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Alarmin S100A8/S100A9 as a biomarker for
molecular imaging of local inflammatory activity
Thomas Vogl1,2,*, Michel Eisenblätter3,4,*, Tom Völler1, Stefanie Zenker1, Sven Hermann2,5, Peter van Lent6,
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Christoph Bremer2,8 & Johannes Roth1,2,7

Inflammation has a key role in the pathogenesis of various human diseases. The early

detection, localization and monitoring of inflammation are crucial for tailoring individual

therapies. However, reliable biomarkers to detect local inflammatory activities and to predict

disease outcome are still missing. Alarmins, which are locally released during cellular stress,

are early amplifiers of inflammation. Here, using optical molecular imaging, we demonstrate

that the alarmin S100A8/S100A9 serves as a sensitive local and systemic marker for the

detection of even sub-clinical disease activity in inflammatory and immunological processes

like irritative and allergic contact dermatitis. In a model of collagen-induced arthritis, we use

S100A8/S100A9 imaging to predict the development of disease activity. Furthermore,

S100A8/S100A9 can act as a very early and sensitive biomarker in experimental leishma-

niasis for phagocyte activation linked to an effective Th1-response. In conclusion, the alarmin

S100A8/S100A9 is a valuable and sensitive molecular target for novel imaging approaches to

monitor clinically relevant inflammatory disorders on a molecular level.
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I
nflammation is the driving force in a vast spectrum of
clinically relevant disorders, among others recognized as a
major pathological mechanism in malignant and degenerative

diseases, infection and autoimmunity. Current imaging markers
mostly reflect either metabolism or secondary effects of
inflammatory reactions, such as increased perfusion or vessel
permeability, or are only suitable for a very specific subset of
diseases. In addition, all currently established biomarkers widely
lack a proven prognostic potential. With biomedical research
increasingly discovering the molecular and cellular basis of
diseases and highly specific molecular therapies at the same time,
both approaches do not provide sufficient diagnostic information.
As a result, individually adapted therapy to manage chronic
inflammatory diseases remains widely elusive despite significant
therapeutic improvements1.

Numerous imaging approaches have been designed to address
this issue. In vivo visualization of local inflammation has
been performed, for example, using F-18-fluorodeoxyglucose
(18F-FDG)-positron emission tomography (PET) or magnetic
resonance imaging (MRI) with or without contrast enhance-
ment2. Although these methods have proven diagnostic value,
their implication in clinical practice has not fostered personalized
therapy, mostly due to a lack of either desirable specificity (PET)
or sensitivity (MRI).

Targeted imaging approaches to overcome these limitations
would ideally address a biomarker with high expression/release or
accumulation locally at the site of inflammation, representative of
early inflammatory processes and residual disease activity or a
prediction of flare-ups of disease in remitting-relapsing courses of
chronic inflammation. In preclinical animal models, non-invasive
molecular imaging methods would allow for local and long-
itudinal assessment of biomarkers in individual subjects. In the
long-term, such biomarkers would facilitate individual adaptation
of medication and would lead to a significant step forward in the
concept of personalized medicine.

In recent years, the concept of alarmins or ‘danger-associated
molecular pattern molecules’ (DAMPs) has emerged as a novel
mechanism for initiating and promoting inflammation and has
more recently been recognized as capable of resolving inflamma-
tion3–6. Expressed and released during tissue damage or cellular
stress reactions, members of this protein family have been shown
to be early players in the development of inflammatory processes.
S100A8 and S100A9, two members of the DAMP-family, are
highly expressed in early infiltrating phagocytes. During the
activation of these cells, S100A8/S100A9 complexes are locally
released in virtually all inflammatory disorders that are associated
with phagocyte activation, like autoimmune diseases, rheumatoid
arthritis, allergies, cardiovascular diseases, or local and systemic
infections and tumours7, whereas virtually no expression can be
found in healthy tissue. We have previously shown that S100A8
and S100A9 promote inflammation via the activation of Toll-like

receptor-4 (refs 8–11). Serum concentrations of S100A8/S100A9
complexes have been shown to be superior over conventional
biomarkers for the monitoring of inflammatory disorders,
especially in the detection of residual disease activity and in the
prediction of relapse in arthritis12.

However, biomarkers measured in the blood only reflect the
systemic state, which is strongly affected by factors like
metabolism or blood clearance, limiting the specificity and
sensitivity of these approaches. In contrast to systemic measure-
ments, non-invasive imaging should be able to detect the
expression of alarmins even at the local site of inflammation.
Using fluorescence reflectance imaging (FRI), we now provide the
first evidence that molecular imaging allows for the reliable
detection of S100A8 and S100A9 in preclinical models, locally
expressed during disease, and that visualization of these proteins
in conjunction with further laboratory analysis enables the
monitoring of local inflammation with unique sensitivity, even
allowing for the detection of sub-clinical, residual disease activity.
In autoimmune arthritis, we can simultaneously monitor multiple
disease foci by in vivo S100A9 imaging and the extent of disease
could be determined with high precision and even prognostic
value for disease development in independent foci of the same
animal. Moreover, by imaging S100A9 expression, we have
demonstrated the first biomarker detecting subclinical differences
in phagocyte activation linked to disease outcome in a model of
Th1/Th2-dichotomy in response to leishmania infection. We
provide evidence that S100A9 may serve as a novel potent
biomarker for monitoring local inflammatory processes by
molecular imaging. The broad applicability and consecutive
potential impact on clinical practice is illustrated by assessing the
performance of our integrated approach in exemplary models of
innate and adaptive immunity, autoimmunity and infection, thus
covering representative relevant pathomechanisms of inflamma-
tory disorders.

Results
Cy5.5-coupled aS100A9 accumulates at sites of inflammation.
To evaluate the feasibility of monitoring S100A9 expression by
optical imaging, we employed irritant contact dermatitis (ICD) as
an inflammatory model, exclusively driven by innate immunity,
independent of the adaptive immune system. ICD was induced in
Balb/c mice by the local application of croton oil towards the
ear skin13. 18F-FDG-PET, as a clinically established imaging
technique to assess inflammatory activity14, was used to visualize
elevated glucose metabolism in areas of inflammation during
ICD. Although inflammation can be clearly depicted by the
maximum intensity PET image (Fig. 1a, red arrow), as well as in
the co-registered PET/ computed tomography (CT; Fig. 1b, axial
CT slice), the resulting contrast-to-noise ratio (CNR) is low due
to 18F-FDG being taken up by all glucose-consuming cells
(Fig. 1a).

Figure 1 | In vivo fluorescence reflectance imaging of mice during ICD. (a) 18F-FDG-PET image and the fused PET/CT (axial CT slice) (b) of ICD in mice

treated with croton oil on the right ear. The area of inflammation (red arrows) can be depicted in the maximum intensity PET image (a, whole body) with

the axial CT slice showing the swelling of the inflamed tissue and the local uptake of FDG (ratio inflamed ear versus healthy ear¼4.8; b). (c) After the

application of a-S100A9-Cy5.5 to Balb/c mice 24 h after elicitation of ICD, optical imaging (OI) was performed at the time points indicated. Strong

fluorescence intensities were detected only at sites of inflammation for up to 96 h. (d) Quantification of CNR shows significant changes in the affected ears

over the observed time period from 24 to 96 h (baseline¼ time point 0). Data are from three independent experiments (each n¼ 5, mean±s.d., *Po0.05,

**Po0.01, ***Po0.001; P values calculated using Student’s t-test). (e) S100A8/S100A9 serum concentrations 48 h after croton oil application. Data are

from five mice per group (mean±s.d., ***Po0.001; Student’s t-test). (f) Cryosections of treated and control ears were stained for S100A9-expression. The

figure shows representative ear sections of an untreated control ear (left) and treated ears with moderately (middle) and strongly (right) elevated

SNR including the corresponding systemic S100A8/S100A9 level. Scale bar, 100 mm. (g) Application of a-S100A9-Cy5.5 or rabIgG-Cy5.5 to WT or

S100A9� /� mice 24 h after the elicitation of ICD confirmed the specificity of optical imaging for S100A9 expression in vivo. Data are from five mice per

group (mean±s.d., *Po0.05; P-values calculated using one-way analysis of variance with Bonferroni’s post test). a.u., arbitrary units.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5593

2 NATURE COMMUNICATIONS | 5:4593 | DOI: 10.1038/ncomms5593 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Cy5.5-labelled antibodies against S100A9 (a-S100A9-Cy5.5,
2 nmol of dye/mouse, spectral characteristics: hexc/em¼ 680/
700 nm, band pass¼ 20 nm) were administered intravenously
24 h after croton oil application. Optical imaging was performed

repeatedly 24–96 h after tracer application. Local tracer accumu-
lation, as depicted by FRI, showed the highest level at 24 h
(Fig. 1c,d). Fluorescence signals reflecting the high local release of
S100A8/S100A9 correlated well with elevated systemic levels of
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S100A8/S100A9 complex in the serum of mice 48 h after croton
oil application, as quantified by ELISA (Fig. 1e, Supplementary
Fig. 1). Local S100A9 expression could be confirmed using
immunohistochemistry (Fig. 1f). In healthy animals, a-S100A9-
Cy5.5 showed a biodistribution that is typical for macromolecular
substances (Supplementary Fig. 2). To discriminate nonspecific
tracer distribution, rabbit IgG of irrelevant specificity was labelled
with Cy5.5 (rabIgG-Cy5.5) and injected into a control group of
mice. S100A9-deficient mice (S100A9� /� ) served as additional
controls for the specificity of tracer to target binding. Both sets of
controls showed only a slight increase in fluorescence at local sites
of inflammation, most likely reflecting hyperemia and Fcg
receptor expression/binding in areas of inflammation (Fig. 1g).
The distribution of rabIgG-Cy5.5 and a-S100A9-Cy5.5 in either
healthy wild-type (WT) animals or non-involved organs was
virtually identical (Supplementary Fig. 2).

Monitoring local inflammation in allergic contact dermatitis
(ACD). To assess the capability of S100A9 imaging to reflect
phagocyte activity in T-cell-dependent adaptive immune reac-
tions, we analysed the expression of S100A9 in a model of ACD13.
Two days after the allergen challenge of sensitized mice,
a-S100A9-Cy5.5 or rabIgG-Cy5.5 was administered and
fluorescence intensities were monitored for up to 48 h after
tracer application. Disease progression was assessed by
monitoring the ear swelling during ACD (Fig. 2a). Already after
3 h, the specific probe accumulated in the area of inflammation,
peaking at 24 h (Fig. 2b). FRI data (Fig. 2b,c) were again in good
accordance with increased S100A8/S100A9 serum levels of
258±116 ng ml� 1 at day 3 (Po0.01) and of 289±91 ng ml� 1

at day 4 (Po0.001) compared with control mice
(129±42 ng ml� 1, five mice per group (two independent
experiments, mean±s.d)) and clinical symptoms (ear swelling;
Fig. 2a). Similar fluorescence intensities of specific and
nonspecific antibodies were obtained in unaffected ears,
representing a perfusion background signal (Fig. 2c). To further
differentiate the accumulation of labelled specific versus
unspecific antibody in the region of inflammation, 2 nmol of
both Cy5.5-labelled anti-S100A9 and Cy7-labelled rabIgG were
injected simultaneously in vivo during ACD. Fluorescence signals
obtained after the separate excitation of both probes were
acquired and compared with data derived in vitro under
defined conditions. The Cy5.5/Cy7 (reflecting a-S100A9/rabIgG)
ratio in vitro was constant (1.83±0.15); however, we observed a
significant increase to 4.73±1.31 in vivo (Fig. 2d). To rule out the
effects of the dye properties on probe distribution, a-S100A9-
Cy5.5 and a-S100A9-Cy7 were used simultaneously. An identical
biodistribution of the differently labelled probes could be
observed. Although a direct comparison of absolute signal
intensities was obviated by different emission wavelengths and
different quantum yields, the signal ratios between the affected
and unaffected ear were virtually identical (Fig. 2e). A parallel
injection of a-S100A9-Cy5.5 and rabIgG-Cy5.5 did not result in a
further increase in the local signal compared with the injection of
a-S100A9-Cy5.5 alone. As the S100A9-specific probe is based on
a polyclonal antibody and thus presumably contains only a
relatively small fraction of antigen-specific antibodies, these data
confirm the specificity of our findings (Supplementary Fig. 3a).
Immunohistochemistry showed a significant infiltration by
CD11b myeloid cells, Gr-1 granulocytes and F4/80
macrophages as a source of locally released S100A8/S100A9
(Supplementary Fig. 3b).

Monitoring local activity of inflammation in arthritis. S100A8
and S100A9 are highly expressed in synovial tissue in rheumatoid

arthritis and serum concentrations have been shown to be reliable
biomarkers reflecting local disease activity10,11,15. We performed
optical imaging of S100A8 and S100A9 expression in vivo in a
murine collagen-induced arthritis (CIA) model and correlated
imaging data with the clinical scores of disease activity. CIA was
induced by immunization of DBA/jdba1/j mice with type II
collagen. Clinical manifestations of arthritis started around day 7
after the last collagen injection. Symptoms prevailed for up to
3 weeks to different degrees in the foot joints. Mice received
labelled antibodies 1 week after the last collagen injection
(day 28). Optical imaging was performed starting 24 h after dye
application.

Owing to the highly variable inflammatory response of
individual joints in CIA, we performed a clinical scoring for
each individual foot on the basis of a three-point scale (CS0, CS1
and CS2) accounting for redness, swelling and deformation.
S100A9 expression, as depicted by optical imaging, showed
excellent correlation with clinical scoring, clearly discriminating
clinically mild from severe joint inflammation (Fig. 3a) with a
high signal-to-noise ratio (SNR) for severely inflamed joints
(Fig. 3b). Even single affected small joints could be clearly
identified (Fig. 3c). The cumulative disease activity score of all
four feet (range 0–8) correlated well with optical imaging data
presented as mean values for all four feet and systemic S100A8/
S100A9 levels of 1,180±360 ng ml� 1 in mice with mild arthritis
(CS2-3) versus 170±30 ng ml� 1 in healthy control mice and
2,700±380 ng ml� 1 in mice with high disease activity (CS4-6;
Fig. 3d,e). To assess unspecific tracer distribution, we employed
non-targeted Cy5.5-labelled rabIgG and observed only faint tracer
signals, even in strongly inflamed joints (Fig. 3a). The
simultaneous injection of Cy7-labelled antibodies against the
S100A8 subunit of the S100A8/S100A9 heterodimer (a-S100A8-
Cy7, 2 nmol dye/mouse, spectral characteristics: hexc/em¼ 755/
780 nm, band pass¼ 20 nm) and a-S100A9-Cy5.5 showed an
almost identical in vivo distribution with equally specific
accumulation in target areas (Fig. 3f,g). SNR of a-S100A8-Cy7
and a-S100A9-Cy5.5 showed excellent correlation with disease
activity scores of individual feet (Fig. 3h). To further assess a
potential prognostic value of the presented approach, we
conducted the CIA model in C57BL/6 mice. Development of
arthritis and outcome in this mouse strain is highly variable and
unpredictable. Even during early disease, when first clinical signs
of CIA could only just be detected, scans allowed for the safe
delineation of areas of S100A9 expression. All four paws were
scored daily and imaging was repeated when manifesting clinical
signs of inflammation were present. We also demonstrated an
excellent correlation between early and late imaging (Fig. 3i,j), as
well as between early imaging and the clinical development of
individual paws (Fig. 3k).

Phagocyte activity during Leishmania major infection.
Experimental leishmaniasis is a well-established model for ana-
lysing the Th1/Th2-dependent immune response to infection.
C57BL/6 mice show early activation of phagocytes within the first
days after Leishmania major (L. major) inoculation, which results
in an effective Th1-response and the clearance of parasites. In
contrast, Balb/c mice lack the sufficient activation of phagocytes
in the initial phase of infection, finally resulting in the develop-
ment of a Th2-dominated, ineffective immune response and
subsequent parasite dissemination. The consecutive granuloma
formation is accompanied by an overwhelming yet inefficient
phagocyte activation in the late phase of disease16.

At day 28 after infection, in the late phase of disease, optical
imaging of infected animals was performed, showing significantly
higher fluorescence signals in the feet of infected Balb/c mice as
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compared with C57BL/6 mice and untreated control feet (Fig. 4a,
right images). RabIgG-Cy5.5 confirmed the specificity of S100A9-
labelling (Fig. 4a, left images). We observed an excellent
correlation of optical signals with systemic S100A8/S100A9 levels

(Fig. 4b) and footpad swelling (Fig. 4c) as a clinical sign of
inflammation. Moreover, in C57BL/6 mice, even at day 28 after
infection, fluorescence-reflected macrophage activity allowed the
grading of residual inflammation (Fig. 4d).
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Using S100A9 imaging, even the critical, initial activation of
the phagocyte system in L. major-resistant C57BL/6 mice could
be detected during the very early phase at day four after infection.
Measurements of S100A8/S100A9 expression in sera or local
wash-outs by ELISA confirmed the detected imaging
signals (Fig. 4e). In contrast, the failure of sufficient early
phagocyte activation in Balb/c mice was associated with the
absence of a significant increase in S100A9 expression (Fig. 4f).
We could therefore demonstrate that locally expressed S100A9 is
the first imaging marker predicting the development of a Th1
immune response, several weeks before the clinical outcome of
infection.

Discussion
Inflammatory disorders like autoimmune diseases, allergies
and acute or chronic infections are important challenges in
health care. The continuously growing understanding of the
biological basis of inflammation stimulates the development of
targeted therapies, specifically addressing selected steps in the
process of pathogenesis. This is accompanied by a growing
demand for specific diagnostic approaches, which are capable not
only of sensitive detection but also of characterization of the
disease stages on a molecular level. Molecular biomarkers
that meet the requirements as set out by current therapeutic
developments—sensitive reflection of disease activity changes
under therapy, safe visualization of subclinical disease activity as a
sign of therapy failure and a prediction of the outcome—are still
missing. However, these requirements are a prerequisite for the
adaptation of personalized therapeutic approaches providing
optimal therapy.

Analysing S100A8 and S100A9, two members of the DAMP
family, our study comprises a novel diagnostic approach: DAMPs
or alarmins are widely accepted to represent initial tissue signals
in response to cell stress and tissue damage, thus representing
ideal candidates for the early and sensitive detection of
developing inflammation3,5,17. Both proteins are among the
most upregulated genes in numerous inflammatory diseases7,15.
S100A8/S100A9 complexes are secreted during the activation of
immigrating phagocytes or released by necrotic cells because of
tissue damage at local sites of inflammation, acting as endogenous
triggers of Toll-like receptor-4 and inducing the expression of
pro-inflammatory signalling molecules in phagocytes, lympho-
cytes, endothelial and epithelial cells and osteoclasts8,10,18,19.
In this context, S100A8 and S100A9 show typical characteristics
of alarmins or DAMPs. Targeting S100A8/S100A9, we
therefore monitored an inflammatory mechanism that has been

shown as highly relevant in different mouse models of
inflammation like allergies, autoimmune diseases, arthritis and
infection and has also proven to be a valuable marker for
discrimination and grading of clinically relevant acute and
chronic inflammation7–10,13,18,19.

Targeted imaging of cytokines, for example, interleukin-1b or
tumour necrosis factor-a revealed only limited sensitivity and/or
specificity and a relatively low SNR20–22, probably due to a low
gradient of the cytokine concentration between local
inflammatory exudates and systemic serum. In contrast to most
cytokines, chemokines and other pro-inflammatory molecules,
the local accumulation of S100A8 and S100A9 is very high (up to
100 mg ml� 1 and about 50- to 100-fold higher than systemic
concentrations), allowing the sensitive and specific detection of
local changes in the expression of these molecules15,23. S100A8
and S100A9 comprise about 40% and 5% of the cytosolic proteins
in granulocytes and monocytes, respectively. They are specifically
released during the interaction of phagocytes with inflammatory
activated endothelial cells and can subsequently bind to heparan
sulfate of the endothelial glycocalyx15,24–26. The high abundance
and matrix binding appear to be responsible for the high local
accumulation of these proteins at sites of inflammation compared
with other inflammatory molecules, which allows the detection of
these molecules even by MRI27 and accounts for the high target to
background ratios that we observed in our in vivo imaging
studies.

In contact dermatitis, as a model of local inflammation, we
could demonstrate that the expression of S100A9 is a very
sensitive marker for inflammatory processes and reflects disease
activity independently of the underlying pathomechanism, for
example, in toxic or in allergen-induced inflammation. In
contrast to most imaging studies, we confirmed that our imaging
data closely correlated not only to the local expression of S100
proteins by phagocytes in the dermal infiltrate, as determined by
immunohistochemistry, but also to systemic levels of both
proteins and clinical parameters. The specificity of our data was
confirmed by the use of nonspecific antibodies (rabbit-derived
IgG without relevant specificity) to determine perfusion and
unspecific Fcg-receptor binding. Parallel injection of the S100A9-
specific probe and rabIgG labelled with different dyes ruled out
in vivo competition for the specific target or dye-dependent
effects. Moreover, we applied the specific probe a-S100A9-Cy5.5
in ICD in WT and S100A9� /� mice. SNR of a-S100A9-Cy5.5 in
WT mice were significantly higher compared with nonspecific
antibodies, as well as compared with data obtained from
S100A9� /� mice. In this model, WT and S100A9� /� mice
showed no differences regarding their inflammatory phenotype13.

Figure 3 | Detection of single inflamed joints in collagen-induced arthritis by optical imaging. (a) CIA was induced in DBA/jdba1/j mice and optical

imaging was recorded by FRI using a-S100A9-Cy5.5 or rabIgG-Cy5.5 at day 28. Individual feet were analysed and compared with clinical scores described

in the Method section (n¼ 5 mice per group, three independent experiments). (b) Comparison of imaging data of a-S100A9-Cy5.5 and rabIgG-Cy5.5 from

mice feet with CS2 confirms the specificity of our findings (mean±s.d., *Po0.05, Student’s t-test, n¼ 5 mice per group, three independent experiments).

(c) Enlarged view of only subclinical inflammation of single joints. (d) Correlation of imaging data and systemic S100A8/S100A9 levels of mice with clinical

disease severity. Scoring of single feet were added up (maximum score 8 per mouse) and imaging data were calculated as mean values over all four feet.

(e) S100A9 immunostaining of paw sections with CS of 0.5, 1.25 and 2 and control at day 28 confirmed correlation of local S100A8/S100A9 expression

and severity of inflammation. Scale bar, 100mm. (f,g) Simultaneous injection of a-S100A8-Cy7 (f) and a-S100A9-Cy5.5 (g) shows an almost identical

distribution pattern in FRI. (h) Upper panel, representative pictures of paws for the different clinical scores. Lower panels, correlation of clinical scores with

SNR for Cy7-labelled anti-S100A8 and Cy5.5-labelled anti-S100A9 (n¼ 5 mice, mean±s.d., *Po0.05, **Po0.01; one-way analysis of variance with

Bonferroni’s post test). (i) CIA was induced in C57BL/6 mice and a-S100A9-Cy5.5-driven FRI was performed at the first signs of arthritis (early time point)

and for a second time where disease progression had occurred (late time point, 2 nmol of dye per mouse). All paws were analysed separately and

compared with the clinical scoring as described in (a, n¼6 mice). Representative images of an early (left image) versus late (right image) S100A9 scan are

shown. White arrows indicate inflamed areas. Correlation of optical imaging data of early versus late time point (j) and early time point versus late clinical

score (k). To correct for the variable areas of fore- and hind-paws, fluorescence intensities were normalized for the ROI size. Two fore-paws of one mouse

were excluded from the analysis because of an incorrect position in the scanner (j,k). a.u., arbitrary units.
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Analysing CIA, we confirmed an excellent correlation of
S100A9 expression, as detected by optical imaging with local
disease activity in individual joints. In addition, we demonstrated
that the local expression of S100A9 and S100A8 is equally capable

of uncovering sub-clinical disease activity, which is not reflected
by established clinical parameters. Using blocking antibodies in
arthritis models in WT and S100A9� /� mice revealed that this
alarmin has a pivotal role in the inflammatory as well as in the
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destructive process during arthritis10,11,28, indicating that our
imaging approach directly reflects major pathogenic aspects of
arthritis.

In CIA, E-selectin-targeted optical imaging has been demon-
strated to reflect inflammatory activity with similar SNR to our
data29. Interestingly, S100A9 has been shown to induce the
expression of E-selectin in endothelial cells30, indicating that both
methods address different target cells within closely linked
inflammatory mechanisms. However, the high local level of
S100A9 at sites of numerous inflammatory diseases makes this
molecule more suitable for future imaging approaches in clinical
practice. The detection of leukocyte populations with radio-
labelled antibodies against macrophages (F4/80), T lymphocytes
(CD4, CD3, CD40) or B lymphocytes (CD20), among others, and
cell tracking studies with labelled cells have been used to monitor
inflammatory processes in arthritis31,32. However, all of these
approaches suffer from the disadvantage that the infiltration of
significant numbers of these leukocytes takes a substantial
amount of time and is not the initial event in the inflammation
cascade. Moreover, leukocytes may persist during the resolution
of inflammation, limiting the diagnostic value of these approaches
for monitoring relapsing remitting courses of inflammation.
Therefore, most of these studies have identified only low SNR and
sometimes entirely failed to show a correlation of imaging results
with disease activity31,32. The tissue destruction associated with
phagocyte infiltration is reflected by protease activity and can be
detected by small compounds targeting myeloperoxidase,
cathepsin or matrix metalloproteinase activity33–35. However,
these markers, in contrast to S100A8/S100A9, are not sensitive
for the early inflammatory reaction, but reflect later stages of
disease only.

Yet another interesting finding in our study was that the
expression of S100A8/S100A9 during the initial phase of an
inflammatory (infectious) process was the first early and
sensitive marker for subclinical phagocyte activation known to
be linked to the development of an effective Th1-response in this
model. During the very early phase of L. major infection (day 4),
we were able to visualize the effective activation of phagocytes in
resistant C57BL/6 mice. In susceptible Balb/c mice, the lack of
adequate, early phagocyte activation and differentiation into a
pro-inflammatory M1-phenotype was reflected by low S100
expression in our imaging approach associated with priming a
Th2 response, not sufficient to fight the infection. Hence, the
imaging signal allowed for the prediction of a fatal outcome of
disease, even weeks before full manifestation of the clinical
phenotype and disease dissemination in this particular disease
model.

Our data demonstrate for the first time that targeting members
of the alarmin or DAMP family is a potent strategy for functional

molecular imaging of inflammatory processes in general and
independent of the underlying pathophysiology. Similar results of
local expression of an alarmin family member could be
demonstrated using a transgene reporter mice model for HSP-
70 expression in ischemic brain injury. However, such transgenic
approaches unfortunately only have limited potential for transla-
tion into clinical applications36. Owing to their specific mode of
expression and release, S100A8 and S100A9 are sensitive
biomarkers for the immediate response of innate immune
mechanisms to disturbances of tissue homeostasis. The
induction and release of S100A8/S100A9 have been shown to
correlate very well with disease activity in many clinically relevant
disorders, including rheumatoid arthritis, inflammatory bowel
disease, autoimmune diseases, infections, allograft rejection or
chronic processes like atherosclerosis, which underlines the
translational potential and high impact of our findings for
future basic research as well as clinical applications3,7,12. Optical
imaging driven by fluorescently labelled antibodies has a growing
translational potential beyond its impact on preclinical research
and may be applicable for the examination of superficial lesions
such as cutaneous inflammation. In addition, fluorescence
endoscopy is gaining increasing interest and could foster the
clinical use of fluorescent contrast agents37; for example, in the
evaluation of inflammatory bowel disease, which is known to
exhibit a very high local expression of S100A8/S100A9
(calprotectin)38. The potential of optical imaging of S100A8/
S100A9 for regular clinical use is moreover underlined by the
introduction of an optical scanner for visualization of the disease
activity in rheumatoid arthritis, another inflammatory disorder
with high local S100A8/S100A9 expression, currently driven by
ICG fluorescence39. Finally, S100A8/S100A9 are highly
upregulated during tumour development and even in the
developing metastatic niche40. Therefore, another specific
demand for optical molecular imaging of S100 proteins may
arise in the context of intraoperative imaging for the safe
delineation of malignant tissue during tumour resection41.

For the translation of target-specific imaging approach into
deep tissue imaging, other label strategies may have to be
explored. Replacing the fluorescent dye with a radionuclide for
either single photon emission computed tomography (SPECT) or
PET imaging would allow for the examination of virtually all
body compartments in humans, with specificity and sensitivity
resembling that of optical imaging. With hybrid systems like
PET/CT and PET/MRI increasingly applied in clinical imaging,
targeted imaging of S100A8/A9 could be combined with high-
resolution morphology. Targeted contrast agents for MRI, based
on either superparamagnetic iron oxides or Gadolinium, suffer
from the low sensitivity of MRI at clinical field strength and—in
comparison to optical or radionuclide-driven imaging—large

Figure 4 | Mouse strain-specific responses during L. major infection monitored by S100A9 imaging in vivo. (a) Right hind legs of C57BL/6 mice and

Balb/c mice (three independent experiments, each five mice per group) were infected with L. major, whereas the left hind legs served as controls. FRI was

monitored during the late phase of infection at day 28 after receiving either a-S100A9-Cy5.5 or rabIgG-Cy5.5 (2 nmol of dye per mouse) 24 h earlier.

(b) CNR was calculated for both mouse strains at day 28 after L. major infection. Significant strain-specific differences were found for both local (CNR) and

systemic (S100A8/S100A9) parameters (three independent experiments, each five mice per group, mean±s.d., *Po0.05, ***Po0.001; Mann–Whitney

U-test). (c) Footpad swelling of infected C57BL/6 mice and Balb/c mice at day 28 and 35 in relation to non-infected contralateral foot pads (mean±s.d.,

n¼ 5 for each mouse strain, ***Po0.001; t-test) demonstrates the different outcome in both mouse strains. (d) Individual comparison of representative

optical imaging data (CNR) of infected C57BL/6 mice at day 28 after infection shows fairly good accordance, suggesting that systemic S100A8/S100A9

levels resemble disease activities. (e) During early L. major infection (day 4), sera (grey bars) and footpad washouts (black bars) of infected and non-

infected mice were collected and analysed for S100A8/S100A9 by ELISA. Systemic and local S100A8/S100A9 levels were already significantly increased

in infected C57BL/6 mice as compared with controls. In Balb/c mice, only a minor, nonsignificant increase in local S100A8/S100A9 expression was

observed. Data are from fvie mice per group (mean±s.d., *Po0.05, **Po0.01, ***Po0.001 and NS, not significant; Mann–Whitney U-test). (f) At day 4

already, local upregulation of S100A9 expression could be monitored in resistant C57BL/6 mice by optical imaging (P¼0.047 by t-test) reflecting

phagocyte activation. This was not detectable in susceptible Balb/c mice (P¼0.19). Data are from five mice per group. a.u., arbitrary units.
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amounts of the agent are required to incur a measurable change
in relaxivity42. Although the visualization of tracer accumulation
in areas of inflammation could be demonstrated for Gadolinium-
loaded nanoparticles in selected experimental models27, a
convincing approach with translational potential has yet to be
developed. Moreover, the combinatory application of contrast
enhanced MRI and targeted imaging in hybrid systems to acquire
even more diagnostic information in a single examination would
be negated by the use of targeted MRI probes. As a paradigm for
such future developments in molecular imaging, we provide the
first fully integrated diagnostic approach on a member of the
DAMP/alarmin family in various preclinical models of different
modes of inflammation with clear potential for translation into
clinical practice.

Materials and methods
Mice and reagents. C57BL/6 mice, Balb/c mice (Harlan Laboratories), DBA/
jdba1/j mice (Janvier-Elevage) and S100A9-deficient mice (S100A9� /� , back-
crossed to C57BL/6 or Balb/c background (F10 generation))43 were used at the age
of 8–12 weeks, sex matched for each set of experiments and housed under specific
pathogen-free conditions. All experiments with mice were performed with the
approval of the State Review Board of Nordrhein-Westfalen (Germany) according
to the German law for animal welfare (Permit Number: 84-02.04.2012.A058) or by
the Ethics Committee of University Hospital Nijmegen (Permit Number: DEC
2014-044). All reagents were purchased from Sigma at the highest purity grade
available, unless indicated otherwise.

ELISA. We used an in-house ELISA to determine the concentrations of S100A8/
S100A9 in sera and washouts of footpads, as described earlier (Supplementary
Fig. 1)10. We calibrated our ELISA against purified S100A8/S100A9 heterodimer as
complexes have been shown to be the predominant form of these proteins.

Antibodies and antibody labelling. Rabbit-derived antibodies addressing S100A9
or S100A8 were purified via protein G-sepharose and labelled with the fluor-
ochromes Cy5.5 or Cy7 according to the manufacturer’s instructions (GE
Healthcare). Cy5.5-labelled rabbit IgG without relevant specificity in mice served as
a control. Briefly, 5 mg of the antibody was dialysed towards 100 mM Na2CO3

buffer, pH 8.0 and a 20-fold excess of the fluorochrome was added for 90 min at
RT. The resulting tracer was purified from unbound dye using size exclusion
chromatography (PD10 column). The labelling efficacy (dye/antibody ratio) was
determined on the basis of ultraviolet-spectra of the purified dye–antibody com-
pound using PBS as a reference buffer. Typically, the labelling resulted in 2.5–3.0
fluorochrome molecules per antibody, irrespective of the precursors.

In vivo imaging. Mice were held under isoflurane inhalation anaesthesia for
the duration of the scan and the imaging chamber was heated to 30�. As the total
scan time was usually under 1 min, physiological effects due to a significant
decrease of body temperature were not to be expected. Mice were intravenously
injected with either the specific Cy5.5-labelled S100A9 antibody (a-S100A9-Cy5.5,
2 nmol of Cy5.5 B100 mg antibody in total) or Cy5.5-labelled antibody of
irrelevant specificity (rabIgG-Cy5.5), unless specified otherwise. In selected
experiments, a-S100A9-Cy5.5- and Cy7-labelled S100A8 antibodies (a-S100A8-
Cy7) or a-S100A9-Cy5.5- and Cy7-labelled S100A9 antibodies (a-S100A9-Cy7)
or a-S100A9-Cy5.5 and rabIgG-Cy5.5 antibodies were administered in parallel
in the same animal for simultaneous detection.

FRI. FRI was performed using the Carestream FX Pro Imaging Station (Carestream
Health). For imaging of Cy5.5-labelled antibodies, excitation light was set to
630 nm using an appropriate bandpass filtre. Emission at 700 nm was recorded
using a filtre-equipped high-sensitivity (4-million-pixel) cooled charge-coupled
device camera. Acquisition time was 30 s for each image, followed by a photo-
graphy-style white light image or conventional X-ray for image fusion and
co-registration of anatomical information.

For the imaging of Cy7-labelled compounds, excitation and emission
wavelengths were 730 and 790 nm, respectively; acquisition time was 30 s.

For the time of examination, mice were held under isoflurane inhalation
anaesthesia (2.5% isoflurane in air).

For each region of interest measured for imaging analysis, the mean
fluorescence intensity (SI) and resulting standard deviation (s.d.) were determined.

From the acquired fluorescence signals of the target region (SItarget), SNRs were
calculated as SNR¼ SItarget/s.d.background signal.

If possible, the comparison of affected organs (target) and healthy organs
(control) in the same animal CNRs were calculated as CNR¼ (SItarget� SIcontrol)/
s.d.background.

PET and CT scanning. Animals were anaesthetized with isoflurane, and 10 MBq of
18F-FDG in 100ml 0.9% saline was injected intravenously 1 h before each PET
analysis. For PET acquisition, animals were placed on a heat-controlled multi-
modal scanning bed and PET list mode data were acquired for 15 min using the
32-module quadHIDAC scanner (Oxford Positron Systems), dedicated to small
animal imaging. The scanner has an effective resolution of 0.7 mm (full-width at
half-maximum) in the transaxial and axial directions when using an iterative
resolution recovery reconstruction algorithm. Subsequently, the scanning bed was
transferred to the computed tomography scanner (Inveon, Siemens Medical
Solutions) and a medium resolution (25 mm) CT acquisition was performed for
each mouse. PET data were reconstructed into a single image volume for each
mouse with a voxel size of 0.4� 0.4� 0.4 mm3. CT was reconstructed into a
volume data set with a voxel size of 0.007� 0.007� 0.007 mm3. Image data sets
were co-registered using extrinsic markers attached to the multimodal scanning
bed and commercially available image analysis software (Inveon Research
Workplace, Siemens Medical Solutions).

Immunohistochemistry. Immunohistochemistry of ear sections (cryo) or paw
sections (paraffin) was performed as described earlier using purified rabbit anti-
sera against murine S100A9 (refs 10,13). Briefly, after inhibition of endogenous
peroxidase activity in frozen tissue sections Fc receptors were blocked by
incubating in PBS/1% BSA including 50% normal goat serum (NGS). Slides were
immunostained in a two-step procedure of incubation of primary antibody or
isotype control followed by a horseradish peroxidase-conjugated secondary
antibody using AEC as chromogen. Images were acquired by using an upright
microscope (Axioskop, Zeiss). Paws from arthritis experiments were fixed in 4%
formaldehyde and joints were decalcified with 5% formic acid in PBS during 7
days. After dehydration and embedment in paraffin, sections of the paws were cut
(7 mM) in a standardized manner and processed for S100A9 staining. Sections were
treated with 1% H2O2 to inhibit endogenous peroxidase and 0.1% Triton/PBS for
antigen retrieval and additionally incubated with rabbit anti-S100A9 antibodies
followed by a goat-anti-rabbit biotinylated antibody and 3,30 diaminobenzidine
(DAB).

Eliciting irritant and ACD. ICD was induced by the application of 1% croton oil in
olive oil-acetone (1:4) to the dorsal surface of the right ear of mice (n¼ 5 per
group) for 24 h, whereas the left ear served as a control. FRI was performed at 24,
48, 72 and 96 h after tracer application, corresponding to 48, 72, 96 and 120 h after
croton oil treatment, respectively. Subsequently, mice were killed and ears were
snap-frozen in liquid nitrogen and transferred for immunohistochemistry.

To elicit ACD, C57BL/6 or Balb/c mice were sensitized by the application of
25 ml of 0.5% 2,4-dinitrofluoro-1-benzene (Sigma) in olive oil/acetone (1:4) to the
shaved abdominal wall on two consecutive days. Six days later, mice were
challenged with 15 ml of 0.4% 2,4-dinitrofluoro-1-benzene in olive oil/acetone on
the dorsal surface of the right ear. At day 2, mice were injected with either
a-S100A9-Cy5.5 or rabIgG-Cy5.5 or a combination of a-S100A9-Cy5.5/rabIgG-
Cy7, a-S100A9-Cy5.5/a-S100A9-Cy7 or a-S100A9-Cy5.5/rabIgG-Cy5.5. FRI was
performed at different time points after antibody application, as indicated in Fig. 2.
The disease severity of ACD was monitored by measuring the ear swelling.

Induction and imaging of CIA. Arthritis was induced in DBA/jdba1/j or C57BL/6
mice by immunization using bovine collagen type II as described in detail earlier44.
Briefly, bovine collagen type II (bCII, MD Biosciences) was dissolved in 0.05 M
acetic acid at a concentration of 2 mg ml� 1. Mice were injected subcutaneously at
the tail base with 100 mg bCII emulsified in Complete Freund’s Adjuvant (Difco).
The animals were boosted at day 21 with an intraperitoneal injection of 100 mg
bCII. The onset of polyarthritis occurred around 4–5 days later. Mice were
regularly inspected from day 14 after disease induction and scored for swelling,
erythema and deformation of each joint three times a week (CS0¼ no swelling,
CS1¼ slight swelling and erythema, CS2¼ pronounced oedema including joint
rigidity). Scoring of single joints was added up to a maximum possible score of
eight per mouse (two per paw). Regarding the susceptibility of C57BL/6 mice,
arthritis was evaluated using an extended scoring three-point scale: 0¼ normal;
0.5¼ erythema, light oedema; 1¼mild but definitely visible, erythema and oedema
of one digit/toe or limb; 2¼ erythema and moderate oedema of at least two digits/
toe or limb; 3¼ erythema, severe oedema of the entire paw and/or rigidity. Imaging
was performed after arthritis was clinically detectable in the majority of treated
animals 24 h after tracer application of either a-S100A9-Cy5.5 or rabIgG-Cy5.5 or a
combination of a-S100A9-Cy5.5/a-S100A8-Cy7. At the end of the experiment,
mice were killed and serum was collected for S100A8/S100A9 quantification by
ELISA. Hindpaws were excised and processed for histology.

Experimental leishmaniasis. Cutaneous leishmaniasis was initiated in two dif-
ferent mouse strains (C57BL/6 and Balb/c) by the subcutaneous application of
2� 107 promastigotes (stationary phase) of L. major in 50 ml PBS into the right
hind footpad. Footpad thickness of the infected in relation to the healthy foot was
assessed for clinical monitoring of disease. FRI was performed at days 4 and 28
after infection (representative for an early and a late phase immune response), 24 h
after tracer injection. In separate experiments, sera and footpad washouts were
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collected at days 4 or 28 after L. major inoculation for S100A8/S100A9 quantifi-
cation by ELISA. Briefly, L. major infected and non-infected hindpaws were
washed out by s.c. injection of 250ml PBS. Without applying any force, in order to
obtain secreted protein, approximately 250 ml of the draining liquid was collected
and used for further analysis.

Statistical analysis. Results are presented throughout as mean values±standard
deviation (s.d.). P-values are given in the figure legends and values of P40.05 were
considered not to be significant. Statistical analyses were performed by parametric
tests (t-test or one-way analysis of variance) and the Mann–Whitney U-test.
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