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abstract
Autosomal recessive polycystic kidney disease (ARPKD) is an important
cause of chronic kidney disease in children. The care of ARPKD patients
has traditionally been the realm of pediatric nephrologists; however,
the disease has multisystem effects, and a comprehensive care strat-
egy often requires a multidisciplinary team. Most notably, ARPKD
patients have congenital hepatic fibrosis, which can lead to portal hy-
pertension, requiring close follow-up by pediatric gastroenterologists.
In severely affected infants, the diagnosis is often first suspected by
obstetricians detecting enlarged, echogenic kidneys and oligohydram-
nios on prenatal ultrasounds. Neonatologists are central to the care of
these infants, who may have respiratory compromise due to pulmonary
hypoplasia and massively enlarged kidneys. Surgical considerations
can include the possibility of nephrectomy to relieve mass effect, place-
ment of dialysis access, and kidney and/or liver transplantation. Fam-
ilies of patients with ARPKD also face decisions regarding genetic
testing of affected children, testing of asymptomatic siblings, or con-
sideration of preimplantation genetic diagnosis for future pregnancies.
They may therefore interface with genetic counselors, geneticists, and
reproductive endocrinologists. Children with ARPKD may also be at risk
for neurocognitive dysfunction and may require neuropsychological
referral. The care of patients and families affected by ARPKD is there-
fore a multidisciplinary effort, and the general pediatrician can play
a central role in this complex web of care. In this review, we outline
the spectrum of clinical manifestations of ARPKD and review genetics
of the disease, clinical and genetic diagnosis, perinatal management,
management of organ-specific complications, and future directions for
disease monitoring and potential therapies. Pediatrics 2014;134:e833–
e845
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Autosomal recessive polycystic kidney
disease (ARPKD; MIM 263200) is an im-
portant inherited cause of chronic kid-
ney disease (CKD), with an estimated
incidence of 1 in 20 000 live births.1 The
most typical disease expression occurs
in neonates and includes a history of
oligohydramnios, massively enlarged
kidneys, and the “Potter” sequence with
pulmonary hypoplasia that leads to re-
spiratory insufficiency and perinatal
death in ∼30% of affected newborns.2–4

Improved survival of infants resulting
from advances in neonatal supportive
care over recent decades has allowed
recognition of a broader spectrum of
disease manifestations. In addition,
identification of the causative gene,
PKHD1, has allowed clinicians to rec-
ognize that patients with disparate
phenotypes all have defects in the
same disease gene.5

The typical renal phenotype of ARPKD
consists of enlarged, echogenic kidneys
with fusiform dilatation of the collecting
ducts. Patients can progress to end-
stage renal disease (ESRD) at varying
ages.5,6 ARPKD also has important
effects on other organ systems. Notably,
patients have liver disease consisting of
dilated biliary ducts, congenital hepatic
fibrosis, and portal hypertension (Car-
oli syndrome). Systemic hypertension is
prevalent and can be severe.5–9 Children
with ARPKD may also be at risk for
neurocognitive dysfunction.

Families of children with ARPKD also
face a number of challenges. As genetic
testing technology has advanced, not
onlydofamiliesfacedecisionsregarding
testingofasymptomatic child, theymust
also confront issues such as testing of
asymptomatic children and consider-
ation of new reproductive technologies
such as preimplantation genetic di-
agnosis (PGD). Many families will be
confronted with decisions regarding
dialysis and/or transplantation, kidney,
liver, or sometimes both. It is essential
that providers caring for these patients

be well versed not only in the biology of
the disease but also in its psychosocial
implications.

In this article, we review the genetic
basis of ARPKD, clinical and genetic di-
agnosis, perinatal management, man-
agement of organ-specific and systemic
complications, and considerations of
dialysis and transplantation andexplore
future directions formonitoring disease
progression and potential therapies.

GENETICS OF ARPKD

Background of the Gene and
Protein

ARPKD is caused bymutations inPKHD1,
a large ∼500-kb gene10,11 with a com-
plex splicing pattern12 located on
chromosome 6p21.1-p12.

The product of PKHD1, fibrocystin/
polyductin (FPC), is a single-membrane
spanning protein with multiple iso-
forms.13 It is expressed predominantly
in the kidney (mostly in collecting ducts
and thick ascending loops of Henle),
liver (in bile duct epithelia), and pan-
creas.11,13–15 In renal tubular and biliary
epithelial cells, FPC localizes to apical
membranes, the primary cilia/basal
body,13,14,16–19 and mitotic spindle.20

Theexact functionof FPCremainsunclear.
However, numerous proteins associated
with other hepatorenal fibrocystic dis-
eases (Table 1) also localize to the pri-
mary cilia/basal body (Fig 1). This
suggests a central role for the primary
cilium in development and maintenance
of renal tubular architecture and has led
some to characterize these disorders
collectively as “ciliopathies.”21–26 Through
its interactions with the autosomal dom-
inant polycystic kidney disease (ADPKD)
protein polycystin-2,27–29 FPC may form
part of a common signaling pathway that
also includes polycystin-1.30–32

Human Mutations

ARPKD mutations have been identified
along the entire length of the PKHD1

gene, and multiple mutation types have
been described as pathogenic. To date,
.300 pathogenic mutations have been
cataloged in the ARPKD Mutation Data-
base (http://www.humgen.rwth-aachen.
de),33 of which approximately half are
missense changes. The most common
mutation overall is a missense muta-
tion in exon 3, c.107C.T (p.Thr36Met),
which accounts for ∼20% of all mu-
tated alleles.34 Aside from this muta-
tion, which has been observed in a
large number of unrelated patients,35

there do not appear to be any muta-
tional hotspots. Indeed, a large propor-
tion of mutations are unique to a single
pedigree.35,36

Genotype-Phenotype Correlations

Multiple studies have attempted to
elucidate genotype-phenotype correla-
tions in ARPKD. Given the diversity of
PKHD1 mutations, most patients are
compound heterozygotes, that is they
carry 2 different mutant alleles. The
functional effect of any particular mu-
tant allele can therefore be difficult to
discern.

Nevertheless, some broad themes have
emerged from these studies. Notably,
patients with 2 truncating mutations
typically have a severe phenotype
leading to perinatal demise.35,37–40

However, not all missense mutations
lead to a more benign outcome; indeed,
a number of missensemutations result
in severe phenotypes when present
with a truncating mutation or in ho-
mozygous form.6,37,41

Numerous groups have attempted to
categorize sequence variations based
on likelihood of pathogenicity,6,37,42–44

many of which are cataloged in the
ARPKD Mutation Database.33 However,
because many patients will be found to
have novel PKHD1 variants, interpre-
tation of genetic testing results can be
challenging.

Genetic modifiers likely also play a sig-
nificant role in disease expression. This
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is illustrated by the presence of sig-
nificant phenotypic variability in a sub-
set of families; for example, in a study of
126 unrelated families, 20 sibships
showed widely discordant phenotypes
(perinatal lethality in 1 sibling and
survival into childhood in the other).6

Genetic Testing

Mapping of the ARPKD locus to chromo-
some 6p21.1-p1245–47 in the mid-1990s
allowed the use of haplotype (linkage)
analysis for genetic confirmation of the
diagnosis, including prenatally,1 provided
DNA from a previously affected child and
the parents was available.

Identification of PKHD1 has since allowed
diagnosis by direct sequencing. In vari-
ous cohort studies,5,10,11,34,35,37–39,42,43,48

mutation detection rates have ranged
from 42% to 87% of tested alleles, and
∼95% of patients could be found to have
at least 1 PKHD1 mutation. Generally,

mutation detection rates are higher for
patients with severe early-onset disease
because they are more likely to have
truncating mutations that are easier to
detect.

A number of laboratories offer clinical
genetic testing for ARPKD. These are
summarized on the GeneTests Web site
(www.genetests.org), and in the Na-
tional Institutes of Health Genetic Test-
ing Registry (http://www.ncbi.nlm.nih.
gov/gtr). Most laboratories offer direct
sequencing of the entire coding region,
with expected mutation detection rates
similar to recent studies of ∼80%.
However, direct sequencing cannot
detect all mutations (e.g., those in
noncoding exons or in promoter or
regulatory regions). Some laboratories
also offer multiplex ligation-dependent
probe amplification to detect large
deletions or genomic rearrangements.49

In families with .1 affected child, hap-

lotype analysis remains a valuable tool
when only 1 or no PKHD1mutations have
been identified.50

Another challenge in establishing a mo-
lecular diagnosis is that several other
diseases can mimic the clinical pre-
sentation of ARPKD. For example, pa-
tients with mutations in the ADPKD
genes, PKD1 and PKD2, can present with
early-onset renal cystic disease in-
distinguishable from ARPKD.51–53 In
some cases, this can occur in families
with a mild phenotype in previous gen-
erations51; in others, ARPKD-like pheno-
types have been described when 2
incompletely penetrant PKD1/2 alleles
are inherited in trans52,53 or when
a PKD1/2 mutation is inherited in trans
with a mutation in another cystic kidney
disease gene such as HNF1b.53 In addi-
tion, it must be noted that the most
common cause of hyperechoic fetal kid-
neys is reported to be HNF1b-related

TABLE 1 Hepatorenal Fibrocystic Diseases: Summary of Genetics and Clinical Features

Disease Gene(s) Renal Disease Hepatic Disease Associated Features

ARPKD PKHD1 Collecting duct
dilatation

CHF; Caroli disease Growth retardation

ADPKD PKD1, PKD2 Cysts along entire
nephron

Biliary cysts; CHF Minimal in children

NPHP NPHP1–NPHP15 Cysts at the
corticomedullary
junction

CHF Tapetoretinal degeneration, situs inversus

Joubert syndrome JBTS1–JBTS20 Cystic dysplasia; NPHP CHF; Caroli disease Cerebellar vermis hypo/aplasia with episodic
hyperpnea, abnormal eyemovements, intellectual
disability

Bardet-Biedl syndrome BBS1–BBS15 Cystic dysplasia; NPHP CHF Retinal degeneration, obesity, postaxial polydactyly,
hypogonadism in males, intellectual disability

Meckel-Gruber syndrome MKS1–MKS10 Cystic dysplasia CHF Occipital encephalocele, polydactyly
Oral-facial-digital

syndrome, type I
OFD1 Glomerular cysts CHF (rare) Malformations of the face, oral cavity,

and digits
Glomerulocystic disease PKD1, TCF2, UMOD Enlarged; normal or

hypoplastic kidneys
CHF (with PKD1
mutations)

Diabetes, hyperuricemia

Jeune syndrome
(asphyxiating thoracic
dystrophy)

IFT80 (ATD2) Cystic dysplasia CHF; Caroli disease Short stature, skeletal dysplasia,
small thorax, short limbs,
polydactyly, hypoplastic pelvis

DYNC2H1 (ADT3)
ADT1, ADT4, ADT5

Renal-hepatic-pancreatic
dysplasia (Ivemark II
syndrome)

NPHP3 Cystic dysplasia Intrahepatic biliary
dysgenesis

Pancreatic cysts, dysplasia, and/or fibrosis; splenic
abnormalities; situs inversus

Zellweger syndrome PEX1-3, 5-6, 10-11, 13, 14, 16,
19, 26

Renal cortical
microcysts

Intrahepatic biliary
dysgenesis

Hypotonia, seizures, agenesis/hypoplasia
of corpus callosum, characteristic
facies, skeletal abnormalities,
neonatal death

Adapted with permission from Somlo and Guay-Woodford.143 CHF, congenital hepatic fibrosis; NPHP, nephronophthisis.
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disease.54 A number of the other
hepatorenal fibrocystic diseases listed
in Table 1 can also have clinical mani-
festations that overlap with ARPKD.

Thus, mutational analysis of PKHD1
using current single-gene testing
methodologies should not be consid-
ered as a first-line diagnostic approach
for infants and children presenting
with an ARPKD-like phenotype. It is ex-
pensive and potentially confounded by
the existence of phenocopy disorders.
Moreover, the high frequency of mis-
sense mutations makes pathogenicity
predictions for single nucleotide var-
iants challenging, and particular cau-
tion is required when only novel or
rare missense changes are detected.

The one clear exception to this guid-
ance is in the context of planned PGD
in which putative PKHD1 mutations
transmitted from the mother and fa-
ther, respectively, must be prospectively
identified.

The need for the somewhat cumber-
somesingle-gene testingapproachmay
soon be obviated with advances in next-
generation genetic sequencing. Using
a massively parallel sequencing ap-
proach, it is now possible to evaluate
dozens of genes of interest simulta-
neously in a single test. This will likely
prove to be a particularly powerful
approach for patients with cystic kid-
neys in whom the differential diagnosis
can be broad.55

PERINATAL CONSIDERATIONS

Prenatal Diagnosis of ARPKD

ARPKD is often first suspected based on
routine prenatal ultrasound. Suggestive
fetal features include symmetrically en-
larged,echogenickidneys(duetomultiple
microscopic cysts) with loss of cortico-
medullary differentiation due to medul-
lary hyperechogenicity.56 Discrete cysts
are sometimes observed.57 Oligohy-
dramnios may be present due to poor
fetal urine output.1,56 Many other hep-
atorenal fibrocystic diseases can have
similar sonographic findings, however, so
a definitive diagnosis is difficult based on
imaging alone unless previous children
have hada confirmeddiagnosis of ARPKD.
ADPKD can often be distinguished from
ARPKD by the finding of increased cor-
ticomedullary differentiation in ADPKD
(due to cortical hyperechogenicity with
a relatively hypoechogenic medulla).58 It
is important to note, however, that nor-
mal sonographic findings do not exclude
a diagnosis of ARPKD because abnor-
malities may not be seen until late in the
second trimester (or beyond), even in
infants who later manifest a severe phe-
notype at birth.1,56,59 In addition, the
presence or absence of oligohydramnios
does not always correlate with the de-
gree of pulmonary insufficiency.56

Prenatalgenetictestingcanbeperformed
by using haplotype analysis1,50 or PKHD1
sequencing as previously described.40,60,
61 However, as discussed earlier, pro-
viding clear prognostic information
based on sequencing results remains
a challenge; although the presence of 2
truncating mutations is generally in-
compatible with survival, clinical con-
sequences of other mutation types can
be difficult to predict. Next-generation
sequencing methods will likely also
prove useful to differentiate ARPKD from
other phenotypically similar entities.55

PGD

In families with a previous child se-
verely affected by ARPKD, PGD represents

FIGURE 1
The primary cilium and cystoproteins. The cilium concentrates and organizes a number of channels,
receptors, and effectors, such as transcription factors and proteolytic fragments of cystoproteins. It
thereforeplaysa critical role in transmitting information regarding the externalmilieu back into the cell
and ultimately in regulating cellular and tubular differentiation and homeostasis. Cyst formation is
characterized by deregulation of the balance between cell proliferation and differentiation. Cilia appear
to play a role in maintaining this balance through sensing the extracellular milieu, responding to
mechanical cues, and modulating different signaling cascades. Ciliary dysfunction contributes to in-
creased intracellular accumulation of cAMP and activation of mammalian target of rapamycin (mTOR),
features common to cystic epithelia in human and rodent models of renal cystic disease. Numerous
groups have demonstrated that almost all cystoproteins, including polycystins; FPC; the nephrocystins;
the Bardet Biedl syndrome (BBS) proteins; oral-facial-digital syndrome, type I (OFD1) protein; and the
tuberous sclerosis type I (TSC1) protein Hamartin; all of these localize to the cilia/centrosome complex,
providing compelling evidence that this complex is critical in the pathogenesis of renal cystic disease.
mTORC1, mammalian target of rapamycin complex 1; V2R, V2 receptor.
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a valuable alternative to prenatal di-
agnosis.62 To carry out PGD, the trans-
mitted PKHD1 mutations must be
prospectively identified. Then, a couple
must undergo in vitro fertilization; the
resulting embryo is biopsied, with re-
moval of 1 or 2 blastomeres for genetic
testing.63 Two groups have recently
reported the birth of healthy infants af-
ter PGD in families at risk for ARPKD.62,64

Postnatal Management

The estimated perinatal mortality rate
in ARPKD patients is ∼30%, primarily
due to respiratory compromise. One-
year survival rates of 92% to 95%6,9

have been reported in patients who
survive the first month of life.

Althoughpulmonaryhypoplasiaisamajor
cause of respiratory compromise,65,66 an
additional impediment is the presence
of massively enlarged kidneys limiting
diaphragmatic excursion. The enlarged
kidneys may also interfere with nutri-
tion due to gastrointestinal tract com-
pression. The proportion of infants
requiring mechanical ventilation is not
well established; in one cohort, it was
required in 41% of neonates.9 Pneu-
mothoraces also appear to be a rela-
tively common complication.8,67

Aggressive management strategies for
infants with severe ARPKD have been
described, including unilateral68–70 or
bilateral67,71,72 nephrectomy to improve
ventilation and nutrition. The optimal
approach, however, is not well estab-
lished given that the evidence base
consists only of limited case reports
and case series. Several of these
reports have described improvements
in nutrition after either unilateral68,69 or
bilateral67 nephrectomy. Potential re-
spiratory benefits of nephrectomy are
less clear, particularly given the signif-
icant surgical risks in infants with se-
vere respiratory compromise.70,72

Although some authors have reported
successful weaning of respiratory sup-
port after nephrectomy,67,71,72 some

infants with massively enlarged kidneys
can be weaned from mechanical venti-
lation even without nephrectomy.68,69 In
addition, morbidity associated with the
earlier need for renal replacement
therapy after nephrectomy must be
carefully considered. Therefore, deci-
sions surrounding possible nephrec-
tomy for infants with severe ARPKD
must be highly individualized.

Despiteadvances inneonatal supportive
care including respiratory support and
dialysis, the prognosis of infants with
severeARPKD isoftenuncertain. Parents
and care providers may need to make
difficult decisions surrounding possible
limitation or withdrawal of care. Pallia-
tive care providers and/or medical
ethicists can be invaluable in facilitating
the decision-making process.

RENAL MANIFESTATIONS

Most ARPKD patients progress to ESRD,
but the age at onset is highly variable.
The overall renal survival rate in one
large cohort of neonatal survivors was
86% at age 5 years and decreased to
42%by 20 years of age.6 However, age at
ESRD onset appears to depend on age
at initial presentation. In one cohort,
25% of patients who presented in the
perinatal period required renal re-
placement therapy by 11 years. In
contrast, among those who presented
after the perinatal period, the age at
which 25% of patients required renal
replacement therapy was 32 years.44

Similarly, in another cohort, renal
survival rate 20 years after diagnosis
was 36% in patients diagnosed before 1
year of age but was 80% in those di-
agnosed at age 1 to 20 years.5

Systemic hypertension is another im-
portant cause of morbidity in children
with ARPKD, and its onset oftenprecedes
a decline in glomerular filtration rate.3,7

The prevalence of hypertension in vari-
ous cohorts has been reported to range
from 55% to 75%.2,3,7–9,73,74 Interestingly,
some authors have noted that hyper-

tension can sometimes normalize dur-
ing the course of the disease.75,76

The mechanism underlying hyperten-
sion in ARPKD is unclear. Some studies
have suggested a low-renin mecha-
nism,3,9 possibly due to dysregulation
in sodium absorption in the structur-
ally abnormal collecting ducts. How-
ever, other studies suggest a role for
renin-angiotensin-aldosterone system
(RAS) activation. A study in the PCK rat
model reported a significant increase
in intrarenal, but not systemic, RAS
activation.77 This finding may explain
why previous studies did not detect
increased plasma renin levels.3,78

Hypertension in childrenwith ARPKD is
often severe enough to require multi-
agent therapy.8,9 As in other causes of
CKD, angiotensin converting enzyme
inhibitors and angiotensin receptor
blockers are therapeutic mainstays
and may be particularly helpful given
data suggesting intrarenal RAS acti-
vation.77 However, there are no studies
to determine whether therapy with
these agents can slow disease pro-
gression in ARPKD. Strict blood pres-
sure control has been shown to slow
CKD progression in children with
other diseases79; thus it seems rea-
sonable to also target blood pres-
sures ,90th percentile for children
with ARPKD.

Hyponatremia has been reported to be
common in early infancy; it was re-
ported in 27%of patients in one cohort9

and in 79% of infants in another3 and
may be due to an inability to maximally
dilute the urine.3 However, other co-
horts have reported much lower pre-
valences of hyponatremia.7,8

Children with ARPKD appear to be at
higher risk for urinary tract infections,
possibly due to urinary stasis within
the cystic, dilated collecting ducts.
Urinary tract infections have been
reported at rates of ∼20% to 50% in
various cohorts and are more com-
mon in girls.7–9,80
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Renal calcifications have also been
reported to be common in older chil-
dren with ARPKD5,81 and may be related
to hypocitraturia and a defect in urine
acidification due to renal failure.81

HEPATOBILIARY MANIFESTATIONS

Patients with ARPKD invariably have
a developmental biliary defect termed
the ductal plate malformation.82 The
abnormal intrahepatic bile ducts be-
come progressively dilated and some-
times develop overt cysts. Progressive
portal tract fibrosis can lead to portal
hypertension and associated complica-
tions of hypersplenism and varices.83

Although histologic biliary abnormali-
ties are a universal feature, clinical
expression varies widely. In 1 cohort,
liver-related symptoms such as spleno-
megaly,cholangitis,or thrombocytopenia
due to hypersplenism were presenting
features in 26% of patients.84 Platelet
counts were found to correlate well with
spleen volume in this cohort.84 Liver
transaminases are generally normal,
and a fraction of patients have mild ab-
normalities in serum alkaline phospha-
tase, g-glutamyltransferase, albumin,
bilirubin, or prothrombin time.7,84

In various cohorts, the proportion of
ARPKDpatientswith imagingfindings of
liver disease has ranged from 45% to
90%.2,7,84 However, relatively fewer de-
velop serious clinical complications of
portal hypertension. Occurrence of
bleeding esophageal varices and/or
the need for portosystemic shunting
has ranged from 10% to 40% of
patients in various reports.2,5,8,75,84 As-
cending cholangitis is another impor-
tant complication and is a leading
cause of morbidity and mortality in
ARPKD patients particularly after kid-
ney and/or liver transplantation.85

In one cohort, about 7% of long-term
survivors were reported to require liver
transplantation, with primary indications
being significant portal hypertension or
recurrent cholangitis.9

The relationship between renal and he-
patic disease severity in ARPKD is un-
clear. One study reported significant
correlation between degree of renal
dysfunction and portal hypertension.6

However, subsequent studies have docu-
mented no correlation between renal and
hepatic disease severity.9,75 It appears
that a subset of patients with ARPKD
presenting later in life can have a liver-
predominant phenotype with few or no
manifestations of kidney disease.5

RADIOLOGIC DIAGNOSIS AND
MONITORING

Although renal ultrasound is some-
times used to monitor children with
ARPKD, the prognostic value of imaging
findings is unclear (Fig 2). Unlike in
ADPKD, in which decline in renal func-
tion clearly correlates with increasing
total kidney and cyst volume,86,87 there
is no clear relationship between kidney
size and function in ARPKD. There was
no correlation between kidney length
and serum creatinine in one large co-
hort.7 Another study found a weak in-
verse correlation between kidney
function and volume in ARPKD patients,
but there wasmarked variability.44 This
study also found that patients with
cysts limited to the renal medulla fared
better than those with cortical and
medullary abnormalities.44 It is un-
clear, however, if these findings repre-
sent different stages of disease
progression or simply inherent differ-
ences in disease expression. Longitu-
dinal studies of ARPKD have shown that
kidney size tends to either remain
stable or decrease over time.7,88–91

Ultrasound can also be used to monitor
sequelae of portal hypertension such as
splenomegaly, presence of collateral ves-
sels, and reversal of portal flow. However,
these may be late findings in ARPKD and
maynot reflect underlyingpathology such
as progressive hepatic fibrosis.

MRI has been used for kidney and liver
imaging in several studies44,84,92,93;

however, MRI has not come into routine
clinical use because of the unclear
prognostic significance of findings. Tran-
sient elastography (FibroScan) is
a method of assessing liver fibrosis that
has been validated in other disease pro-
cesses94 and has been studied in children
with ARPKD.95 However, additional studies
are needed to assess the clinical utility of
this technique in this patient cohort.

Additional studies of new imaging mo-
dalitiesareclearlyneeded.Newdisease
monitoring tools not only could provide
useful prognostic information but also
couldhelp todefinereliablebiomarkers
to evaluate the efficacy of any future
potential therapies.

DIALYSIS AND TRANSPLANTATION

As discussed previously, some infants
require dialysis in the newborn period
after bilateral nephrectomy.67,71,72

Given the technical challenges of he-
modialysis in young infants, peritoneal
dialysis (PD) is generally preferred.
However, PD in infants with ARPKD can
be complicated by peritoneal leak
caused by peritoneal disruption during
nephrectomy and poor wound healing
due to suboptimal nutrition.67,96

In patients who do not undergo ne-
phrectomy in infancy, standard care for
progressive CKD is generally adopted,
including referral for dialysis or trans-
plantation as indicated. There are, how-
ever, some unique considerations in
children with ARPKD with significant
dual-organ involvement. A subset of pa-
tients can require both kidney and liver
transplantation, either simultaneously or
sequentially. Decisions regarding timing
and sequence of organ transplantation
canbedifficult, and Telega et al85 recently
presented a clinical decision framework
to help guide clinicians.

Special considerations after isolated
kidney transplantation in ARPKD pa-
tients include the substantial risk of
morbidity andmortality due to cholangitis/
sepsis. Some authors have therefore
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advocated standard use of posttrans-
plant antibiotic prophylaxis.97,98 Others
have suggested earlier consideration
of liver transplantation (LT) in ARPKD
patients with severe liver disease
who are being evaluated for kidney
transplantation, even if they may not
otherwise meet criteria for LT-based
liver disease severity alone.85,98–100 In
patients with liver-predominant dis-
ease who first undergo LT, acceleration
of kidney disease progression is also a
concern.101 Currently, the only guide-
lines regarding listing for combined
kidney-liver transplantation (CKLT) are
in the context of end-stage liver disease
due to hepatocellular dysfunction, for
which listing for CKLT is recommended
when estimated glomerular filtration
rate is #30 mL/min/1.73m2.101,102 That
said, the corollary of these data for
patients with ARPKD who typically
have biliary-related disease is unclear.
Studies in patients with ARPKD who
underwent CKLT have reported patient
survival rates of 70% to 100%.99,103

SYSTEMIC MANIFESTATIONS

Growth Impairment

Growth impairment has been reported
in children with ARPKD; in one cohort,
growth delay was observed in ∼30% of
patients.9 Some authors have postu-
lated that growth retardation in ARPKD
seems out of proportion to the degree
of renal dysfunction, raising the question
of whether there are disease-specific
influences on growth.104 However, others
have reported that growth impairment is
indeed correlated with decreased renal
function.105 Like children with other
forms of CKD, children with ARPKD can
successfully be treated with growth
hormone.104

Neurocognitive Issues

Behavioral and neurocognitive diffi-
culties have been recognized as im-
portant comorbidities in children with
other forms of CKD,106 as well as in

children with hypertension, both
with107 and without108–111 coexisting
CKD. Given that children with ARPKD
often have both CKD and severe hy-
pertension during critical early years
of neurodevelopment, they may be at
particular risk for worse neuro-
cognitive outcomes. A study of neuro-
cognitive function in children with
ARPKD was recently completed.112 This
study examined results of neuro-
cognitive testing of ARPKD patients in
the Chronic Kidney Disease in Children
cohort study, which includes children
with mild-to-moderate CKD due to
a wide range of diagnoses. Children
with ARPKD were compared with
a control group with renal aplasia/
hypoplasia/dysplasia, matched based
on kidney function, age at diagnosis,
and age at study entry. In both ARPKD
and control groups, scores in all
domains tested were within average
range, but a larger than expected
proportion of children demonstrated
risk for neurocognitive dysfunction
(scores worse than 1 SD below the
mean). Although this study did not find
evidence of disease-specific neuro-
cognitive defects in this subset of
ARPKD patients with mild-to-moderate
CKD, these findings may not be gener-
alizable to children with more severe
disease manifestations. Additional
studies are therefore needed in ARPKD
patients with a broader range of CKD
and other morbidities to fully charac-
terize their neurocognitive and behav-
ioral functioning. However, given the
presence of multiple risk factors for
neurocognitive dysfunction, clinicians
should maintain a high index of suspi-
cion for neurocognitive problems and
provide referrals as appropriate.

PSYCHOSOCIAL CONSIDERATIONS

The psychosocial impact of ARPKD on
patients, families, andcareproviders can
be far-reaching. When a diagnosis of
ARPKD is suspected based on prenatal

ultrasound, families face many uncer-
tainties. Families may choose to pursue
genetic testing to help guide a decision
about possible pregnancy termination.
Yet, as discussed previously, genetic
results may not provide definitive prog-
nostic information. Care providers must
be willing to help guide families through
this difficult decision-making process
and to provide appropriate referrals to
genetic counselors, social workers, and
other sources of psychosocial support.

Families may also need extra support if
they are considering PGD for a future
pregnancy. This can be a physically
challenging procedure and can be es-
pecially emotion-laden for families who
have previously faced the devastating
loss of child with severe ARPKD.

Parents may also face the decision on
whether to consider testing todetermine
the status of asymptomatic siblings.
Given that there are currently no known
therapies to prevent disease progres-
sion, no consensus exists on whether
testing should be offered to siblings.
Providers may be called on for advice as
families navigate these decisions.

Impairments in health-related quality of
life have been well documented in chil-
dren with CKD113 and ESRD.114 Given that
children with ARPKD may also be faced
with additional stressors such as liver
disease, they are likely to experience
similarly decreased health-related qual-
ity of life. Care from a multidisciplinary
team, including child life specialists and
psychologists, can be particularly helpful.

Patient advocacy organizations can be
extremely valuable sources of support
and information for patients and fam-
ilies dealing with ARPKD; these include
the PKD Foundation (www.pkdcure.org)
and the ARPKD/CHF Alliance (www.
arpkdchf.org).

FUTURE DIRECTIONS AND
TRANSLATIONAL CONSIDERATIONS

To date, specific disease-targeting ther-
apies toslowprogressionofARPKDhave
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remained elusive. However, a number of
preclinical studies have defined several
potential molecular targets for thera-
peutic intervention (Fig 1).

Studies in human ARPKD tissues have
shown activation of the mammalian
targetof rapamycin (mTOR)pathway,115,116

suggesting a potential therapeutic role
for mTOR inhibitors such as sirolimus.
However, in the PCK rat model, sirolimus
treatment did not slow disease pro-
gression.117 Studies of mTOR inhibitors in
adult ADPKD patients have been disap-
pointing118,119 despite promising results
in animal studies.120–124 Thus, it seems
unlikely that the current generation of

mTOR inhibitors will prove effective in
ARPKD.

Cyclic adenosinemonophosphate (cAMP)
signaling has been shown to be upregu-
lated in ADPKD and ARPKD renal epithe-
lia.125–130 Stimulation of the vasopressin
V2 receptor (V2R) increases cAMP pro-
duction,131 making V2R antagonists such
as tolvaptan appealing as potential ther-
apies. In the PCK rat model, V2R antago-
nists appear to slow renal disease
progression.132 Additional evidence for
the role of V2R signaling in ARPKD comes
from experiments in which PCK ratswere
crossed with vasopressin knockout rats
to generate double mutant progeny with

varying levels of circulating vasopres-
sin.133 PCK rats lacking vasopressin
showed lower renal cAMP activity and
almost complete inhibition of cysto-
genesis. Although tolvaptan has been
studied in adults with ADPKD,134 there
have been no studies in human ARPKD.

Somatostatin analogs have also been
studied to reduce cAMP activation in
PKD. A recent study of these analogs in
the PCK rat showed reduced renal and
hepatic cyst formation, with pasireo-
tide showing greater benefit than
octreotide.135 Somatostatin analogs
have been studied in adults with
ADPKD,136 but there are no published
studies in human ARPKD.

The epidermal growth factor receptor
(EGFR) axis may also play a role in cyst
development in ARPKD and ADPKD.137

Inhibition of the EGFR axis has improved
biliary and renal abnormalities in vari-
ous murine models of ARPKD.138–141

Therapies directed at downstream tar-
gets of both the cAMP and EGFR path-
ways, such as Src, may prove especially
helpful; a study of Src inhibition in ARPKD
mice showed improvement in both bili-
ary and renal abnormalities.142

The ultimate goal of these preclinical
studies is, of course, to translate knowl-
edge of disease mechanisms into effec-
tive therapy. However, the ability to track
disease response ispredicatedonhaving
defined end points, and in the case of
animal studies, this has generally been
serial histology. Human studies are cur-
rently hampered by the lack of defined
imaging biomarkers to meaningfully
track disease progression. It is therefore
imperative that ongoing research efforts
focus on developing reliable noninvasive
biomarkers to be able to monitor the
effectiveness of potential therapies.

CONCLUSIONS

ARPKD is amultifaceted genetic disorder
that requires expert interdisciplinary
management. Much has been learned in
recent decades about the genetics and

FIGURE 2
Radiologic findings and pathologic features associated with ARPKD. A, Neonatal sonography with
nephromegaly and increased echogenicity. B, Contrast-enhanced computed tomography in a symp-
tomatic 4-year-old girl reveals a striated nephrogram and prolonged corticomedullary contrast re-
tention. C, Light microscopy: ARPKD kidney from a 1-year-old child reveals discrete medullary cysts and
dilated collecting ducts, hematoxylin and eosin (H&E) 310. D, Light microscopy: later-onset ARPKD
kidney with prominent medullary ductal ectasia, H&E310. E, Coronal heavily T2-weighted image of the
abdomen in an 8-year-old boy reveals marked cystic and fusiform dilatation of the intrahepatic biliary
system. F, Light microscopy: congenital hepatic fibrosis with extensive fibrosis of the portal area;
ectatic, tortuous bile ducts; and hypoplasia of the portal vein, H&E 340.
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pathophysiology of this disorder, and the
survivalofpatientshasbeenimprovedby
advances in supportive therapy, dialysis,
and transplantation. However, many chal-
lenges remain in our understanding of
the disease and in the care of affected

patients. Advances in elucidating the
function of the FPC protein will help to
define additional therapeutic targets.
Improvements in technologies for non-
invasive disease monitoring will be
invaluable in providing predictive/

prognostic information and gauging the
efficacy of any future potential therapies.
The ultimate goal is to identify disease-
specific therapies to stop or even re-
verse the inexorable progression of
ARPKD-related morbidities.
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