before. From a biochemical point of view the stability of the response

component is determined by the partial derivative or the Jacobian of system (1) evaluated

for a given parameter set (for instance nominal parameter set in Appendix E) and a specific

Smax (Gray and Scott, 1994),
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(7)

where the stable steady states are minima of this function and unstable states are maxima

(see Fig. 4). The Jacobian J is an implicit function of Smax since system (1) is affine. A small

perturbation in response component R will relax back to the former steady state if  Eq. (7)

is negative. The corresponding steady state and its neighborhood are stable (Schlögl, 1971).

Otherwise, the system is unstable and an infinitesimal fluctuation moves the system to one

of the neighboring stable states.

For a one-dimensional system as in (1), at steady state (RSS), the Jacobian represents the

eigenvalue of the system linearized around this state. Using MAPLE (Maplesoft, Waterloo,

Ontario) we computed the Jacobian (7) at the steady states with nominal parameters

(Appendix E) and for stimulus Smax ∈ [0, 40]. While the real part of the eigenvalue is

negative for RSU and RSL, indicating stability, the real part of the eigenvalue is positive for

RUN, indicating instability. The three branches are separated by critical or bifurcation points,

where the system’s behavior changes abruptly. The critical points define a range where no

stable steady state exists (presented by the gray area in Fig. 3).

Note how varying the feedback strength impacts on the system’s behavior. For instance,

when we weaken the feedback strength, the system eventually loses its bistable nature. In

the limit of vanishing feedback k0/k1 → 0, the system (1) is of first-order and linear. This

limit also defines the asymptotic behavior for small external stimuli, where only a small

amount of enzyme E is modified (corresponding to weak feedback). Note that we did not

change the properties of the enzymatic modification cycle but only modified k0 to vary the

feedback strength. The modification cycle of the system is considered ultrasensitive for all

parameter sets used.

The following section introduces dynamic characteristics of bistable systems.

IV. DYNAMIC BEHAVIOR

The response of biological systems to changing environmental or cellular conditions is a

dynamic process (Wolkenhauer et al., 2005a). The system’s transient relaxation into a new

steady state depends on the previous state of the system, the input strength and duration, as

well as, on the structure and the kinetic parameters of the biological system under

consideration.

In multistable systems the transition between the different stable branches is of special

interest. Extending the discussion from Section III, we use the terms “lower branch” and

“upper branch” for the bistable system to distinguish between both stable solutions of the

balance Eq. (5). Note, the assignment of an “off” and an “on”-state depends on the

biological system, not the mathematical solutions. In the following section we discuss the

transient response to an external stimulus S. The kinetic parameters and total concentrations

remain unchanged (see Appendix E). Initially we investigate the transient response of a step
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input, followed by that of a pulse input. In the latter case, the change of stimulus allows us to

separate the dynamics into periods with different but constant values of the stimulus S

(Bracewell, 1999).

Step Response of the Bistable System

Following (Tyson et al., 2003), for a given set of parameters, initial condition R0, we define

the critical stimulus S = Scrit*u(t) as the smallest step stimulus amplitude that changes the

cellular response “abruptly and irreversibly”. Any Smax > Scrit is labeled supercritical

stimulus. In contrast, a subcritical stimulus refers to an amplitude that does not affect such

change in the cellular response, i.e., Smax < Scrit.

To begin with, we investigate the dynamic behavior of system (1) for a specific subcritical

stimulus Smax < Scrit with different initial conditions (Fig. 5). Depending on the initial

concentration R0, the transient response signal tends to either the lower or the upper stable

branch. The considered system therefore has some form of memory. The unstable solution

RUN of balance Eq. (5) acts as a separatrix between both behaviors. If the initial

concentration is lower than the unstable state, the response approaches the lower stable

branch. In the other case, the new steady state is located on the upper branch. The stable

states act as attractors and the unstable state as a repeller. This property of an unstable state

will become important for our subsequent discussion. Of course, for a supercritical stimulus

Smax > Scrit, the concentration of the response component always tends to the upper stable

state. Additionally, we plot in the figure the forbidden region, where no stable solution of

balance Eq. (5) exists. Because system (1) acts as an one-way switch for the used nominal

parameters, this region is defined through the sum of the unstable area and the range of

irrelevant solutions, see also Fig. 3.

Fig. 6 shows us how we can use a given initial condition R0, to determine the critical

stimulus Scrit from the middle segment of the curve (corresponding to the unstable steady

state). Consequently, for R0 < RSL, or for RSL < R0 < RUN, the trajectory of R(t) converges to

RSU asymptotically. In essence, for a given R0 there exists a corresponding Scrit.

Pulse Response of the Bistable System

Apart from stepwise constant stimuli, biological systems often have to respond to transient

signals. Thereby, the response to pulse-like signals is of special interest. The reason for such

a signal may be a perturbation in the environment, degradation of ligands (Lauffenburger

and Linderman, 1993), receptor internalization (Madshus, 2004) amongst others. The system

response for a pulse input (4) is shown in Fig. 7 for the system with the nominal parameters.

Switching depends on R0, Smax and Δτ. Starting with initial condition R0 = 0, we apply a

supercritical pulse stimulus Smax = 14 for varying pulse widths Δτ. For signal durations Δτ <

3.1 the response asymptotically converges to zero. If the signal duration exceeds this limit,

the response approaches a steady state on the upper branch and remains on this branch. This

pulse duration is defined as the critical pulse duration Δτcrit, and the corresponding pulse

amplitude is defined as Scrit. We therefore note that it is the combination of signal strength

and signal duration which defines the steady state. Pulses which do not fulfill this criterion

cannot change the state of the system. The bistable system cannot resolve these pulses and
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acts as a low-pass filter. Given an initial state R0, we can find a combination of Scrit and

Δτcrit, such that the system switches to the upper branch (and asymptotically converges to

the upper steady state). For the nominal parameters, the system asymptotically converges to

RSU = 0.38, which corresponds to Smax = 0 (see Fig. 6).

In the next section, we discuss the characteristics of the switching surface obtained for the

pulse response of the system for varying {R0, Scrit,Δτcrit}, in terms of the concept of

bounded autonomy for a single level system.

V. BOUNDED AUTONOMY IN SINGLE LEVEL SYSTEMS

Bounded autonomy has been described in (Mesarovic et al., 2004) for multi-level systems

where the higher level does not intervene to modify the behavior of the lower level system

as long as the system is ‘performing’ at a ‘satisfactory’ level, and intervenes to modify the

behavior of the lower level only in order to bring the complex system performance to a

satisfactory level. We will adapt this concept to a single-level system using the concept of a

switching surface.

To this end, for a pulse input (4) we plot in three dimensions the critical stimulus Scrit, pulse

width or duration Δτcrit, and initial condition R0 as represented in Fig. 8. The plot was

generated by fixing Smax and Δτ and gradually increasing R0 in the dynamic system

simulation till the system pulse response switches from the lower branch to the upper branch

in steady state. The value of the pulse strength is then the critical stimulus Scrit and the pulse

duration is the critical duration Δτcrit for the given initial condition R0. The simulation

period was 15 units of time with ranges for input and initial condition was as follows: Δτcrit

∈ [0, 15] with resolution 0.01; Scrit ∈ [0, 50] with resolution 0.01; and for R0 ∈ [0, 0.2] with

resolution 0.001 which comes to maximum of  billion dynamic

simulations. These were done using MATLAB (The MathWorks, Natick, MA) with ‘ode45’

equation solver on a 2.81 GHz, 2 GB RAM Windows based machine with AMD Athlon

processor and numerical accelerator card. In reality, the number of simulations conducted

were 2.073 million points on the switching surface, since only simulations for values of R0

below the switching surface were considered. Lower resolution simulations (less than 100,

000 points) resulted in artifacts that disappeared when high resolution simulations were

conducted.

We now define the input signal power as the integral of the stimulus over time as:

(8)

Particularizing this for the pulse input with Pcrit as the power,
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Then the critical power represents the “dosage” or input needed for the system to switch

assuming that the objective is to induce the system to switch. The color “heat-map” in Fig. 8

indicates this critical power as a function of R0, Scrit, and Δτcrit. Below we describe regions

of the switching surface in Fig. 8. There is a deadband for Δτcrit ∈ [0, 0.1] since the system

does not switch for pulse width equal to zero, and the pulse amplitude is not high.

Region A: Low values of R0 and Δτcrit, require a high value of pulse amplitude or Scrit

for switching.

Region B: With ever so slight increase in Δτcrit and for the same low values of R0, a

much lower value of Scrit is needed for switching.

Region C: At a fixed, but high level of R0 (for example R0 slightly below 0.2) the

switching is independent of critical pulse duration (Δτcrit = [0.1, 15]), and, only a low

level of stimulation amplitude Scrit < 8 is needed for switching. Also for the Scrit axis,

for 8 > Scrit, the switching surface falls at a nearly constant rate of 0.04 along the initial

condition range 0.2 > R0 > 0.18.

Region D: As we move along the Scrit axis, for 10 > Scrit > 8, the switching surface

slopes faster along the initial condition range R0 = [0.15, 0.18).

Region E: Between 10.4 > Scrit > 10.1, the switching surface rapidly falls indicating

that the system can switch for smaller values of R0 for given Δτcrit and ever so small

increase in Scrit, finally having the ability to switch at R0 = 0.

Region F: This flat region indicates that with initial condition R0 = 0, the system can

switch for a wide range of a rectangular area spanned by Scrit ∈ [10.4, 50], and Δτcrit ∈

[1, 15], and bounded by the curve formed by the intersection of the switching surfaces

and the Scrit and Δτcrit plane.

Further, a contour plot given in the inset in Fig. 8 indicates a lip that is formed at Region C,

and also illuminates the shape of the switching surface. If the system state and the stimulus

is below the surface indicated in Fig. 8 (except Region F), then the system response stays

within bounds and reverts back to the zero state eventually. If however, the system state and

the stimulus are at or above the switching surface then the system state switches to a higher

value than the initial state. This phenomenon is interpreted as bounded autonomy for single

level systems, i.e., the system is autonomous below the switching surface, and is dependent

on the system state and input stimulus combination to switch to a different state.

One philosophical approach to understanding biology is to consider the biological system

purposive or teleological. Performance is then related to the objective of the system. For

instance constitutive activation (such as switching) of a key system state could be implicated

in development of cancer, e.g., JAK2 constitutive activation is implicated in chronic

myelogenous leukemia (CML) in murine models. To consider a system to be performing

with the objective of not becoming cancerous, then constitutive activation resulting from

bistability needs to be avoided. If the value of a parameter (say a rate constant) is bounded

and not triggering switching then the system can be defined to be performing at a

satisfactory level. Thus within these bounds of the parameter the system behavior remains

non-cancerous and thus follows the organizing principle of bounded autonomy.
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Critical Power for the Bistable System with a Pulse Input

Fig. 9 depicts the minimum critical power required to switch from a given initial condition

R0, i.e.,

The trend in Fig. 9 indicates that as the initial condition increases the amount of minimum

critical power needed to switch to the upper branch decreases. This follows from the fact

that an increase in the initial response component decreases the displacement between R0

and the unstable state. As one can see in Fig. 7, the chemical activity of the considered

system is high in the forbidden region. Hence, it takes less time to bridge the gap between

the initial value and the unstable state.

Interestingly, for low values of R0 < 0.1, the curve of the Pcrit,min fluctuates (Fig. 9). The

exact reason for such fluctuations is hard to pinpoint. We recognize that analytically finding

the minimum critical power is not possible. Further we note that the simulated range of the

input amplitude and duration limits the numerically computed minimum critical power,

which we have verified numerically. Hence Fig 8 is indicative. Also, given a Pcrit,min value,

the open circles indicates the appropriate R0 to reach this critical minimum power. One

interpretation is that given the state of the biological system (indicated by the initial

condition) the minimum dosage (indicated by the power) needed for the system to switch

can be read off from the curve.

VI. ESTIMATION OF CRITICAL SIGNAL DURATION

As the numerical analysis of system (1) with a step input shows, not only signal amplitude

Smax defines the final state (see Eq. (5)). In this section we estimate the critical duration of

stimulus Δτmin, which is the minimal time a step stimulus has to be applied to reach the

unstable state given that the initial condition of the system R0 < RUN. Unfortunately, system

(1) cannot be solved analytically due to the complexity of the Goldbeter-Koshland function

(2).

For the sake of simplicity but without loss of generality, we restrict our discussion to the

one-way mutual activation switch (1) and investigate the transient changes between the

lower to the upper branches for an supercritical stimulus. We assume a small concentration

of the response component to begin with. We can then expand the Goldbeter- Koshland

function (2) with respect to the response component R. The derivation is given in Appendix

A. This is then used to replace the complex Goldbeter-Koshland function G(·) with the

leading first-order term of the expansion, yielding the linear differential equation

(9)
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Due to the positive feedback loop, there is now an additional contributing term, which

depends on the concentration of R. This term reduces the rate of degradation, where the

constant C1 follows from the Taylor expansion (A2). The resulting linear differential

equation can be solved analytically and we obtain for the critical signal duration

(10)

where we introduce the new effective rate constant

(11)

and the steady state concentration .

In Fig. 10, the approximation (10) is compared to a numerical analysis of system (1). Due to

an underestimation of the positive feedback contribution, the approximation deviates for

weak stimuli from the intrinsic critical duration time Δτmin. Here, the nonlinear character of

the Goldbeter-Koshland function (2), describing the feedback dependence, is important. The

inclusion of higher orders of the series expansion (A2) would provide a better description

for weak supercritical signals, but the resulting differential equation becomes nonlinear and

cannot be solved with respect to the critical duration. For strong signals both representations

tend to a common asymptote (see Appendix C)

which is inversely proportional to the production rate k1 Smax and direct proportional to the

displacement between unstable state and the initial state.

VII. SIGNAL POWER

In Section IV, we demonstrated that for system (1) with an initial condition lower than the

unstable equilibrium R0 < RUN, and a step input, there exists a minimum input amplitude

Scrit, for which the system switches to the upper stable equilibrium. Next we define Δτmin as

the minimal necessary signal duration of a supercritical signal Scrit such that response

reaches the unstable equilibrium R(Δτmin) = RUN. From our discussion in Section IV, it is

clear that

It is now appropriate to modify the signal power definition in (8) and extend this analysis for

a step input for the above case by defining the signal power needed Pmin as,
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(12)

A comparison of the numerical analysis for the nonlinear system (1) and its linear

approximation (9) is shown in Fig. 11. The signal power increases for weak supercritical

signals and tends to infinity in the limit Smax → Scrit. On the other hand, for strong stimuli

the signal power approaches a constant limiting value Pmin. We are now going to calculate

this limiting value. Towards this end, we again use the logarithmic expansion of the critical

duration time (10) (Appendix C) and neglect all terms higher than first-order with respect to

the stimulus S. Due to the stimulus-dependent prefactor of Eq. (10) the remaining

dependencies on the signal cancel out so that we obtain the constant limiting signal power

(see Appendix D for a derivation)

(13)

This defines the minimal signal power which is necessary to push the system from the lower

to the upper state. It depends only on the difference between the unstable and the initial

state, and the kinetic parameter k1. The critical power decreases with decreasing

displacement of initial and unstable state. This is qualitatively equivalent to the critical

power for pulse input in Fig. 9, where we investigated the critical power as function of the

initial state for a fixed stimulus. It is interesting that there is no contribution of the feedback

loop and the degradation rate to the derived minimal signal power. For weaker supercritical

stimuli as in Fig. 9, where the positive feedback is dominant, this leads to an increase of the

necessary signal power. On the other hand, this will decrease the sensitivity of the system in

the neighborhood of the critical point, ensuring a proper decision on the basis of stable

stimulus and not based on small fluctuations.

VIII. GENERALIZATION TO MULTISTABLE SYSTEMS

In the last section we investigated and estimated the properties of bistable systems. In this

section, we extend our findings to multistable systems which have more than two stable

branches. Some general features of the dynamical behavior of multistable system can be

directly inferred from bistable systems investigated in the previous sections. To this end, we

consider multistable systems as a combination of neighboring bistable systems. Then the

transition between neighboring stable states depends on the combination of external stimulus

and its duration. As in the case of bistable systems, each pair of of stable branches is

separated by an unstable branch. This unstable branch has to be exceeded also in the case of

multistable systems. Then the system approaches the neighbored stable branch, even if the

stimulus switch back to a level corresponding to a steady state at the former branch. It

should be noted, that a signal is required which has a stable solution on both branches.

Furthermore, in our discussion about bistable systems we use a “toggle switch” as an

example which switches irreversibly. Reversible bistable and multistable can also switch

back to lower stable branch. Also, the separating unstable branch determines the

characteristic signal duration.
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Even if the analytical analysis of multistable systems is more complex than our example of a

mutually activated system (1), from a mathematical point of view and from their diversity of

initial conditions, we are able to transfer directly some dynamical properties of bistable

systems. The transient switching between neighboring stable branches underlies the same

qualitative restrictions as in the bistable system.

IX. DISCUSSION

Multistable systems play an important role in the function and regulation of biological

systems. Depending on the values of kinetic parameters the cellular system can have

multiple stable steady states, which are separated through unstable ones. Whereas the final

state of the system is determined by the stable state, the dynamic response depends on

transient properties of the corresponding stimulus and is strongly affected by the unstable

state between the two neighboring stable branches. The transition between the stable

branches is triggered by changing the signal strength of the stimuli in case of a step input. A

supercritical signal with respect to the current stable branch leads to a jump to the next

stable branch. If the system is a reversible switch, a subcritical signal forces the system back

to a lower branch until the lowest one is approached.

Note that the widely used stimulus-response analysis does not provide us with information

about the dynamics of the investigated system. The presented steady state, as a function of a

step input stimulus, is formally reached after an infinite time. From a dynamic perspective

this means, the system is much faster than the variation of the stimulus. In biological

systems, say in signal transduction, we deal with the reverse situation, where the

environmental changes are faster or in the same time scale as the intrinsic time the system

requires to adapt to the new context. The importance of studying dynamical properties of

bistable systems has recently been shown in the context of apoptosis (Aldridge et al., 2006),

where crucial decisions are determined by the transient activation of active caspase-3. How

the choice of time-delays incorporated into the mathematical models change the dynamic

behavior without influencing the steady state of the considered system was demonstrated in

(Veflingstad et al., 2005). As a consequence, the consideration of the dynamic behavior is

important as well as the consideration of steady states to understand the function and the

structure of a biochemical network. Different biochemical systems may have qualitatively

equal steady states, but their transient behavior can discriminate between biologically

favorable models from unfavorable ones.

In bistable systems mainly two questions arise: What are the conditions for a significant

change of system’s properties and secondly, how long does it take? A necessary condition

for a change of the systems’ properties is a supercritical signal, pushing the system from one

stable state to a neighborhood stable state. In this context, supercritical means that the signal

lies outside the current stable branch. However, as we have shown, the signal has to be

applied for a certain critical time Δτcrit (for pulse input) and Δτmin (for step input). The

reason is that the unstable branch acts as a separatrix. Only, if it is exceeded, the system

approaches the new stable branch, otherwise it returns to its previous branch. Using the

mutually activated system as an example, we showed that the critical duration time depends

on the displacement of the initial and the unstable state from the corresponding steady state
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for a step input. Of course, the kinetic parameters do also determine this duration. In general,

we can conclude that the critical duration will decrease with increasing external stimuli. As

shown in Sections VI and in VII, the signal power has to fulfil a limiting criterion. It follows

from the demonstrated strong stimulus approximation, that there is a minimal signal power.

The applied signal power has to exceed this minimum to push the system from one stable

state to the other. It should be mentioned, that the necessary power increases if the stimulus

decreases, even if the positive feedback loop in our example becomes more important for the

dynamics. Both dynamic properties have consequences for the signal processing and the

decision making of biological systems.

The concept of bounded autonomy was introduced for single level systems, with the

autonomy being characterized by a switching surface (see Section V). These concepts,

combined with the minimum critical power required for switching, are of great practical

value. For instance, given the system state, we can use them to evaluate the minimum dose

that has a sufficient therapeutic index. This concept needs further elaboration and will

constitute future work.

Biological signals are often noisy and one reason for the appearance of bistability in systems

may be the fact that they have an intrinsic mechanism to suppress noise. We say they are

acting as a “low-pass” filter. This is particularly important if the switching is crucial for the

further development of the biological system, such as in cell differentiation or apoptosis.

The intrinsic noise suppression can also have a stabilizing effect on oscillating biochemical

systems, e.g., the circadian rhythm. In a stochastic simulation (Barkai and Leibler, 2000),

the authors compared the stability of a three-step oscillating system with a negative feedback

loop and a combination of negative and positive feedback. They found, that the combination

of negative and positive feedback makes the system much more stable against its own

intrinsic noise; especially the period that was stabilized. This finding can be explained with

the properties of the bistable sub-system discussed in this paper.

As shown elsewhere, the dynamic properties of biochemical systems depends on the chosen

level of approximation in the mathematical representation of the considered model (Millat et

al., 2007). The numerical study of different mathematical representations of the same model

system shows strong deviations for weak supercritical signals. In particular, the critical

signal duration was much longer for a more detailed representation. Furthermore, the steady

states of the system may be also affected by the approximations used. As recently showed in

(Blüthgen et al., 2006), the neglect of complexes in the derivation of the Goldbeter-

Koshland function may lead to dramatic changes in the properties of a system. The

oscillations in a MAPK-cascade with negative feedback, predicted in (Kholodenko, 2000),

were shown to vanish if one considers more complex representations. The reason is the

disappearance of the ultrasensitive behavior in the cascade (Goldbeter and Koshland Jr.,

1981; Millat et al., 2007).

Naturally, the values of kinetic parameters play an important role for the dynamic properties

of a bistable system. However, as we have shown, an appropriate design of experiments

requires the experimentalist to consider well defined patterns of stimulation. Whereas
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bistable systems are often discussed only on the level of their steady states, the response to

time-varying stimuli strongly influences their dynamical properties.
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APPENDIX A: Expansion of the Goldbeter-Koshland function

The modification/demodification of a protein can be described as a system of two Michaelis-

Menten like steps (Goldbeter and Koshland Jr., 1981)

(A1a)

(A1b)

where R modifies the enzyme E and P catalyzes the reverse reaction. For example, in case of

phosphorylation R is a kinase and P a phosphatase. The steady state solution of this reaction

scheme is the Goldbeter-Koshland function (2) (Goldbeter and Koshland Jr., 1981; Tyson et

al., 2003) where we assume that the phosphatase P is constant over time (Millat et al.,

2007).

If we assume a small amount of the response component R, we can expand Eq. (2) into a

Taylor series (Abramowitz and Stegun, 1972) with respect to R

(A2)
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where we introduced the constant prefactors Ci for each expansion order i. These prefactors

are determined by the ratio of the kinetic coefficients k3 and k4 and a combination of the

Michaelis constants J3 and J4. We can now insert the series expansion (A2) into the

differential equations, which describe the temporal evolution of the system under

consideration (1). This is done in the following sections.

APPENDIX B: Linear approximation

The bistable system (1) cannot be solved analytically. We therefore use the series expansion

(A2) of the Goldbeter- Koshland function introduced in Appendix A with a step input, S =

Smax · u(t). In this linear approximation we neglect all terms higher than first-order. Inserting

this approximation into the differential equation for the response component, leads us to the

linear differential equation

(B1)

Due to the positive feedback, the degradation rate is reduced by the first-order term of the

expansion. For a constant external stimulus, this approximate differential equation can then

be solved analytically. The temporal evolution of the response component is

(B2)

where the first term describes the approach to the steady state and the second the

‘degradation’ of the initial state R0. The effective rate constant  describes the

reduced degradation due to the positive feedback. The steady state for the linear

approximation is

(B3)

Note, because we neglect higher feedback terms, this steady state is slightly different from

the steady state of the nonlinear system (1).

Consider the case such that R0 < RUN (see Fig. 6). Define the minimum duration Δτmin as

the duration for which the step stimulus should be on such that R(Δτmin) = RUN.

After a sequence of transformations, we obtain for the critical duration time

(B4)

The minimum duration Δτmin depends on the displacement of initial state R0 and steady

state RSS, on the displacement of unstable state RUN and steady state RSS, and on kinetic
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parameters, especially on the effective rate constant of the degradation . The effect of the

external stimulus is hidden in the steady state RSS, whereas the new signal strength

determines the unstable state RUN.

APPENDIX C: Asymptotic Behavior for Strong Signals

The critical signal duration, derived in Appendix B, depends on the external stimulus, which

determines the steady state of the considered system. For strong pulse-like signals we are

able to find an asymptotic expression for the duration time. We rewrite Eq. (B4) in a slightly

different form

(C1)

where we transform the arguments of the logarithm into a (x − 1)-form. For a simpler

notation we introduced the abbreviations

For strong stimuli  we have x ≪ 1 such that we can expand the logarithm

where  is the imaginary unit. Finally we obtain the logarithmic ratio

(C2)

This depends on the difference of the contributions for the unstable state and the initial state.

Insertion this into Eq. (C1) leads to the asymptote

(C3)

The asymptote for strong signals is inversely proportional to the signal-dependent

production rate only. It is scaled by the difference between the unstable state and the initial

state. Interestingly, there is no dependence on the degradation rate and the feedback

strength.
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APPENDIX D: Signal power

The signal power is a further interesting property of the considered dynamic switching

process. It is defined as the integral

for the time dependent external stimulus. Here we are interested in the minimum signal

power needed for the system state to reach the unstable state. In other words, we simplify

the minimum signal power to the product of the magnitude of the step stimulus and the

minimum time Δτmin needed for the state to reach the unstable state RUN from an initial

condition R0 < RUN, i.e.,

Insertion of the derived expressions (B4) for the critical time Δτ gives

(D1)

where the steady state is given by Eq. (B3). If we assume only strong stimuli, we can use the

logarithmic expansion (C2) and simplify the expression. Because of the signal-dependent

prefactor in Eq. (D1) the contribution of the external stimulus is canceled in the first-order

term of the expansion and we obtain a signal power of

(D2)

The required signal power for strong stimuli is independent of the signal strength, if we

assume the unstable steady state as a constant parameter. It is determined by the

displacement between the initial and the unstable states and increases if this displacement

increases. Surprisingly, it is inversely proportional to rate coefficient k1 only. The effective

rate constant  which describes mainly the dynamic relaxation, has no influence on the

signal power.

The signal power derived in the used approximation is a minimal estimation of the necessary

power to push the system from the lower branch to the upper. The inclusion of higher orders

with respect to the signal strength is especially important for stimuli near the critical point.

As one can see from the logarithmic expansion (C2) this will lead to an increase of the

critical signal power.
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APPENDIX E: Parameters of the Nominal System

For numerical simulations and analytical calculation of the mutually activated system (1) we

used the kinetic coefficients

except in Fig. 3, where we vary the feedback strength. For this investigation we choose the

above value of k0 as starting point and increase it. The corresponding k0 values can be

calculated from the ratio k0/k1, given in Fig. 3.

For the above set of parameters the system is an irreversible “one-way switch”. The only

relevant critical point is located at

For a vanishing stimulus the system has three steady states, where the stable response values

are

The corresponding unstable solution is

If not stated otherwise, the transient response starts with an initial value of R0 = 0.

The subcritical stimulus in Fig. 5 is Smax = 6 and Smax = 14 in Fig. 7.
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FIG. 1.
Graphical representation of the system used as a case study to discuss multistability. The

response component R is produced in a linear pathway, induced by an external stimulus S.

The response component activates the enzyme E, which in turn facilitates the production of

R through a positive feedback loop. This mechanism has been described as “mutual

activation” (Tyson et al., 2003). The modification of the enzyme E follows a covalent

reaction scheme (Goldbeter and Koshland Jr., 1981; Tyson et al., 2003).
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FIG. 2.
The ratio of modified enzyme and its inactive form as function of the response R

considering the Goldbeter-Koshland function (2). The sigmoidal behavior is highly

nonlinear and provides a continuous switching behavior at k3R = k4. The parameters are

chosen as specified in Appendix E.
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FIG. 3.
Steady state step stimulus response curves for different feedback strengths (k0/k1). The

system behavior changes from a one-way switch to a toggle switch and finally to a

monostable system. The second curve from the left, separates the toggle-switch from a one-

way switch. At Smax = 0 there is a second critical point. The third curve is a typical example

for hysteresis. If we further decrease the feedback strength, the critical points coincide and

finally disappear. For weak positive feedback the system is monostable and asymptotically

approaches the response curve for k0/k1 = 0, representing the step stimulus-response of a

linear system. Additionally, we plot the unstable region in gray. In order to represent the

complete course of all curves we extend the abscissa to negative stimuli, which is of course

physically irrelevant.
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FIG. 4.
Schematic representation of the stability criterion (7). The stable states corresponds to

minima of the Jacobian and unstable states to a maximum. Small perturbations of a stable

steady return the system back to the same state, whereas the system moves from the unstable

state into one of the stable states.
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FIG. 5.
Steady state response for a subcritical signal Smax < Scrit for different initial conditions. The

unstable state is a separatrix. The gray area denotes the forbidden region.
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FIG. 6.
Relationship between initial condition R0 (rectangles), stable steady states (RSU, RSL),

unstable steady state (RUN) and the corresponding critical value of step amplitude Scrit.

Arrows indicate the asymptotic convergence of trajectories over time, starting from a given

initial condition. Nominal parameters have been assumed (Appendix E).
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FIG. 7.
Transient pulse response of R to a supercritical stimulus S > Scrit as a function of the signal

duration Δτ from the origin. After Δτ the external stimulus returns to its initial value. The

grey region denotes the forbidden area where no stable solution exists. The critical pulse

duration for a critical pulse with amplitude Smax = 14 is Δτcrit = 3.1.
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FIG. 8.
Switching surface of the system’s pulse response to an initial condition R0, critical stimulus

Scrit and critical pulse duration Δτcrit. Regions A–F represent characteristics of the switching

surface. Heatmap color refers to the critical power Pcrit. A contour plot included in the inset

indicates further details about the surface.
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FIG. 9.
Plot of the minimum critical power (Pcrit) required for the system to switch from a specific

initial condition R0 and pulse input.
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FIG. 10.
The critical signal duration Δτmin as a function of the step stimulus amplitude Smax. We

compare the results of a numerical calculation (solid line) with the linear approximation

(10). For weak supercritical stimuli the approximation differs from the numerical result

because of the underestimated positive feedback contribution in the production rate of the

response component. For higher levels of stimulus, the approximation agrees with the

numerical solution.
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FIG. 11.
Semilogarithmic plot of the signal power as a function of the external stimulus for the

nonlinear system (1) (solid line) and for the linear approximation (9) (dashed line). The

dash-dotted line is the minimal signal power (13) following from the strong stimuli

approximation. The line defines the minimal signal power required to switch the system

between the stable states.
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