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HGK/MAP4K4 deficiency induces TRAF2
stabilization and Th17 differentiation leading
to insulin resistance
Huai-Chia Chuang1, Wayne H.-H. Sheu2,3, Yi-Ting Lin1, Ching-Yi Tsai1, Chia-Yu Yang1, Yu-Jhen Cheng1,

Pau-Yi Huang1, Ju-Pi Li1, Li-Li Chiu2, Xiaohong Wang4, Min Xie5, Michael D. Schneider6 & Tse-Hua Tan1,4

Proinflammatory cytokines play important roles in insulin resistance. Here we report that

mice with a T-cell-specific conditional knockout of HGK (T-HGK cKO) develop systemic

inflammation and insulin resistance. This condition is ameliorated by either IL-6 or IL-17

neutralization. HGK directly phosphorylates TRAF2, leading to its lysosomal degradation

and subsequent inhibition of IL-6 production. IL-6-overproducing HGK-deficient T cells

accumulate in adipose tissue and further differentiate into IL-6/IL-17 double-positive cells.

Moreover, CCL20 neutralization or CCR6 deficiency reduces the Th17 population or insulin

resistance in T-HGK cKO mice. In addition, leptin receptor deficiency in T cells inhibits Th17

differentiation and improves the insulin sensitivity in T-HGK cKO mice, which suggests that

leptin cooperates with IL-6 to promote Th17 differentiation. Thus, HGK deficiency induces

TRAF2/IL-6 upregulation, leading to IL-6/leptin-induced Th17 differentiation in adipose

tissue and subsequent insulin resistance. These findings provide insight into the reciprocal

regulation between the immune system and the metabolism.
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T
-helper 17 (Th17) cells, a subset of T-helper (CD4þ ) cells,
mainly produce interleukin (IL)-17, IL-17F, IL-21 and
IL-22. IL-6-, IL-21- or IL-23-induced STAT3 (signal

transducer and activator of transcription 3) activation facilitates
Th17 differentiation1,2. IL-6 stimulation induces IL-21
production and an IL-21 self-amplifying loop; IL-23 further
helps expansion and stabilization of Th17 population1,2.
Conversely, the transforming growth factor-b (TGF-b)-Smad
pathway limits Th1 and Th2 differentiation through
downregulation of T-bet/GATA-3 expression, leading to
increased Th17 differentiation. The recruitment of Th17 cells to
different tissues is mediated by CCL20 and CCL22, along with
their respective cognate chemokine receptors CCR6 and CCR4
(refs 3,4). The proinflammatory cytokines IL-17 and IL-22
secreted by infiltrating Th17 cells can cause tissue damages2.
Th17 cells are involved in many autoimmune diseases or
inflammatory diseases, such as systemic lupus erythematosus,
rheumatoid arthritis, multiple sclerosis, asthma, inflammatory
bowel disease and type 2 diabetes (T2D)5–7.

HPK1/GCK-like kinase (HGK), also named MAP4K4 (mito-
gen-actiavted protein kinase kinase kinase kinase 4), is a kinase
that belongs to the mammalian Ste20-like family of serine/
threonine kinases8. Whole-body HGK-deficient mice show early
embryonic lethality9, implicating that HGK has an important
function in embryonic development. Earlier studies using
cultured cells show that HGK has various cellular functions.
Tumour necrosis factor-a (TNF-a)-stimulated HGK induces JNK
(c-Jun N-terminal kinase) activation through MKK4 and MKK7
in 293T cells8, while HGK inhibits adipose lipogenesis in an
AMPK- and mammalian target of rapamycin-dependent but
JNK-independent pathway10. HGK also impairs insulin
signalling/glucose uptake in adipocytes and skeletal muscle cells,
leading to insulin resistance11,12. Moreover, HGK protects
pancreatic b-cells from the reduction of insulin secretion by
TNF-a13. HGK small interfering RNA knockdown in murine
macrophages inhibits lipopolysaccharide-induced septic shock by
downregulating IL-1b and TNF-a production14. In addition,
HGK has been identified as a promigratory kinase by a
small interfering RNA screening15. Consistently, HGK
expression is also associated with worse prognosis of pancreatic
ductal adenocarcinoma, colorectal cancer and lung
adenocarcinoma16–18. Recent report also shows that the
interaction of HGK with Pyk2 contributes to glioma cell
migration19. Taken together, HGK is involved in multiple
physiological functions in different cell types.

Our previous studies indicate that two other MAP4K family
kinases, HPK1 (MAP4K1)20 and GLK (MAP4K3)21, play
important roles in T-cell receptor signalling and T-cell-
mediated immune responses22,23. To date, the roles of HGK in
lymphocyte signalling have not been investigated. In this report,
we studied the in vivo roles of HGK in T-cell signalling and
immune regulation by generating T-cell-specific HGK conditional
knockout (T-HGK cKO) mice. We found that HGK
downregulates IL-6 production in T cells through direct
phosphorylation and degradation of TNF receptor-associated
factor 2 (TRAF2), leading to the suppression of Th17 cell-
mediated insulin resistance.

Results
T-HGK cKO mice show inflammation-associated disorders.
The specific deletion of HGK in T cells from T-HGK cKO mice
(Fig. 1a) was confirmed by immunoblotting analyses (Fig. 1b).
T-HGK cKO mice displayed normal development of T cells, B
cells, neutrophils and macrophages (Fig. 1c and Supplementary
Fig. 1a,b), as well as normal development and function of Treg

cells (Fig. 1d and Supplementary Fig. 1c,d). T-HGK cKO mice
showed severe dermatitis and cataracts starting between 12
and 23 weeks of age. These mice also showed hepatosplenome-
galy, along with enlargements of lymph nodes and kidneys.
Histology staining indicated that T-HGK cKO mice developed
hepatic steatosis (fatty liver) and pneumonia starting from 16
weeks of age (Fig. 2a). Histology data also showed infiltration
of immune cells in the skin, eyes, liver and lung (Fig. 2a). These
data suggest that T-HGK cKO mice may develop systemic
inflammation. The proinflammatory cytokines IL-6 and IL-17,
but not interferon-g (IFN-g) or TNF-a, were significantly
increased in the sera from T-HGK cKO mice (Fig. 2b). Intra-
cellular staining of IL-6-producing cells in the peripheral blood
showed that T cells (mostly CD4þ T cells) were the major source
of serum IL-6 in T-HGK cKO mice (Fig. 2c,d). In addition, IL-17-
producing CD4þ T (Th17) cells but not CD8þ T cells were
also significantly increased in the blood of T-HGK cKO mice
(Fig. 1e,f).

IL-6 reduction by HGK through TRAF2 phosphorylation and
degradation. HGK interacts with TRAFs24; and overexpression
of TRAFs enhances IKK/nuclear factor-kB activation and IL-6
production25,26. Thus, we examined whether HGK negatively
regulates IL-6 production through targeting TRAFs. The basal
levels of TRAF2 were drastically enhanced in HGK cKO T cells
(Fig. 3a), as well as in CD4þ and CD8þ T cells (Supplementary
Fig. 2a). The protein levels of TRAF2 in T-HGK cKO T cells were
abolished after HGK restoration (Fig. 3b). In addition, HGK was
constitutively activated in T cells (Fig. 3c). During T-cell receptor
signalling, HGK kinase activity was decreased with a concomitant
induction of TRAF2 protein levels (Fig. 3c). Conversely, TRAF2
levels were decreased by ectopically expressed HGK in an
overexpression system (Fig. 3d). This HGK-mediated TRAF2
degradation was abolished by the lysosome inhibitor chloroquine
but not by the proteasome inhibitor MG132 (Fig. 3e and
Supplementary Fig. 2b). The colocalization between HGK and
TRAF2 in lysosome was highly visible (Fig. 3f).

To determine whether HGK directly phosphorylates TRAF2,
we first examined the interaction between these two molecules.
HGK constitutively interacted with endogenous TRAF2 in
primary T cells (Fig. 4a). In vitro binding assays with purified
HGK and TRAF2 proteins and protein–protein interaction/a-
technology assays with specific donor/acceptor beads further
showed a direct interaction between these two proteins (Fig. 4b,c).
In vitro kinase assays with purified proteins showed that serine
phosphorylation of TRAF2 was increased by HGK, but not by
HGK kinase-dead mutant (Fig. 4d). To identify TRAF2
phosphorylation site(s), we isolated in vitro phosphorylated
Flag-tagged TRAF2, followed by mass spectrometry analyses.
Ser35 was identified as the HGK-targeted TRAF2 phosphoryla-
tion site (Fig. 4e). Unlike eight other serine/threonine mutants,
TRAF2 S35A mutant was resistant to degradation induced by
HGK (Fig. 4f). Moreover, IL-6 overproduction of HGK cKO
T cells was significantly reduced by TRAF2 short hairpin RNA
(Fig. 4g), suggesting that HGK downregulation induces IL-6
overproduction through TRAF2. These results indicate that loss
of HGK prevents TRAF2 from its lysosomal degradation,
resulting in subsequent IL-6 overproduction.

T-HGK cKO mice spontaneously develop insulin resistance.
IL-6 is involved in T2D in human patients27. To study whether
T-HGK cKO mice develop T2D, we monitored serum levels of
fasting insulin, glucose and triglyceride in T-HGK cKO and
control mice. There were significantly increased levels of insulin
(starting from 5 weeks), triglyceride (starting from 6 weeks) and
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glucose (starting from 8 weeks) (Fig. 5a,b and Supplementary
Fig. 3b) in sera of T-HGK cKO mice over time. Starting at
5 weeks of age, T-HGK cKO mice showed an 18% increase in
body weight compared with wild-type (WT) control mice
(Supplementary Fig. 3a,c); however, the body weights of
T-HGK cKO mice decreased after 24 weeks of age. The modest
increase of body weight may be a consequence of higher insulin
levels28. In addition, food intake levels of T-HGK cKO mice were
normal (Supplementary Fig. 3c). The respiratory exchange ratio
was significantly increased in T-HGK cKO mice, indicating that
carbohydrates rather than fatty acids were preferentially used
(Supplementary Fig. 3d), which in turn may contribute to fat
accumulation. Glucose tolerance test (GTT) and insulin tolerance
test (ITT) showed that T-HGK cKO mice had significant
decreases in glucose tolerance and insulin sensitivity (Fig. 5c,d).
The phenotypes of T-HGK cKO mice were sex independent. The
numbers and sizes of pancreatic islets in T-HGK cKO mice were
not decreased, and the levels of inflammatory cytokines in the
pancreas of these mice were not increased (Supplementary
Fig. 4a–c). Furthermore, insulin signalling29,30 was impaired in
three insulin-targeted tissues (adipose tissue, muscles and the
liver) of aged T-HGK cKO mice (Fig. 5e), indicating that HGK
cKO mice develop insulin resistance. Interestingly, insulin
signalling was initially downregulated only in adipose tissue,
but not in muscles or the liver of young T-HGK cKO mice
(Fig. 5f). The levels of inflammatory cytokines were increased in
the liver and the muscle of aged T-HGK cKO mice but not young
mice (Supplementary Fig. 5), supporting the conclusion that

inflammation may cause insulin resistance in the liver and muscle
of aged T-HGK cKO mice. These data suggest that adipocytes
may be the first to be regulated in T-HGK cKO mice.
Taken together, these results suggest that T-HGK cKO mice
develop T2D.

HGK-deficient Th17 cells are pathogenic for insulin resistance.
To study whether HGK-deficient IL-6- or IL-17-producing T cells
are responsible for insulin resistance, we first analysed infiltrating
T cells from insulin-targeted tissues. IL-6-producing CD4þ T
cells were increased in adipose tissue of the young T-HGK
cKO mice (Fig. 6a). Furthermore, most of the IL-6-producing
CD4þ T cells in the adipose tissue of T-HGK cKO mice were
IL-17 positive (Fig. 6a). These IL-6 and IL-17 double-positive
CD4þ T (IL-6þ Th17) cells were also present in the peripheral
blood of T-HGK cKO mice, and the percentages of Th17 cells in
T-HGK cKO mice increased with age (Fig. 6b). In addition,
the percentages of infiltrating neutrophils, macrophages and
CD8þ T cells but not CD4þ T cells were increased in the liver of
aged T-HGK cKO mice (Supplementary Fig. 6), suggesting that
the liver inflammation and steatosis in T-HGK cKO mice may be
due to the enhancement of circulating cytokines or Th17 cells.
As the Th17 chemoattractant CCL20 were the most increased
in adipose tissue (Fig. 6c), we studied the effect of CCL20
on the accumulation of Th17 cells in adipose tissue using CCL20
neutralization. After CCL20 neutralization, the Th17 population
was decreased in adipose tissue and the glucose intolerance was
ameliorated in T-HGK cKO mice (Fig. 6d,e). To further
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demonstrate the involvement of CCL20, we bred T-HGK cKO
mice with the knockout mice for CCR6, the CCL20 receptor.
Consistently, CCR6-deficient T-HGK cKO (CD4-Cre;HGKf/f;
CCR6� /� ) mice displayed the enhancement of glucose tolerance
during GTT tests (Fig. 6f). These data suggest that the recruit-
ment of Th17 cells to adipose tissue of T-HGK cKO mice induce
insulin resistance.

To verify the role of Th17 cells in the induction of insulin
resistance in T-HGK cKO mice, these T cells were isolated from
T-HGK cKO mice and then transferred to WT recipients. Two
weeks after the adoptive transfer, the cells had populated the fat
tissue of recipients. Serum levels of fasting insulin, fasting glucose,
IL-6 and IL-17 were significantly increased after IL-6þ IL-17þ

HGK-deficient T-cell transfer but only modestly enhanced by
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HGK-deficient IL-6� IL-17� T-cell transfer (Fig. 7a–c). More-
over, IL-6þ IL-17þ HGK-deficient T cell-transferred recipients
displayed insulin resistance during GTT tests (Fig. 7d). These
results indicate that HGK-deficient Th17 cells are pathogenic cells
causing diabetes.

As serum IL-6 and IL-17 levels were elevated in T-HGK cKO
mice (Fig. 2b) and IL-6 is known to be involved in T2D27, we
studied whether Th17-produced IL-6 or IL-17 mediates the
induction of insulin resistance in T-HGK cKO mice. The glucose
tolerance in T-HGK cKO mice was significantly restored after
IL-6 neutralization (Fig. 7e), indicating that IL-6 contributes
to insulin resistance in T-HGK cKO mice. Similar to IL-6
neutralization, IL-17 neutralization also significantly decreased
the glucose levels in T-HGK cKO mice during GTT tests,
indicating an improvement of insulin sensitivity (Fig. 7f). Taken
together, these data indicate that Th17-produced IL-6 and IL-17
play critical roles in the development of insulin resistance in
T-HGK cKO mice.

IL-6 facilitates Th17 differentiation in T-HGK cKO mice.
IL-6 is an important stimulator for the differentiation of Th17
(IL-17-producing CD4þ T cells)1. Consistently, IL-6 was induced
early in T-HGK cKO mice starting at 3 weeks of age, followed
by the induction of IL-17 (starting from 8 weeks; Fig. 8a,b).
IL-6 production from HGK-deficient T cells preceded IL-17
production, suggesting that autocrine/paracrine IL-6 from HGK-
deficient T cells induces Th17 differentiation in T-HGK cKO
mice. Next, we study where Th17 cells were differentiated.
Surprisingly, IL-6þ IL-17þ double-positive T cells were not
accumulated in the spleen and lymph nodes, but were gathered in
adipose tissue and the peripheral blood of T-HGK cKO mice
(Fig. 8c). It is likely to be that these peripheral blood Th17 cells in
T-HGK cKO mice are released from adipose tissue. IL-6
neutralization was used again to verify the role of IL-6 in
adipose tissue-induced Th17 differentiation. The percentages of
IL-6þ IL-17þ double-positive CD4þ T cells and levels of IL-17
in adipose tissue were decreased in 10-week-old T-HGK cKO
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mice after IL-6 neutralization (Fig. 8d–f). These results support
the conclusion that IL-6 is an important factor for Th17
differentiation in adipose tissue of T-HGK cKO mice.

Adipose tissue microenvironment promotes Th17 differentia-
tion. It is noticeable that adipose tissue contains a much higher
frequency of Th17 cells compared with peripheral blood of
T-HGK cKO mice regardless of systemic increase of IL-6 in these
mice (Fig. 8c). These data suggest that the adipose tissue micro-
environment may have a specific role in promoting Th17 dif-
ferentiation. Th17-promoting cytokines, such as TGF-b and IL-6,
are produced by adipose tissue. However, adipose tissue of
T-HGK cKO mice did not secrete more TGF-b (Fig. 8d);

moreover, the systemic increase of IL-6 did not significantly
increase Th17 cells in the spleen of T-HGK cKO mice (Fig. 8c).
These data suggest that adipose tissue secretes something that
induces Th17 differentiation.

Adipokines are soluble bioactive mediators that are produced
mainly by adipose tissue. To study whether adipose tissue-
secreted adipokines promoted Th17 differentiation, adipose tissue
fluid was used to induce a Th17 population in vitro. The
percentage of Th17 was increased by adding adipose tissue fluid
under in vitro Th17 differentiation conditions (Fig. 9a). In the
absence of adipose tissue fluid, in vitro Th17 differentiation of
T-HGK cKO T cells was higher than that of WT T cells
(Supplementary Fig. 7); this result may be due to overproduction
of IL-6 or other unknown factors secreted from T-HGK cKO
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T cells. As adipose tissue contains multiple cell types, we next
used adipocyte cell lines to rule out contribution from other types
of cells in adipose tissue. Similar to adipose tissue fluid,
conditioned medium from mature 3T3-L1 adipocytes, but not
3T3-L1 pre-adipocytes, enhanced Th17 differentiation (Fig. 9b).
Thus, the adipokines in adipose tissue of T-HGK cKO mice may
drive Th17 development from IL-6-producing HGK-deficient
T cells in situ. These results indicate that both IL-6 and adipokines
are important for Th17 differentiation in adipose tissue.

The adipokine array showed four adipokines that were
potentially increased in adipose tissue fluid from HGK
cKO mice (Supplementary Fig. 8a). Data of enzyme-linked

immunosorbent assay (ELISA) assays further confirmed that
adipose tissue of T-HGK cKO mice indeed secreted more leptin
(Fig. 9c). Consistently, the increase of serum leptin levels
preceded the induction of serum IL-17 levels in T-HGK cKO
mice (Fig. 8b and Supplementary Fig. 8b). Leptin induced IL-17
production from in vitro-cultured primary CD4þ T cells
(Fig. 9d) as reported31. Furthermore, leptin synergized with
IL-6 in inducing IL-17 production from CD4þ T cells (Fig. 9d).
The adipose tissue fluid-induced Th17 differentiation was
reduced by adding anti-leptin neutralizing antibodies
(Supplementary Fig. 8c). Thus, the increase of IL-6 and leptin
in adipose tissue of T-HGK cKO mice may drive Th17
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development from IL-6-producing HGK-deficient T cells in situ.
Leptin receptor is ubiquitously expressed in many tissues such as
the hypothalamus, liver, ovarian and adipocytes32. To further
demonstrate the role of leptin in promoting Th17 differentiation
in adipose tissue of T-HGK cKO mice, floxed leptin receptor mice
were used to knock out leptin receptor specifically in T cells.
Serum IL-17 levels were drastically reduced in T-HGK/LepR cKO
(CD4-Cre;HGKf/f;leptin receptorf/f) mice, whereas serum IL-6

levels were unaffected by leptin receptor deficiency (Fig. 9e).
Moreover, the glucose levels were decreased in T-HGK/LepR cKO
mice during GTT tests (Fig. 9f). The data strongly indicate
that leptin plays a critical role in the differentiation of Th17 cells
from IL-6-producing T cells in T-HGK cKO mice. Moreover,
leptin levels were also decreased in adipose tissue after IL-6
neutralization (Fig. 9g). These results indicate that IL-6 secretion
from HGK-deficient T cells induces leptin overproduction, which
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in turn cooperates with IL-6 in promoting Th17 differentiation in
adipose tissue (Fig. 10). As leptin deficiency enhances Treg
proliferation33, we also studied whether Treg proliferation is
reduced by leptin in adipose tissue of T-HGK cKO mice. The cell
number of Treg cells in adipose tissue was not significantly
decreased in T-HGK cKO mice compared with that in WT mice
(Supplementary Fig. 9).

Discussion
A key finding of our study is that HGK induces lysosomal
degradation of TRAF2 by directly phosphorylating TRAF2 Ser35.
Previous reports indicate that TRAF2 overexpression induces
IL-6 production25; our results showed that HGK deficiency
resulted in constitutive overexpression of TRAF2, and that IL-6
overproduction in HGK-deficient T cells was mediated by
TRAF2. The RING finger domain of TRAF2 is responsible for

lysosomal degradation34,35. Our results showed that Ser35
phosphorylation at the RING domain of TRAF2 by HGK
played a critical role in controlling TRAF2 levels through
lysosomal, but not proteasomal, degradation. Thus, HGK is a
key kinase that phosphorylates TRAF2, resulting in constitutive
degradation of TRAF2 and negative regulation of IL-6 production
in resting T cells. Nevertheless, it remains possible that HGK may
be involved in other signalling pathways.

The results of IL-6 neutralizations suggest that IL-6 over-
production by T cells may contribute to insulin resistance.
In vitro studies show that IL-6 directly suppresses insulin
signalling and glucose uptake in hepatocytes36 and
adipocytes37,38, and that long-term IL-6 treatment inhibits
insulin signalling in skeletal muscle cells39,40. The in vivo roles
of IL-6 are much more complex41. Acutely elevated IL-6 enhances
insulin secretion from the pancreas and improves glucose
tolerance in mice42, whereas chronic IL-6 infusion causes
hepatic insulin resistance in mice43. Global deletion of IL-6
in mice leads to mature-onset obesity and glucose intolerance via
the effect of IL-6 on the brain44, while IL-6 knockout mice
display either higher or lower insulin levels45,46. These conflicting
results could be due to the difference in mouse genetic
backgrounds or housing conditions45. In addition, the
development of insulin resistance also depends on where IL-6
acts and how the target cells response to IL-6 (refs 47–50).
Myeloid cell-specific IL-6 receptor knockout mice display M1
macrophage-mediated inflammation and insulin resistance47,
while IL-6 overexpression in the brain and lung of the
transgenic mice results in increased insulin sensitivity via
enhancing leptin action in hypothalamus48. Liver-specific IKK
transgenic mice develop IL-6-dependent hepatic insulin
resistance49, while skeletal muscle-specific IL-6 electro-
transferred mice display insulin resistance50. Our results
indicate that IL-6-overproducing T cells in adipose tissue
induce insulin resistance. Taken together, insulin resistance may
be determined by whether high levels of IL-6 are induced in the
microenvironment of insulin target tissues.

The results of adoptive transfer experiments and IL-17
neutralizations indicate that IL-6-producing Th17 cells contribute
to the pathogenesis of T2D. Our finding is consistent with a
previous report that IL-17 inhibits glucose uptake51. Our results
also showed that the body weights of T-HGK cKO mice were
slightly increased and even decreased after 24 weeks of age, which
may be due to the inhibition of adipogenesis by IL-17 (ref. 51).
Furthermore, IL-17-negative IL-6þ T cells were detected
in T-HGK cKO mice before 7 weeks of age, preceding
hyperglycemia induction. These data suggest that induction of
Th17 differentiation from IL-6þ T cells is a critical mechanism in
the pathogenesis of insulin resistance.

Although increased IL-6-producing T cells were circulating in
T-HGK cKO mice, adipose tissue was the initial target for insulin
resistance. This result indicates that IL-6-producing HGK� /�

T cells act locally in adipose tissue. IL-6 neutralization suppressed
the secretion of leptin and IL-17, as well as the population of
Th17 in adipose tissue. It is known that IL-6 plus glucocorticoid
stimulates leptin production in adipocytes52, and that leptin
promotes Th17 differentiation53,54. In this report, we showed that
leptin receptor deficiency in T cells resulted in the inhibition of
Th17 differentiation and the enhancement of insulin sensitivity in
T-HGK cKO mice. Moreover, leptin synergized with IL-6 in
inducing IL-17 production from T cells. Our data indicate that
IL-6 cooperates with leptin in induction of Th17 differentiation in
adipose tissue. Taken together, our data support the model of
reciprocal regulation between T cells and adipocytes: the
circulating IL-6-producing T cells infiltrate adipose tissue and
induce leptin secretion from adipocytes, which in turn provides
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of indicated recipients 14 days after adoptive transfer. n¼ 3 in (a); n, at
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an appropriate microenvironment for Th17 differentiation. Thus,
the induction of adipose tissue IL-6þ IL-17þ double-positive
Th17 cells leads to insulin resistance.

Our results derived from T-HGK cKO mice suggest that HGK
deficiency-induced IL-6 overproduction in T cells may be
involved in T2D pathogenesis. Through screening 1,769 DNA
samples from the peripheral blood of prediabetic Europeans, a
previous study found that two singlenucleotide polymorphisms
(SNPs) in the HGK locus are associated with increased glucose
levels in patients; moreover, one of these two HGK SNPs and a
third SNP are associated with enhanced serum IL-6 but not with
TNF-a levels55. Thus, this report and our findings support the
idea that HGK downregulation or dysfunction in blood cells is
important for the pathogenesis of T2D.

In summary, loss of HGK in T cells results in TRAF2
overexpression and IL-6 overproduction, which further induces
Th17 differentiation; these Th17 cells cause insulin resistance.
Our report unveils critical molecular and cellular mechanisms of
insulin resistance and provides a novel insight in the reciprocal
regulation between the immune system and metabolism. More-
over, T-cell-specific HGK conditional knockout mice provide a
novel animal model for studying T2D.

Materials and methods
Mice. A mouse HGK floxed allele (HGKflox) was generated in which exon 1 and
exon 2 of HGK are flanked by loxP sites (Fig. 1a). Mice homozygous for HGK
floxed allele were bred with CD4-Cre transgenic mice. As CD4 was expressed in
double-positive (CD4þCD8þ ) phase during T-cell development, Cre recombinase
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driven by the CD4 promoter induced the excision of the floxed HGK gene in
double-positive thymocytes and mature CD4þ or CD8þ T cells. Mice were
backcrossed to C57BL/6 background for five generations (F5; B97%) and F10.
Sex-matched littermate HGKf/f and CD4-Cre transgenic mice were used as control
mice in all experiments; the serum glucose/cytokine levels in these control mice
were similar to those in WT B6 mice. The data presented in this study were
performed on sex-matched, 2- to 26-week-old littermates. For body weight mea-
surement, 2-week-old sex-matched mice were monitored for 24 weeks. For GTT
and ITT experiments, 12-week-old, sex-matched mice were used. For cell transfer
experiments, 16-week-old T-HGK cKO mice and 10-week-old WT mice were used.
Mice were randomly assigned to in vivo animal experiments. Floxed leptin receptor

mice56 (JAX008327) and CCR6 knockout mice57 (JAX013061) were purchased
from the Jackson Laboratory. Mice were maintained in temperature-controlled and
pathogen-free cages. All mice were used according to the protocols and guidelines
approved by the Institutional Animal Care and Use Committee of the National
Health Research Institutes.

Cell lines. Human Jurkat T leukemia cells (American Type Cell Culture: TIB-152)
were cultured in RPMI-1640 medium (Invitrogen) containing 10% FCS (Invitro-
gen) plus penicillin (10 units ml� 1) and streptomycin (10 mg ml� 1) (Invitrogen).
HEK293T cells (American Type Cell Culture: CRL-11268) were cultured in DMEM
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medium (Invitrogen) containing 10% FCS plus penicillin (10 units ml� 1) and
streptomycin (10 mg ml� 1). The cells were free of mycoplasma contamination.

Reagents and plasmids. HGK antibody was generated by immunization of
rabbits with individual peptides (HGK epitope: HAPEPKPHYDPADRAREV).
Anti-actin and anti-tubulin antibodies were purchased from Sigma. Anti-p-IRS-1
(S612; 2386), anti-p-IRS-1 (Y896; 3070) and anti-IRS-1 (#2382) antibodies were
purchased from Cell Signaling. Anti-TRAF1 (H-3), anti-TRAF2 (H-10), anti-
TRAF3 (M-51), anti-TRAF4 (C-20), anti-TRAF5 (C-19) and anti-TRAF6 (D-10)
antibodies were purchased from Santa Cruz. All first antibodies for immunoblot-
ting were used in 1:1,000 dilution. The expression plasmids for HGK and HGK
kinase-dead mutant were as described previously8. CFP-tagged HGK, Flag-tagged
TRAF2 and YFP-tagged TRAF2 were constructed by subcloning the individual
complementary DNA into pCMV6-AC-CFP, pCMV6-AC-Flag and pCMV6-AC-
YFP vectors (OriGene Technologies), respectively. The TRAF2 short hairpin RNA
plasmid was established by the National RNAi Core Facility (Taiwan) and its
repeat insertion (50-GCGATCTTCATCAAAGCTATT-30) was subcloned into
pSUPER-GFP vector (OligoEngine, Inc.). Lysotracker was purchased from
Molecular Probes.

Immunoblotting analysis. The kinase reaction mixtures or cell extracts were
fractionated on 6–8% SDS–polyacrylamide gels and transferred onto polyvinylidene
difluoride membranes. The membranes were incubated with individual primary
antibodies and then with horseradish peroxidase-conjugated secondary antibodies.
The horseradish peroxidase substrate reaction was performed using chemilumi-
nescence detection system and detected by charge coupled device camera
(BioSpectrum 500 imaging system). Full blots are shown in Supplementary Fig. 10.

Glucose tolerance and insulin tolerance tests. For GTT tests, mice were
intraperitoneally injected with 2 g kg� 1 glucose after 16 h fasting. Glucose and
insulin levels were measured from blood samples collected from mouse tails. For
ITT tests, mice were injected intraperitoneally with 0.75 U kg� 1 insulin after 16 h
fasting, followed by measurement of blood glucose levels every 15 min. Blinding
experiments were done in GTT and ITT tests.

IL-6 neutralization. Mice at 8 weeks of age were injected via tail veins with 50 mg
anti-IL-6 antibodies (MP5-20F3; BioLegend) or control IgG antibodies (RTK2071;
BioLegend) every other day for 10 days, followed by GTT tests at day 12. In the
case of Fig. 8e,f, IL-6 neutralization was conducted in mice at 8 weeks of age.

IL-17 neutralization. Mice at 10 weeks of age were injected via tail veins with 45 mg
anti-IL-17 antibodies (MAB421; R&D) or control IgG antibodies (MAB006; R&D)
every other day for 10 days, followed by GTT tests 2 days after the last injection.

Cell transfer experiment. Mouse CD3þ T cells were negatively selected from the
spleen, lymph nodes and peripheral blood of 16-week-old mice. Most (490%) of

IL-6þ IL-17þ T cells from T-HGK cKO mice expressed both CCR4 and CCR6. In
the second round of purification, IL-6þ IL-17þ T cells were isolated from the
CD3þ T cells using magnetically coupled antibodies against mouse CCR4. The
remaining population was used as control cells. Cells were labelled with the
cytosolic dye carboxyfluorescein succinimidyl ester (CFSE) and then injected into
10-week-old WT mice (2.5� 106 cells per mouse) intravenously.

Measurements of glucose and cytokines. Blood glucose concentrations were
measured using ACCU-CHEK Active test strips and blood glucose meter (Roche).
Serum insulin concentrations were measured by solid phase two-site enzyme
immunoassays (Mercodia). Adipokines were measured by ELISA assay (R&D).
Cytokines and chemokines were assayed by ELISA assay. The RANTES ELISA kit
was from Proteck; the TGF-b ELISA kit was from R&D; the rest was from
eBioscience.

Flow cytometry analyses. For the staining of cell surface markers, cells were
harvested, washed with 2% fetal bovine serum (FBS in PBS), and stained with
individual antibodies (1:100 dilution) for 30 min at room temperature. For intra-
cellular staining, peripheral blood cells were permeabilized in 200 ml Cytofix/
Cytoperm buffer (BD Biosciences) for 16 h and washed with Perm-Wash buffer,
and then incubated with individual antibodies (1:50 dilution) for 2 h. For per-
ipheral blood leukocytes isolated from human subjects, cells were immediately
treated with Golgi-stop before staining. Data were collected with FACSCanto II
(BD Biosciences) and analysed using FlowJo software.

The antibodies used for staining are as follows: anti-mCD4-FITC (GK1.5),
anti-mCD8-APC-Cy7 (53-6.7), anti-mB220 (RA3-6B2), anti-mCD4-Pacific blue
(RM4-5), anti-mCD11b-APC (M1/70), anti-mIFN-g-FITC (XMG1.2) and anti-
mIL-17-Alex 647 (BL168) antibodies, which were purchased from BioLegend; anti-
mGr-1-PerCP-Cy5.5 (RB6-8C5) and anti-mIL-6-PE (MP5-20F3) antibodies, which
were purchased from BD Biosciences.

Transient transfection of primary T cells. For transient transfection assays,
primary T cells were transfected using the Neon Transfection System (Invitrogen
Corp.). The settings for human or mouse primary T cells (1� 107) were 2,200 V,
duration of 20 ms and 1 pulse. To induce cytokine production of 3-day-cultured
T cells, the primary T cells were stimulated with 5 mg ml� 1 PMA plus ionomycin
(Sigma) for 3 h at 37 �C.

a-Technology/protein–protein interaction assays. Amplified luminescent
proximity homogeneous assays (a) technology experiments were performed
according to the manufacturer’s protocol (Perkin Elmer Life Sciences). HEK293T
cells were co-transfected with Myc-HGK plus either Flag-TRAF2 or Myc/Flag
vector for 24 h. The cells were lysed in lysis buffer (50 mM Tris–HCl, 125 mM
NaCl, 5% glycerol, 0.2% NP40, 1.5 mM MgCl2, 25 mM NaF and 1 mM Na3VO4).
The transfectant lysates were incubated with acceptor beads (AlphaScreen ani-Myc
beads, Perkin Elmer) for 60 min and then incubated with donor beads (AlphaLISA
anti-Flag beads, Perkin Elmer) for another 60 min. If the donor–acceptor pair is
within 200 nm, a chemiluminescent signal (a-signal) will be generated58. The
a-signal was determined by EnVision 2104 Multilabel Reader (Perkin Elmer).

CCL2 and CCL20 neutralization. Mice at 12 weeks of age were injected via tail
veins with 45 mg neutralizing antibodies or control IgG antibodies (AB-108-C;
R&D) every other day for 10 days, followed by GTT tests 2 days after the fifth
(final) injection. The neutralizing antibodies used were anti-CCL2 antibodies
(AB-479-NA; R&D) and anti-CCL20 antibodies (AF760; R&D).

Preparation of mouse tissue immune cells and fluids. Tissues were homo-
genized by gentleMACS Dissociator (Miltenyi Biotec) to obtain single-cell
suspension. After incubation in RIMP medium with collagenase II (Sigma) at 37 �C
for 15 min, cell mixtures were homogenized again and washed with 15 ml PBS.
Immune cells were enriched by Ficoll extraction. For tissue fluid collection,
tissues were extirpated, rinsed with saline to remove blood from the surface and
blotted gently with tissue paper. Tissues weighing 0.2 g were transferred intact to
Eppendorf tubes. Tissues were roughly torn on ice using curved forceps. Tissue
fluids were isolated immediately by centrifugation at 13,000 r.p.m. at 4 �C for
20 min, and then fluids without cells were collected.

In vitro Th17 differentiation. CD4þCD25� cells were purified from lymph node
of mice. Cells (2.5� 105) were cultured in 500 ml medium in 48-well plates coated
with anti-CD3 (2 mg ml� 1) and anti-CD28 (3 mg ml� 1) antibodies. For Th17
differentiation, cells were cultured in medium containing 10 ng ml� 1 IL-6,
2.5 ng ml� 1 TGF-b, 25 ng ml� 1 IL-23, 2.5 mg ml� 1 anti-IL-4 and 2.5 mg ml� 1

anti-IFN-g antibodies.

3T3-L1 adipocyte differentiation. 3T3-L1 fibroblasts were cultured in six-well
plates in 2 ml DMEM supplemented with 10% (v/v) FBS. At 2 days post seeding,
cells were induced to differentiate into adipocytes with DMEM supplemented with
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10% FBS, 1 mg ml� 1 insulin (Novo Nordisk), 1 mM dexamethasone (Sigma),
0.5 mM isobutylmethylxanthine (Sigma) and 1 mM dexamethasone (Sigma). After 3
days, the media were replaced with 10% FBS DMEM. The cells were subsequently
re-fed every 48 h with 10% FBS DMEM. The supernatants were collected at 9 days
post differentiation.

Liquid chromatography–mass spectrometry. Specific protein bands from Instant
blue-stained SDS–PAGE gels were excised, destained and digested with trypsin.
The resulting peptide mixtures were loaded on a nano Acquity system (Waters,
Milford, MA) connected to an LTQ-Orbitrap XL hybrid mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany) equipped with a nanospray interface
(Proxeon, Odense, Denmark). Peptide mixtures were loaded onto a 75-mm ID,
25-cm length C18 BEH column (Waters) packed with 1.7 mm particles with a pore
width of 130 Å and were separated using a segmented gradient (5–40% solvent B in
60 min) at a flow rate of 300 nl min� 1 and a column temperature of 35 �C. Solvent
A was 0.1% formic acid in water. The mass spectrometer was operated in data-
dependant mode. Briefly, full-scan mass spectrometry (MS) spectra were acquired
in the orbitrap (m/z 350–1,600) with the resolution set to 60,000 at m/z 400 and
automatic gain control target at 106. The ten most intense ions were sequentially
isolated for CID MS/MS fragmentation and detection in the linear ion trap
(automatic gain control target at 7,000) with previously selected ions dynamically
excluded for 90 s. Ions with singly and unrecognized charge state were also
excluded. To improve the fragmentation spectra of the phosphopeptides, ‘multi-
stage activation’ at 97.97, 48.99 and 32.66 Thomson relative to the precursor ion
was enabled in all MS/MS events. All the measurements in the orbitrap were
performed with the lock-mass option for internal calibration.

Statistical analyses. All experiments were repeated at least three times. Data are
presented as mean±s.e.m. Kolmogorov–Smirnov and Shapiro–Wilk tests for
normality of each column data were performed using SPSS 19 software. The
statistical significance between two unpaired groups was analysed using two-tailed
Student’s t-test for normally distributed data or using the two-tailed Mann–
Whitney U-test for non-normally distributed data. Power calculations were
performed using G*Power 3.1.6 software (available at http://www.psycho.
uniduesseldorf.de/abteilungen/aap/gpower3/ download-and-register). The
statistical analyses were independently verified by two senior biostatisticians.
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