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Abstract

Mutations in leucine rich repeat kinase 2 (LRRK2), which are associated with autosomal dominant

Parkinson’s disease, elicit progressive dendrite degeneration in neurons. We hypothesized that

synaptic dysregulation contributes to mutant LRRK2-induced dendritic injury. We performed in

vitro whole-cell voltage clamp studies of glutamatergic receptor agonist responses and

glutamatergic synaptic activity in cultured rat cortical neurons expressing full-length wild-type

and mutant forms of LRRK2. Expression of the pathogenic G2019S or R1441C LRRK2 mutants

resulted in larger whole-cell current responses to direct application of AMPA and NMDA receptor

agonists. In addition, mutant LRRK2-expressing neurons exhibited an increased frequency of

spontaneous miniature excitatory postsynaptic currents (mEPSCs) in conjunction with increased

excitatory synapse density as assessed by immunofluorescence for PSD95 and VGLUT1. Mutant

LRRK2-expressing neurons showed enhanced vulnerability to acute synaptic glutamate stress.

Furthermore, treatment with the NMDA receptor antagonist memantine significantly protected

against subsequent losses in dendrite length and branching complexity. These data demonstrate an
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early association between mutant LRRK2 and increased excitatory synapse activity, implicating

an excitotoxic contribution to mutant LRRK2 induced dendrite degeneration.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by

debilitating motor, and in many cases cognitive, deficits. Efforts to understand the

pathogenesis of PD have revealed genetic factors that increase the risk for developing PD.

Leucine-rich repeat kinase 2 (LRRK2) mutations underlie PARK8-linked familial

parkinsonism [1, 2]. This protein is believed to play important roles in both familial and

sporadic PD pathogenesis [3]. A deeper understanding of the pathologic cascade that leads

to neurodegeneration downstream of mutant LRRK2 will likely render novel insights for the

prevention and treatment of PD.

Neurite injury is a conspicuous feature of mutant LRRK2-associated neurodegeneration.

Mutant LRRK2 expression in SH-SY5Y neuroblastoma cell line cultures and in mouse

primary cortical neurons is associated with neurite degeneration [4] or reduced dendrite

outgrowth [5, 6]. Mutant LRRK2 expression in neurons in vivo or in vitro results in neurite

injury that precedes cell death [7]. Functional neurotransmission abnormalities [8] and

dystrophic neurite morphology have been reported in transgenic mutant LRRK2 mice [9,

10]. Whereas numerous effector pathways, including autophagy [7, 10–13], mitochondrial

pathology [14–16], calcium toxicity [15], the ubiquitin proteasome [17], microtubule

stability [18], growth cone dynamics [6, 19], Fas-associated protein with death domain [20]

and Rac1 [21], have been proposed, less is known about possible upstream impacts of

LRRK2 on synaptic function [22–25]. We hypothesize that synaptic dysregulation

contributes to dendrite injury in mutant LRRK2 expressing neurons.

To test our hypothesis, we determined whether alterations in excitatory synapses underlie

neurite retraction in neurons expressing PD-associated LRRK2 mutations. We found that

mutant LRRK2-expressing neurons show evidence of increased glutamatergic synapses and

increased vulnerability to synaptic glutamate stress, which occur well before the onset of

neurite degeneration. Furthermore, the NMDA receptor antagonist memantine partially

protected neurons from mutant LRRK2-induced dendrite degeneration. These findings

suggest that mutant LRRK2 is associated with enhanced glutamatergic synapses and renders

neurons more vulnerable to glutamate receptor toxicity.

Materials and Methods

Neuronal Cultures

Timed-pregnant female Sprague-Dawley rats (E16), obtained from Hilltop Lab Animals,

Inc. (Scottsdale, PA), were euthanized by CO2 inhalation. This method of euthanasia is

consistent with methods suggested by the Panel on Euthanasia of the American Veterinary
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Medical Association to minimize animal distress and was approved by the University of

Pittsburgh Institutional Animal Care and Use Committee (IACUC). Embryos of either

gender were harvested in ice-cold Hanks solution (Invitrogen). Cerebral cortices were

dissected and dissociated via trypsinization and gentle pipette trituration. Cell suspensions

were plated at a density of 100,000 cells/cm2 onto glass cover slips (Carolina Biological) or

plastic culture dishes coated with poly-D-lysine (0.1 mg/ml; Sigma) and laminin (5 µg/ml;

Roche Diagnostics). Cultures were maintained at 37°C with 5% ambient CO2 in Neurobasal

medium (Invitrogen) supplemented with B27 (Invitrogen) and 1% Glutamax-I (Invitrogen).

Media refreshments were performed every other day. In some experiments, memantine, an

NMDA receptor antagonist, was added to the culture media following neuronal transfection

to maintain a concentration of 1 µM.

Molecular Constructs and Culture Transfection

Full-length wild-type (WT) and mutant LRRK2 cDNAs (pathogenic PD mutations G2019S

or R1441C; kinase impaired K1906M) with C-terminal triple-hemagluttinin tags

(LRRK2-3HA) were expressed via the pcDNA3.1 vector [11]. Neuronal cultures were co-

transfected with pRK7-eGFP and either empty pcDNA3.1 vector or mutant LRRK2 cDNA

constructs with 0.1% Lipofectamine 2000 reagent (Invitrogen) on days in vitro (DIV) 12–

15. A molar ratio of 1:2 (eGFP:LRRK2-3HA) was employed in electrophysiology

experiments, which yields 85% co-expression (Supplementary Fig. S1F-G), and ratios of 1:2

and 1:9 were used in immunofluorescence experiments. A mouse anti-HA Tag IgG

(Covance, Clone 16B12) was used to confirm LRRK2-3HA protein expression in

neuroblastoma cells via western blot (1:1000 primary antibody dilution) and in cultured

cortical neurons via immunocytochemistry (1:100 primary antibody dilution). RT-PCR was

performed on neuronal cultures with primers spanning the junction of the C-terminus and

the 3HA tag of the LRRK2 cDNAs (LRRK2-3HA primer sequences (403 base pair product):

LRRK2-7179-Forward: 5’-AAGGGAGGTAATGGTAAAAGAAA-3’ ; LRRK2-3HA-

Reverse: 5’-CCGCCCTCAACAGATGTTCG-3’; eGFP primer sequences (402 base pair

product): eGFP-Forward: 5’-GAGCTGGACGGCGACGTAAACGG-3’; eGFP-Reverse: R:

5’-GACGTTGTGGCTGTTGTAGTTG-3’). The transfection efficiency, determined by GFP

fluorescence and HA Tag immunofluorescence, was less than 1% (40–75 neurons per cover

slip). There was typically one transfected neuron in a medium-power (100X) microscopic

field, allowing us to focus our analysis on the postsynaptic effects of mutant LRRK2

expression in individual neurons in the context of non-transfected presynaptic terminals

from surrounding neurons.

Electrophysiological Recordings

Cover slips containing rat primary cortical neuron cultures were placed in a recording

chamber containing Ringer solution (140 mM NaCl, 2.8 mM KCl, 1 mM CaCl2, 10 mM

HEPES, 10 mM glucose; pH 7.3) with tetrodotoxin (2 µM) and strychnine (1 µM).

Transfected cells expressing GFP were visualized via epifluorescence microscopy. Whole-

cell voltage clamp recordings (Axopatch 200 Amplifier) were obtained with glass

micropipettes (tip resistance 3–5 MΩ) filled with intracellular solution (130 mM CsCl, 10

mM HEPES, 10 mM EGTA for glutamate receptor agonist responses and 118 mM Cs

Methane Sulfonate, 12 mM CsCl, 10 mM HEPES, 10 mM EGTA for mEPSC recordings).
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The mean +/- SEM series resistance was 16.1 ± 0.8 MΩ and was compensated at 80% in all

experiments. Holding potentials were −55 mV for agonist responses and −60 mV in mEPSC

recordings (corrected for liquid junction potentials of 5 and −10 mV, respectively). Cells

were exposed to ionotropic glutamate receptor agonists (100 µM AMPA or 10 µM

NMDA/10 µM glycine for 20 second periods) through a gravity-driven, multi-barrel fast

perfusion system [26]. NMDA receptor currents were inhibited during applications of

AMPA with 1 mM MgCl2. Data were digitized (Digidata 1200) and recorded to a PC

running pClamp 9.1 software suite. Whole-cell current responses were quantified as the

mean steady state current during the final 5 seconds of agonist applications. mEPSC mean

amplitudes and frequencies were analyzed using the event detection module of pClamp 9.1.

Synaptic Protein Immunocytochemistry

Cover slips were fixed with 4% paraformaldehyde with 4% sucrose followed by 100%

methanol, permeabilized with 0.1% Triton-X and blocked with Superblock Buffer (Thermo

Scientific). Primary and secondary antibody concentrations employed were as follows:

mouse anti-PSD-95 IgG (1:200; Neuromab 75-028, UC Davis), mouse anti-VGLUT1 IgG

(1:200; Neuromab 75-066, UC Davis), rabbit anti-LRRK2 antibody (1:50; MJFF2 [c41-2],

Abcam ab133474), Alexa Fluor 594-conjugated donkey-anti-mouse and goat-anti-rabbit

IgGs (1:1000; Jackson ImmunoResearch Laboratories). Nuclei were counterstained with

DAPI (1:500; Invitrogen). Cover slips were mounted on glass slides with gelvatol and

imaged on an Olympus Fluoview 1000 confocal microscope. Proximal dendrites of all

consecutively encountered transfected neurons for each LRRK2 construct (25–80 per well)

were imaged with a 63x magnification, 1.40 NA apochromatic lens oil immersion objective.

Identical excitation and image acquisition parameters were employed for all constructs.

Images were analyzed for synapse protein immunofluorescence puncta with NIH ImageJ

[27]. Immunoreactive puncta were identified on 50–250 micron GFP-positive dendrite

segments from each neuron with the NIH ImageJ intensity threshold function and quantified

with the Analyze Particles module of NIH ImageJ with respect to puncta density (per micron

of analyzed dendrite length) and puncta area. The threshold intensity for each antigen was

set as the mean plus 3 standard deviations of background dendritic cytoplasm signal sampled

from 5 neurons. Identical background measurements and intensity thresholds were employed

in all transfection groups.

Synaptosome Preparations and Western Blots

DIV15-17 rat cortical neurons were scraped and homogenized with a 25G needle in HEPES-

buffered sucrose [0.32 M sucrose, 5 mM HEPES, pH7.4] supplemented with protease

inhibitor cocktail (Sigma, P8340)]. Homogenized extracts were spun at 1,000 g for 10 min at

4°C. Supernatant (S1) was centrifuged again at 1,000 g for 10 min at 4 °C and saved (S1′,

whole cell lysate). S1′ was centrifuged at 10,000 g for 15 min for the cytosolic (S2) fraction.

The pellet was washed one time with 1 ml HEPES-buffered sucrose and centrifuged again at

10,000 g for 15 min. The washed pellet was either lysed for western blot analysis or lysed

rapidly with 1 ml ice-cold water with protease inhibitor, adjusted to 4 mM HEPES and

homogenized with a 25G needle. P2 lysates were centrifuged at 25,000 g at 4 °C rendering

crude synaptic vesicle fractions (S3) and lysed synaptosomal membrane fractions (P3).

Lysed synaptosomal membranes were resuspended in HEPES-lysis buffer (50 mM HEPES,
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pH 7.4, 2mM EDTA, 0.5% Triton X, 1 mM NaF, 1 mM Na3VO4 a protease inhibitor

mixture) and centrifuged at 32,000 g for 20 min to render solubilized synaptosomal

membranes (S4) and PSD-1T fractions (P4). For western blots, protein quantification was

performed via the Bradford method (Bio-rad, 500-0006) using a BioTek Epoch 96-well

microplate reader (BioTek, Winooski, VT, USA). Protein samples were loaded into 4–15%

Tris-Glycine gels (Bio-rad, 456–1085 and 456–1086) and transferred onto PVDF

membranes (Immobilon-P, Millipore, IPVH00010). Immunoblotting was performed using

the following primary antibodies: rabbit anti-LRRK2 antibody (1:1000; MJFF2 [c41-2],

Abcam ab133474), mouse anti-PSD95 MAGUK scaffold protein (1:1000; clone K28/43,

NeuroMab 73-028, UC Davis) and mouse anti-GluN2B/NR2B glutamate receptor (1:1000;

clone N59/36, NeuroMab 73–101, UC Davis). Blots were then labeled with secondary

antibodies: HRP-conjugated anti-mouse IgG (GE Healthcare, NXA-931) or HRP-conjugated

anti-rabbit IgG (GE Healthcare, NA934V). Immunoreactive bands were detected by

exposure of x-ray film (Denville, E3018) following incubation of blots with ECL Prime

chemiluminesence reagents (GE Healthcare, RPN2236).

Excitotoxicity Assay

At three days post-transfection, culture cover slips were transferred to either physiologic

Ringer solution or high K+ solution (90 mM KCl, 53 mM NaCl, 1 mM CaCl2, 10 mM

HEPES, 10 mM glucose; pH 7.3) for 5 minutes. Cover slips were then returned to the

incubator in their previous conditioned growth medium for a period of 12 hours. Cultures

were then fixed, immunostained for cleaved caspase-3 (CC3) using rabbit polyclonal IgG

(Cell Signaling #9661) diluted 1:1000 followed by Cy3-conjugated anti-rabbit IgG (1:1000;

Jackson ImmunoResearch) and counterstained with DAPI (1:500 dilution; Invitrogen).

Viable transfected neurons (GFP-positive with neurite processes, CC3-negative, vesicular

nucleus) and apoptotic transfected neurons (GFP-positive, CC3-positive, pyknotic nucleus)

were quantified for each coverslip. Nuclear pyknosis always concurred with positive CC3

immunostaining. Six replicates were performed for each plasmid. Antagonists for AMPA

receptors (CNQX; 25 µM) and NMDA receptors (D-APV; 50 µM) were included in a subset

of cultures during and for 12 h following potassium depolarization.

Neuronal Morphology

GFP-expressing neurons were photographed using an Olympus Provis epifluorescence

microscope. All transfected neurons on each coverslip (range 50–75 neurons) were

analyzed. Neurite length and branch points were quantified using the NeuronJ extension of

NIH ImageJ as previously described [27, 28].

Statistical analyses

Data are expressed as means ± SEM. Data from mutant and WT LRRK2-transfected

neurons in electrophysiology, immunofluorescence and excitotoxicity experiments were

compared with data from vector control-transfected neurons via Analyses of Variance

(ANOVA) with post-hoc Dunnett’s Tests (SYSTAT Version 13.00.05). p<0.05 was deemed

statistically significant.
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Results

Mutant LRRK2-expressing neurons demonstrate increased current responses to glutamate
receptor agonists and increased spontaneous excitatory synaptic activity

We first recorded whole-cell current responses to specific AMPA and NMDA receptor

agonists in DIV 17 cortical neurons co-transfected with eGFP and either WT or one of

several forms of mutant LRRK2-3HA three days prior. Recordings were performed 3 days

following transfection, a timepoint that precedes significant alterations in the dendritic

lengths of G2019S and R1441C LRRK2-expressing neurons (Supplementary Figure S1A,

B). LRRK2-3HA construct expression was confirmed in neuronal cultures by RT-PCR

(Supplementary Figure S1C) and in B103 rat neuroblastoma cell cultures by western blot

(Supplementary Figure S1D). Transfected neurons demonstrated MAP2 immunoreactivity

(Supplementary Figure S1E). HA-tag expression was detected in ~85% of GFP-positive

neurons transfected with WT, G2019S, R1441C, K1906M or G2019S/K1906M LRRK2

(Supplementary Figure S1F–G). Transfected neurons were visualized by epifluorescence

microscopy and recorded in whole-cell voltage clamp configuration (Supplementary Figure

S1H).

Inward current responses to 100 µM AMPA were larger in G2019S and R1441C LRRK2-

expressing neurons compared to vector-transfected neurons (Figures 1A and B). WT

LRRK2-transfected neurons showed a trend towards an increased AMPA response, whereas

kinase-impaired K1906M LRRK2-transfected neurons showed no difference in the AMPA

response compared to control neurons. Current responses to 10 µM NMDA were also larger

in G2019S and R1441C LRRK2-transfected neurons (Figures 1C and D), but were similar to

vector control responses in WT and K1906M LRRK2-transfected neurons. To determine if

mutant LRRK2 impacts endogenous glutamatergic synaptic activity, we performed voltage

clamp recordings of mEPSCs in cortical neurons expressing WT or mutant LRRK2 cDNAs.

Mutant LRRK2-expressing neurons showed increased frequencies of mEPSC events

compared to vector transfected neurons (Figure 1E, F). There were no differences in the

mean mEPSC amplitudes among vector-, WT- and mutant LRRK2-transfected neurons,

providing no evidence for an alteration in average synapse strength (Figure 1G).

Mutant LRRK2 expressing neurons show increased excitatory synaptic protein
immunoreactivity

We performed indirect immunofluorescence labeling of excitatory postsynaptic terminals

with a PSD-95 antibody at 3 days following transfection of neuronal cultures with

LRRK2-3HA constructs. Transfected neurons demonstrate punctate PSD-95 labeling

colocalizing with dendritic spines (Figure 2A, B). LRRK2 itself was present in dendrites and

crude synaptosomal fractions, but was not enriched in dendritic spines or PSD95-enriched

fractions (Supplementary Figure S2). However, G2019S and R1441C LRRK2-expressing

neurons demonstrated increased dendritic PSD-95 immunoreactivity compared to vector

transfected neurons (Figure 2C). Analysis of relative PSD-95 puncta sizes did not detect

significant differences among the different groups (Vector: 100 ± 4%, n=51; WT 101 ± 5%,

n=39; G2019S 112 ± 5%, n=48; R1441C 114 ± 5%, n=42; K1906M 102 ± 5%, n=38). To

determine whether the increased postsynaptic labeling corresponded with an increase in
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excitatory synaptic markers, we performed immunocytochemical labeling of the excitatory

presynaptic protein VGLUT1, which also demonstrated punctate reactivity abutting or

colocalizing with dendritic spines (Figure 3A, B). A higher density of VGLUT1 labeling

was observed on dendrites in G2019S or R1441C LRRK2-transfected neurons, but not

K1906M LRRK2-transfected neurons (Figure 3C). Expression of the double mutant

G2019S/K1906M LRRK2 also had no effect on the density of VGLUT1 immunoreactive

puncta (Vector: 7.38 ± 0.60 puncta per 100 µm dendrite, n=78; G2019S/K1906M LRRK2:

7.27 ± 0.51 puncta per 100 µm dendrite, n=65), indicating a requirement for LRRK2 kinase

activity.

Memantine partially protects against mutant LRRK2-induced neurodegeneration

To determine if endogenous NMDA receptors contribute to mutant LRRK2-induced neurite

shortening, we treated G2019S LRRK2-expressing neurons with the NMDA receptor

antagonist memantine (1 µM). Neuronal cultures were transfected on DIV 14 and then

treated with 1 µM memantine continuously from 1 to 9 days following transfection (DIV

15–23; Figure 4A). The blunted dendrite length associated with 9 days of 2019S LRRK2

expression was partially reversed by treatment with 1 µM memantine (Figures 4B–C), and

the number of dendrite branches was completely restored with memantine treatment (Figure

4D). These results suggest that an NMDA receptor-dependent mechanism contributes to the

progressive dendritic shortening and simplification observed in G2019S LRRK2-expressing

neurons.

Mutant LRRK2 expression renders neurons more vulnerable to acute synaptic glutamate
stress

To determine if mutant LRRK2 increases neuronal sensitivity to acute endogenous synaptic

glutamate stress, we exposed transfected cortical neurons to a brief depolarizing stimulus (5

minutes of 90 mM K+ Ringer) to evoke synaptic glutamate release. Following a post-

depolarization incubation of 12 hours in conditioned growth media, cover slips were fixed

and stained with an anti-cleaved caspase 3 antibody and DAPI to reveal apoptotic

transfected neurons (Figure 4E). G2019S and R1441C LRRK2-expressing neurons showed

higher rates of apoptosis compared to control vector-transfected neurons (Figure 4F).

Blockade of AMPA and NMDA receptors with CNQX and APV resulted in protection of all

neuronal culture treatment groups, demonstrating that the depolarizing stimulus induced

apoptosis via glutamate receptor-dependent mechanisms (Figure 4F).

Discussion

In this study, we investigated the impact of mutant LRRK2 expression on excitatory

synapses in cultured rat cortical neurons prior to the well-documented stage of progressive

mutant LRRK2-induced dendrite degeneration [7]. Neurons expressing mutant LRRK2

showed increased whole-cell current responses to AMPA and NMDA receptor agonists and

increased mEPSC frequencies compared to vector-transfected control neurons. We also

found that cultured mutant LRRK2-transfected neurons demonstrated increased densities of

VGLUT1 and PSD-95 immunoreactive puncta compared to control neurons. Mutant

LRRK2-expressing neurons demonstrated an increased propensity for cell death induced by
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endogenous synaptic glutamate stress. Furthermore, the NMDA receptor antagonist

memantine conferred significant protection from mutant LRRK2-induced dendrite

retraction, which begins 6 days after the observed electrophysiological alterations. Our data

suggest that excitatory synapse dysregulation contributes to mutant LRRK2 induced

neurodegeneration.

Increased mEPSC frequency could be due to either increased numbers of synapses or

increased frequency of spontaneous presynaptic single-vesicle fusion. While the transfection

conditions in this study allowed us to isolate the effects to postsynaptic expression of mutant

LRRK2, it is possible that a retrograde trans-synaptic effect could promote spontaneous

vesicle release in the untransfected presynaptic terminals. Nevertheless, several lines of

evidence support a role for increased synapse density. Immunocytochemical labeling

revealed increases in both PSD-95 and VGLUT1 puncta densities along the dendrites. The

larger glutamatergic receptor agonist responses observed in mutant LRRK2 transfected

neurons are also consistent with increased densities of excitatory synapses. As mutant

LRRK2 expression had no effects on either mEPSC amplitude or PSD-95 puncta sizes, the

data do not support a modulatory effect for mutant LRRK2 on global synapse strength.

Rather, the data are most consistent with increased excitatory synapse numbers as an early

consequence of mutant LRRK2 expression.

Our study also implicates NMDA receptor activation as a contributing factor in the

subsequent dendrite degeneration observed in mutant LRRK2-expressing neurons.

Memantine treatment restored dendrite branching complexity and ameliorated the dendrite

retraction phenotype observed in vehicle-treated G2019S LRRK2-expressing neurons.

NMDA receptors may mediate excitotoxic injury via toxic Ca+2-mediated overactivation of

neuronal enzymatic processes. While the potential toxicity of synaptic NMDA receptor

activation is controversial [29–31], extrasynaptic NMDA receptors may also contribute to

neurotoxicity by inhibiting protective signaling cascades and activating toxic signaling

pathways [32, 33]. The ability of memantine [34], to protect against mutant LRRK2-induced

dendrite degeneration is consistent with a potential role for extrasynaptic NMDA receptors

in mutant LRRK2 neurotoxicity.

In addition, increased calcium flux due to increased glutamatergic excitability could impact

several other pathological processes ascribed to mutant LRRK2 expression. Mitochondrial

perturbations have recently been implicated in mutant LRRK2-associated toxicity.

Mitochondrial calcium overload in cortical neurons expressing either G2019S or R1441C

LRRK2 leads to enhanced dendritic mitophagy [15]. This loss of mitochondrial density

precedes dendritic retraction, and calcium chelators are able to prevent the changes in

mitochondrial membrane potential, mitophagy and dendrite shortening elicited by mutant

LRRK2. Mitophagy is dependent upon mitochondrial fission, and LRRK2 can interact with

DLP1/DRP1 to promote mitochondrial fragmentation in neuronal cells and neurons [14].

Interestingly, calcium dependent phosphatases are involved in activating DLP1/DRP1

function [35], and disrupted calcium homeostasis contributes to autophagy induction by

LRRK2 [36]. It is important to keep in mind, however, that while autophagy promotes

dendrite retraction, this process could be initiated as a compensatory response to eliminate

excessive afferent glutamatergic inputs.
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Perturbation in cytoskeletal dynamics is another mechanism linked to LRRK2-mediated

neuritic pathology. LRRK2 has been reported to interact with microtubules and to regulate

actin remodeling [21, 37]. Enhanced ezrin/radixin/moesin (ERM) protein phosphorylation

and blunting of early neurite outgrowth with G2019S LRRK2 expression have been

observed in immature (DIV 2) cultured neurons [6]. This inhibition of neurite outgrowth

with enhanced pERM-positive filopodia in immature G2019S LRRK2 expressing neurons

[6, 19] may reflect commencement of synaptogenesis in lieu of neurite field expansion. In

contrast, mutant LRRK2-induced dendrite shortening in pre-differentiated SH-SY5Y cells

and in more mature (DIV 14–23) neuron cultures involves autophagy [11, 13, 15], and can

be significantly ameliorated by an NMDA antagonist (Fig. 4).

The roles of LRRK2 kinase and GTPase domains in PD pathogenesis are incompletely

understood. The G2019S mutation we employed in these studies resides in the kinase

domain activation loop and confers an increase in kinase activity over WT LRRK2 [19, 38–

43]. We observed increases in synaptic activity and protein immunoreactivity with G2019S

LRRK2 expression that were not seen with expression of the kinase impaired K1906M

LRRK2, suggesting a role for LRRK2 kinase activity in the regulation of excitatory

synapses. Similar effects were also observed with the pathogenic R1441C LRRK2 mutation,

which is characterized by decreased GTPase activity [44, 45] with inconsistent effects on in

vitro kinase activity (reviewed in [43]). While the relationship between GTPase and kinase

activities remain to be fully defined, preserved kinase activity is generally required for

LRRK2-associated toxicity [38, 41].

Similar to several reports in the literature demonstrating intermediate effects of WT LRRK2

overexpression [4, 7, 11, 41], we found that transfection with WT LRRK2 often elicited

non-significant trends. These trends may be due to lesser increases in cellular LRRK2 kinase

activity with WT LRRK2 overexpression, or to the presence of physiological feedback

mechanisms that regulate WT LRRK2 but not mutant forms of LRRK2. Transfected primary

neuron cultures exhibited equivalent LRRK2 mRNA expression among the WT, G2019S,

R1441C and K1906M LRRK2 constructs, and the four LRRK2 constructs elicited

equivalent protein expression levels in neuroblastoma cells (Supplementary Fig. 1). Thus,

the effects elicited by the disease-associated G2019S and R1441C mutations are unlikely to

be due simply to enhanced protein expression or stability [46].

Interestingly, LRRK2 can interact with Parkin, an E3 ubiquitin ligase that is mutated in

PARK2-linked autosomal recessive juvenile parkinsonism [4]. When post-synaptically

expressed, Parkin dampens excitatory synaptic transmission by pruning excitatory synapses

in cultured hippocampal neurons [47]. Thus, either loss of Parkin function or expression of

dominant LRRK2 mutations in the post-synaptic compartment elicit increased numbers of

excitatory synapses, contributing to enhanced vulnerability to excitotoxicity. Additional

putative LRRK2 regulatory targets relevant to excitatory synapse regulation include mRNA

translation [22] and mRNA degradation machineries [48], microtubules [18, 22, 49], cell

membrane-associated synaptic proteins [50] and Rho GTPases [21].

Excitatory synapse dysregulation is an emerging theme in genetic models of PD. Altered

presynaptic vesicle recycling has been observed in cultured cortical neurons with LRRK2
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overexpression [24, 51], or with LRRK2 knockdown in presynaptic neurons of connected

pairs [23]. Lee and colleagues [22] described distinct LRRK2 mechanisms that impact both

pre- and postsynaptic functions in mutant Drosophila. Recent work by Parisiadou and

colleagues [52] highlight an interaction between LRRK2 and the regulatory subunit IIb of

PKA to maintain the PKA holoenzyme in dendritic shafts of striatal projection neurons,

reducing PKA in spines. They showed that the R1441C LRRK2 mutation impaired its

interaction with PKA, resulting in increased phospho-cofilin and increased synaptic

phospho-GluR1. These changes would be expected to stabilize synapses, consistent with our

observations. Interestingly, our data implicate a role for LRRK2 kinase activity in excitatory

synapse dysregulation, whereas the G2019S mutation did not affect the LRRK2-PKA

interaction, suggesting that multiple downstream effector pathways may contribute to the

effects of LRRK2 mutations on synaptic dysregulation. Our study is the first to describe

alterations in synaptic activity following mutant LRRK2 overexpression in the postsynaptic

compartment of mammalian neurons. Furthermore, our data implicate endogenous NMDA

receptor activation as a contributing factor in mutant LRRK2 induced dendrite degeneration.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

LRRK2 leucine rich repeat kinase 2

LRRK2-3HA C-terminal 3x-hemagluttinin tagged LRRK2

cDNA complementary deoxyribonucleic acid

mEPSC miniature excitatory postsynaptic current

PD Parkinson’s disease

AMPA 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid)

NMDA N-methyl-D-aspartate

VGLUT1 vesicular glutamate transporter 1

PSD-95 postsynaptic density protein – 95

GFP green fluorescent protein

WT wild type

BAC bacterial artificial chromosome

CNQX (6-cyano-7-nitroquinoxaline-2,3-dione)
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APV (2R)-amino-5-phosphonovaleric acid

CC3 cleaved caspase 3

DAPI 4’,6-diamidino-2-phenylindole

SEM standard error of the mean

DIV days in vitro
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Highlights

• Neurons expressing mutant LRRK2 exhibit increased glutamatergic excitability

• G2019S or R1441C, but not kinase dead, LRRK2 increases excitatory synapse

density

• The NMDA antagonist memantine reduces mutant LRRK2-induced dendrite

retraction

• Increased calcium may function upstream of other known effects of mutant

LRRK2

• Synaptic dysfunction represents an early feature of mutant LRRK2 toxicity
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Figure 1. Whole-cell current responses to glutamate receptor agonists and mEPSC activity are
increased in LRRK2 transfected neurons
(A, B) Steady state inward current responses to 100 µM AMPA at a holding potential of −55

mV were significantly larger in G2019S- and R1441C-expressing neurons, but not in

K1906M-expressing neurons (* p<0.05 compared to vector-transfected neurons, ANOVA: 4

df, F-Ratio: 2.552; nVector = 24; nWT = 18; nG2019S = 27; nR1441C = 18 ; n1906M = 14). WT

LRRK2-transfected neurons showed a trend towards increased AMPA responses. (C, D)

Steady state inward current responses to 10 µM NMDA were significantly larger in G2019S

and R1441C LRRK2 overexpressing neurons (* p<0.05 compared to vector-transfected
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neurons, ANOVA: 4 df, F-Ratio: 3.996) but were unaltered with overexpression of WT or

K1906M LRRk2 (E) Raw traces from mEPSC recordings (holding potential −60 mV)

showing increased mEPSC events per unit time in a R1441C LRRK2-transfected neuron

(bottom) compared to the control vector-transfected neuron (top). (F) Composite data

demonstrate increased mean mEPSC frequencies in neurons overexpressing mutant G2019S

LRRK2 (n=10; p<0.05) or R1441C LRRK2 (n=10; p<0.05) and a modest trend towards

increased mEPSC frequency in WT LRRK2 (n=14) compared to vector control (n=14) and

K1906M LRRK2 (n=8; ANOVA: 4 df, F-Ratio: 2.654). (G) There was no difference in

mean mEPSC amplitude among treatment groups (ANOVA: 4 df, F-Ratio: 0.545).
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Figure 2. Pathogenic mutant LRRK2-transfected neurons show increased dendritic PSD-95
immunoreactivity
Medium (A) and high (B) power images of GFP/LRRK2 co-transfected neurons

immunostained for the glutamatergic postsynaptic marker PSD-95. Many PSD-95

immunoreactive puncta are observed to colocalize with GFP positive dendrites and spines.

(C) Composite data showing increased dendritic PSD-95 immunoreactive puncta on

dendrites of neurons expressing G2019S LRRK2 (n=26) or R1441C LRRK2 (n=21), but not

K1906M LRRK2 (n=25) or WT LRRK2 (* p<0.05 compared to control vector dendrites

(n=26), ANOVA: 4 df, F-Ratio: 3.371).
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Figure 3. VGLUT1 immunoreactivity is increased around dendrites of mutant LRRK2-
expressing neurons
Medium (A) and high (B) power images of GFP/LRRK2 co-transfected neurons

immunostained for the glutamatergic presynaptic marker VGLUT1. VGLUT1

immunoreactive puncta are observed to abut and colocalize with GFP positive dendrites and

spines. (C) Composite data showing increased dendritic VGLUT1 immunoreactivity around

dendrites of G2019S LRRK2 (n=36) and R1441C LRRK2 (n=47) transfected neurons but no

significant difference around WT LRRK2 or kinase impaired K1906M LRRK2 transfected
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dendrites (n=38) (* p<0.001 compared to control vector dendrites (n=35), ANOVA: 4 df, F-

Ratio: 10.002).
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Figure 4. Neurons are partially protected from mutant LRRK2-induced neurodegeneration by
the NMDA receptor antagonist memantine and show increased susceptibility to synaptic
glutamate stress
(A) Schematic of experimental design depicting continuous treatment of transfected neurons

with 1 µM memantine following transfection with vector or G2019S LRRK2. (B)

Representative neurons (arrowheads) 9 days following transfection with vector (left panel),

G2019S LRRK2 (middle, showing severe blunting of the dendritic arborization) or G2019S

LRRK2 with 1µM memantine treatment (right). Compared to vector transfected neurons,

G2019S LRRK2 transfected neurons demonstrated dendrite length attenuation (C; * p<0.05,
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ANOVA: 3 df, F-Ratio: 5.621) and dendritic branching complexity attenuation (D; *

p<0.05, ANOVA: 3 df, F-Ratio: 5.621), which were significantly reversed by memantine

treatment. (E, F) Cortical cultures transfected with either vector or mutant LRRK2 were

subjected to 5 minutes of depolarization with high K+ Ringer (90 mM) in the presence or

absence of AMPA and NMDA receptor antagonists (25 µM CNQX and 50 µM D-APV).

Following a 12-hour incubation period, cultures were fixed and stained for CC3 (E).

Significantly larger proportions of pathogenic mutant LRRK2 expressing neurons

demonstrated apoptosis following synaptic glutamate exposure compared to vector

transfected neurons (F) (* p<0.05 compared to control ringer; # p<0.05 compared to vector

transfected neurons in high K+). No significant apoptosis was seen in the presence of the

glutamate receptor antagonists.
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