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ABSTRACT
Plant-based macular xanthophylls (MXs; lutein and zeaxanthin) and
the lutein metabolite meso-zeaxanthin are the major constituents of
macular pigment, a compound concentrated in retinal areas that are
responsible for fine-feature visual sensation. There is an unmet need
to examine the genetics of factors influencing regulatory mechanisms
and metabolic fates of these 3 MXs because they are linked to pro-
cesses implicated in the pathogenesis of age-related macular degen-
eration (AMD). In this work we provide an overview of evidence
supporting a molecular basis for AMD-MX associations as they
may relate to DNA sequence variation in AMD- and lipoprotein-
related genes. We recognize a number of emerging research oppor-
tunities, barriers, knowledge gaps, and tools offering promise for
meaningful investigation and inference in the field. Overviews on
AMD- and high-density lipoprotein (HDL)–related genes encod-
ing receptors, transporters, and enzymes affecting or affected by
MXs are followed with information on localization of products
from these genes to retinal cell types manifesting AMD-related
pathophysiology. Evidence on the relation of each gene or gene
product with retinal MX response to nutrient intake is discussed.
This information is followed by a review of results from mechanistic
studies testing gene-disease relations. We then present findings on
relations of AMD with DNA sequence variants in MX-associated
genes. Our conclusion is that AMD-associated DNA variants that
influence the actions and metabolic fates of HDL system constitu-
ents should be examined further for concomitant influence on MX
absorption, retinal tissue responses to MX intake, and the capacity
to modify MX-associated factors and processes implicated in AMD
pathogenesis. Am J Clin Nutr 2014;100(suppl):336S–46S.

INTRODUCTION

Age-related macular degeneration (AMD)5 is a common (1)
and complex (2) disease of public health significance (3), mani-
festing sight-threatening pathology in the neural and vascular
retina (4). The composition of the macula is notable for high
concentrations of constituent plant-based xanthophyll carotenoids
(lutein and zeaxanthin), their high-affinity binding proteins (5, 6),
and the lutein metabolite meso-zeaxanthin (7). Among .600 natu-
rally occurring carotenoids, 30–50 common dietary carotenoids,
and 10–15 carotenoids commonly detected in serum, only lutein,
zeaxanthin, and meso-zeaxanthin have been detected in appre-
ciable quantities within the macula (reviewed in reference 8).
Biochemical and biophysical properties of these macular xantho-
phylls (MXs), their metabolites, and cofactors have been implicated

in protective capacities for .3 decades (9–17), and a number of
large-scale human studies have yielded evidence for associations
of AMD with the intake and status of lutein and zeaxanthin (18–
25). A chronology of watershed events and publications ad-
dressing intake status–structure function axes in the AMD-MX
field are shown in Figure 1. Events are classified in the figure by
the nature of their design; those designated with the “Intake-
Status” label examined the retinal response to MX intake; those
with “Intake-/RCT-AMD” and “Status-AMD” designations are
for respective investigations of dietary, nutrient supplement,
or blood/macular pigment MX exposures on advanced AMD
endpoints.

Primates are unable to synthesize lutein and zeaxanthin de
novo and have developed the capacity for efficient retinal MX
uptake (35, 81), transport (5, 6), and retention (47, 82–85). Genetic,
dietary, and environmental factors influence aspects of these
3 processes, as shown by family-based studies (86, 87), bio-
chemical analysis, and in vivo imaging of the retina (reviewed in
reference 17). In addition to genetic influences on MX con-
centrations and distribution in retinal areas affected by AMD,
reports on twins (88, 89) and first-degree relatives (90–92) have
supported a genetic-basis for AMD (93). In the sections that
follow we provide an overview on the molecular genetics of
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AMD in relation to actions of MXs on factors and processes
implicated in AMD pathogenesis.

EXPANSION OF AN EMERGING CONCEPT

Large-scale genome-wide association studies (94, 95) have
shown enrichment of AMD-related DNA sequence variants in
genes encoding constituents of 1) complement regulatory sys-
tems (95) and 2) lipoprotein transport and metabolism systems
(81, 95–98). Cholesterol (99, 100) and cholesterol metabolites
(101) have been implicated in AMD pathogenesis due to their
proinflammatory/immunoregulatory properties and presence
in AMD-associated lesions. Sene et al (102) applied genetic
and pharmacologic interventions influencing cholesterol efflux
homeostasis to alter the severity of pathologic choroidal neo-
vascularization (a hallmark of neovascular AMD) in mice; these
authors acknowledged the complex nature of AMD-associated
DNA variation in genes encoding proteins involved in cholesterol
transport and metabolism, recognizing that allelic relations with
advanced AMD do not always predict serum HDL or lipid status.
When such observations are considered with the lack of evidence
for protection of b-hydroxy-b-methylglutaryl coenzyme A re-
ductase inhibitors (statins) against progression to advanced AMD
(103, 104) and equivocal findings from large-scale observational
studies on AMD endpoints examining dietary intake of cholesterol

and saturated fat, it is clear that an expanded concept on the role
of lipoprotein-related genes in AMD pathogenesis would offer
valuable guidance for improving inquiry and inference in the field
(17).

Findings on MX-lipoprotein relations may be a linchpin for
inference on AMD-lipoprotein relations because MX uptake and
transport is a facilitated process (105) involving many proteins
that also act in cholesterol transport (77). The majority of circu-
lating MXs are carried on HDL particles (106–108); as such,
activity and distribution of lipoprotein constituents may influence
the availability and accretion of MXs to the retina (77, 108, 109).
The consequence of this condition can be considered in the context
of central premises guiding AMD-MX research. These are as
follows: 1) MX concentration is amplified 1000- to 10,000-fold
from the circulation to the healthy retina (15, 110) via active
transport mechanisms involving specific binding proteins (5, 6),
2) MXs are resident in retinal regions affected in AMD (46, 49),
3) MXs show a capacity to act on processes implicated in AMD
pathogenesis (reviewed in references 11, 15, and 17), and 4) MX
intake/MX status, MX status/AMD, MX intake/AMD
relations have been observed in model systems and large-scale
human studies (Figure 1 and Tables S1 and S2 under “Supple-
mental data” in the online issue). Variation in macular pigment
optical density (MPOD; an in vivo measure of retinal MX status)
has a hereditary component (86, 87, 111, 112). Meyers et al (80)

FIGURE 1. Timeline of selected events and publications devoted to investigation of intake status–structure function relations in the field of AMD-macular
xanthophyll research. Numbers in parentheses correspond to references in this article. Publications and events not enclosed in boxes are for literature reviews
and conferences, respectively. Events and publications are named and classified in shaded boxes by event type or study design. Labels for review articles and
scientific meetings are not surrounded by boxes. Studies in the “Intake-Status” category were observational in nature and applied dietary intake measures to
estimate nutrient exposure and in or ex vivo retinal xanthophyll status measures as endpoints. Studies in the “Intake-/RCT-AMD” category were observational
or experimental in nature and applied dietary intake questionnaires or nutrient supplement interventions as exposures and clinical classifications of AMD as
endpoints. Studies in the “Status-AMD” category were observational in nature and applied blood or in vivo retinal xanthophyll status measures as exposures
and clinical classifications of AMD as endpoints. AMD, age-related macular degeneration; AREDS2, Age-Related Eye Disease Study 2; CARIG, Carotenoids
Research Interactive Group Conference; CARMA, Carotenoids in Age-Related Maculopathy study; GRC, Gordon Research Conference; ISC, International
Symposium on Carotenoids; LAST, Lutein Antioxidant Supplementation Trial; LUNA, LUtein Nutrition effects measured by Autofluorescence Study; MAC,
Conference on Macular Carotenoids and AMD; RCT, randomized clinical trial.

MACULAR XANTHOPHYLLS, HDL, AND AMD 337S



noted the polygenic nature of MPOD variation and commented
on the significance of extant works attributing genetic contributions
tow70% of MPOD status (86) andw30% of variation in MPOD
change, as associated with oral supplementation of MXs (112).

AMD-ASSOCIATED HDL-RELATED GENES AND PROTEINS
AFFECTING MXs

AMD-associated polymorphisms in loci of genes encoding
cholesteryl ester transfer protein (CETP); lipoprotein lipase (LPL);
ATP-binding cassette, subfamily A member 1 (ABCA1); and hepatic
lipase also yield variation in blood HDL-cholesterol concentrations
(reviewed in reference 95). The observation that AMD-associated
sequence variants exist in at least 3 other genes that encode proteins
involved in HDL-resident systems [scavenger receptor class B type
I (SCARB1), cluster determinant 36 (CD36), and apolipoprotein E
(APOE)] supports an AMD-HDL nexus. In this work we discuss
the confluence of evidence on a number of AMD-associated genes
implicated in HDL transport and metabolism (94, 95, 113), retinal
response to MX intake (73, 74, 80, 114), and alterations in the
activity of MX-related molecular targets, regulatory mechanisms,
and metabolic fate affecting retinal physiology (17). Our con-
clusion is that AMD-associated DNA variants that influence the
actions and metabolic fates of HDL system constituents should be
examined for concomitant influence on MX absorption, retinal
tissue responses to MX intake, and the capacity to modify MX-
related factors and processes implicated in AMD pathogenesis.

The subsections that follow begin with overviews on the state-
of-science for AMD-associated and HDL-related genes encoding
receptors, transporters, and enzymes affecting or affected by MXs,
their metabolites, and cofactors. The overviews are followed with
information on localization of the respective HDL-related proteins
to retinal cell types manifesting AMD-related pathophysiology.
Evidence on the relation of each gene or gene product with retinal
MX response to intake is then presented. This information is
followed by a review offindings frommechanistic studies designed
to investigate retinal disease-gene relations.We then present findings
on the relation of AMD and retinal MX status with DNA sequence
variations in these HDL-related genes (Table 1). In the final section,
we comment on the promise of this emerging evidence base for
informing applied clinical research projects.

HDL-RELATED GENES AND MX UPTAKE IN RETINA

SCARB1

The scavenger receptor class B type I (SR-BI), a cell surface
glycoprotein of CD36 superfamily with high affinity to HDL and
localized to the apical surface of the enterocyte, has been im-
plicated in nonspecific binding and absorption of MXs at the
intestinal brush border (115). SR-BI is encoded by SCARB1
(12q24.31), a gene expressed in primary human retinal pigment
epithelium (RPE) cells (116). SR-BI mRNA has been detected
in human neural retina using reverse transcriptase–polymerase
chain reaction (117). Immunohistochemical localization of the
protein in monkey retina showed the strongest signal in retinal
ganglion cells, outer segments of photoreceptor rods and cones,
and the choriocapillaris (the vascular interface to the RPE and
neural retina) (Figure 2). Equivocal evidence exists for strong
expression of the protein in primate RPE. A specific SR-BI
antibody-blocking technique and small interfering RNA on a
differentiated human RPE–derived cell line (ARPE-19) showed
that zeaxanthin uptake can be driven by an SR-BI–dependent
process (118). The authors of the ARPE-19 study (118) discuss
a gene-MX-disease link, pointing to a mutation in ninaD, an
insect gene with high sequence identity to SCARB1 that is as-
sociated with reduced carotenoid uptake, reduced zeaxanthin
deposition, and blindness in Drosophila (119–121). The retinal
ultrastructure of SR-BI2/2 and wild-type (WT) mice manifested
differences after a feeding regimen enriched in components carried
on HDL (122). Relative to the WT mice, SR-BI2/2 animals showed
increased lipid inclusions and disorganization of photoreceptor
outer segments and areas within the outer nuclear layer. Also,
Bruch’s membrane, a permeable 5-layer structure of basement
membranes, collagen, and elastin existing between the choroid
and RPE, was thickened in the SR-BI2/2 mice and showed sparse
sub-RPE deposits. The relevance to AMD is that altered flow of
essential compounds across Bruch’s membrane has been im-
plicated in the progression to advanced forms of the disease. In
addition to these changes, the choroid of the SR-BI2/2 mice
manifested abnormal distribution of collagen fibers and a va-
cuolization associated with local inflammation in the subretinal
space (linked to the infiltration of macrophages); SR-BI2/2 mice
did not exhibit abnormal choroidal neovascularization. However,

TABLE 1

Genes and selected sequence variants associated with retinal status of MXs and AMD1

Sequence variant (ref)

Symbol HDL function Retinal MX status AMD association Model system (ref)

SCARB1 LPB rs10744182 (80) rs5888 (97) ARPE (118), mouse (122)

CD36 LPI rs1761667 (74) rs3173789/rs3211883 (130) ARPE (118), mouse (126–128)

ABCA1 LPSBC rs1929841 (80) rs1883025 (81, 95) hRPE (134), WHAM chick (106)

APOE LPM rs429358/rs7412 (73) rs429358/rs7412 (113, 137) Mouse (140)

LPL LPM — rs12678919 (95) Human (153)

CETP LPT — rs1864163 (94) Human (146)

LIPC LPU rs6078 (80) rs920915 (94) —

1Associations were determined with logistic regression, examining the likelihood of having advanced AMD, relative to the distribution of specific

nucleotide bases for each of the sequence variants listed. The list of sequence variants is not comprehensive (see References for complete list). Full names and

additional details on genes can be found at http://www.ncbi.nlm.nih.gov/gene. An additional AMD-associated single-nucleotide polymorphism exists in APOE

rs4420638 (94). AMD, age-related macular degeneration; ARPE, differentiated human retinal pigment epithelial–derived cell line; hRPE, human retinal

pigment epithelial cells; LPB, lipoprotein binding; LPI, lipoprotein internalization; LPM, lipoprotein metabolism; LPSBC, lipoprotein secretion by (efflux

from) cells; LPT, transfer of lipoproteins; LPU, lipoprotein uptake at the cell surface; MX, macular xanthophyll; ref, reference number.
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induction of vascular endothelial growth factor (VEGF; a mole-
cule involved in retinal angiogenesis) expression in the outer
nuclear layer of the SR-BI2/2 mice was observed.

A locus in SCARB1 (rs10744182) has been associated with
alterations in MPOD within the Carotenoids in Age-related Eye
Disease Study, a project involving 1585 women participating
in the Women’s Health Initiative Observational Study (80). An
exonic sequence variant in SCARB1 (rs5888) linked to lower SR-BI
expression (123) has been associated with advanced AMD in a
large-scale genotyping project in French- and US-based cohorts
(97). We have reported relations of AMD with a common intronic
variant (rs989892; P = 0.010) coinherited (D# = 0.98, r2 = 0.82)
with rs5888 and another single-nucleotide polymorphism (SNP;
rs838878; P = 0.007) in complete linkage disequilibrium with
an SNP (rs838884) proximal to the 3# untranslated region of
SCARB1 (124).

CD36

CD36 is a major glycoprotein that acts as a primary anti-
angiogenic receptor of thrombospondin-1. CD36 binds long-
chain fatty acids, collagen, anionic phospholipids, and oxidized
LDL in macrophages. CD36 is involved in internalization of HDL
and transport of oxidized LDL particles and may act in the transport
of and/or as a regulator of fatty acid transport. In the retina, CD36
acts in phagocytosis of photoreceptor outer segments. CD36 is
encoded by the CD36 gene (7q11.2); the protein is localized in
the primate retina within RPE, tips of rod outer segments, rod
inner segments, the choriocapillaris, the outer plexiform layer,
and in the ganglion cell layer (117) (Figure 2). In a study on human
retina, the expression of CD36 varied by .8-fold in the neural
retina and by .20-fold in RPE between donors (125). During
et al (118) did not detect MX transport actions of CD36 in their
work on differentiated human RPE cells: a CD36-specific

FIGURE 2. Retinal localization of proteins involved in uptake, transport, and cleavage of MXs. Immunohistochemical localization studies in primate retina
were reported by Tserentsoodol et al (117) for ABCA1, CD36, CETP, and SCARB1; by Anderson et al (152) for APOE; and by Casaroli-Marano et al (147) for
LPL. For micrographs of ABCA1, CD36, CETP, and SCARB1, areas in red indicate regions of the respective MX-related protein localization. For APOE and
LPL, lucent areas indicate protein localization. Reproduced with permission from references 117, 147, and 152. CH, retinal choroid layer; GCL, ganglion cell
layer; HFL, Henle Fiber layer; INL, inner nuclear layer; IPL, inner plexiform layer (interneurons); MX, macular xanthophyll; NFL, nerve fiber layer; ONL,
outer nuclear layer; OPL, outer plexiform layer; PR, photoreceptors; PRIS or PIS, photoreceptor inner segments; PROS, photoreceptor outer segments; PROS
or POS, photoreceptor outer segments; ref., reference; RPE, retinal pigmented epithelium.
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antibody did not prevent accumulation of zeaxanthin in ARPE-
19 cells after the addition of MX to the medium.

CD362/2 mice manifest a progressive age-related choroidal
involution typically involving a 100–300% increase in the avas-
cular area within the choriocapillaris (126). Progressive choroidal
degeneration accompanies reduced cyclooxygenase-2 (PTGS2)
and VEGF (126) expression. CD36 activating antibody stimulates
PTGS2 expression in RPE cell cultures, whereas CD36 deficiency
was associated with inhibition of COX-2 and subsequent lack
of VEGF response to outer segment or antibody stimulation in
vitro (126). Picard et al (127) used CD362/2 and CD36+/+ mice
to show an age-related CD36-dependent process of deposition
and clearance of subretinal deposits that bears similarity to those
typically seen in AMD; in this study, CD362/2 animals developed
basal laminar deposits. In a mouse model showing similar pa-
thology (ApoE2/2) to the CD362/2 model, the administration of
a CD36 agonist inhibited the formation of pathologic subretinal
deposits. CD36 may be linked to AMD-like retinal pathology in
spontaneous hypertensive rats as well. These animals develop
retinal and choroidal degeneration independent of hypertension
(128). CD36 mutations exist in some spontaneous hypertensive
rat strains (129).

Borel et al (74) examined 5 sequence variants in CD36 for the
association of MPOD response to a 6-mo regimen of daily sup-
plementation with a formula containing 10 mg lutein esters in
a 30-person French cohort. A CD36 locus (rs1761667) was as-
sociated with variation in macular status of MXs; persons ho-
mozygous for the major allele (G) had significantly higher MPOD
than those carrying the minor allele (A). This SNP was tested by
Meyers et al (80) and did not yield MPOD variations in their
US-based cohort of women. Kondo et al (130) examined the
allelic frequency of 19 SNPs resident in CD36 for association
with neovascular AMD in a Japanese cohort of 109 people with
neovascular AMD and 182 unrelated controls. There was a 50%
lower likelihood of having neovascular AMD among carriers
of the minor allele for 2 intronic sequence variants in the gene
(rs3173798 and rs3211883).

The central messages on SCARB1 and CD36 (HDL-related
genes both expressed in retina and implicated in retinal uptake
of intake-based MXs within model systems) are as follows: 1)
animal models applying gene deletions of either SCARB1 or
CD36 manifest AMD-like pathology, 2) DNA variation (in this
case, SNPs) in SCARB1 and CD36 is associated with variation in
MPOD in a number of human studies, and 3) SCARB1-AMD
relations have been reported in multiple cohorts.

HDL-RELATED GENES AND MX TRANSPORT AND
METABOLISM IN THE RETINA

ABCA1

The ATP-binding cassette, subfamily A member 1 (ABCA1)
protein, encoded by the ABCA1 gene (9q31.1), is a member of
the superfamily of ATP-binding cassette transporters. The protein
acts as a major lipoprotein transporter and works with apolipo-
protein A-I (APOA1) in the process of cholesterol and phos-
pholipid metabolism as an efflux pump from tissue to nascent
HDL. ABCA1 controls the intracellular transport and secretion
of APOE and APOA1 (117). A mutation mapped to ABCA1 exists
in persons with Tangier disease [Online Mendelian Inheritance in

Man (OMIM) 205400], an autosomal recessive disorder char-
acterized by extremely reduced concentrations of plasma HDL,
leading to tissue accumulation of cholesterol esters. Immunolo-
calization of ABCA1 in primate retina indicates that the highest
concentrations of the protein are found in the macular ganglion
cell layer, the MX-rich outer plexiform layer, and RPE (117).
Within the polarized RPE cell, both basal (side of choroidal
apposition) and apical (side of photoreceptor apposition) aspects
showed specific ABCA1 staining (Figure 2).

Connor et al (106) applied an avianmodel expressing a sex-linked
recessive mutation in ABCA1 [the Wisconsin hypo a mutant (WHAM)
chick] to show the critical role of HDL-mediated MX transport to
the retina. The WHAM chick exhibits similar concentrations of
VLDL and LDL to WT Leghorn chicks but shows a 90% re-
duction in HDL cholesterol. Hepatic accumulation of MXs in the
WHAM chick was not appreciably different from that in the WT
birds; however, differences were seen in plasma, heart, adipose, and
retina. Repletion of all tissues except for retina was attained with
a 1-mo lutein-rich feeding regimen. With the lutein-rich diet, the
absolute concentration of retinal MXs remained 15-fold lower than
those in the WT chicks. The WHAM mutation acts by inhibiting
APOA1-mediated efflux of hydrophobic molecules from peripheral
tissue to HDL. APOA1 is rapidly degraded when low in lipid content.

Lakkaraju et al (131) used immortalized human and bovine
primary RPE cell cultures to show that activation of ABCA1 by the
peroxisome proliferator–activated receptor g (PPAR-g) agonist
pioglitazone and liver X receptor (LXR) agonist TO901317 is
effective in hydrolyzing A2E, a quaternary amine and retinoid
by-product of the visual cycle responsible for pathologic accu-
mulation of free and esterified cholesterol in RPE cells. Blue-
light exposure in RPE cells induces A2E to generate singlet
oxygen that has the capacity to damage DNA and lead to apo-
ptotic cell death (132); lutein, which is present in inner retinal
layers, acts as a filter for blue light. The implications of these
findings for AMD-MX research may not be readily apparent.
Pioglitazone acts on PPAR-g, which forms a bioactive hetero-
dimer with the retinoid X receptor (RXR). RXR heterodimerizes
with the retinoid A receptors (RARs). RXR heterodimerizes
with PPAR-g and LXR; this process activates ABCA1, leading
to A2E hydrolysis. Lutein is a ligand to the RARs and may thus
influence the activation of the RAR-RXR-PPAR-g-LXR complex
(133). This putative relation ties the ABCA1-MX relation to a
process implicated in AMD pathogenesis and raises the possibility
that lutein (or a lutein metabolite) may activate ABCA1 to influence
A2E catabolism. Work by Matsumoto et al (133) indicates that
b-cryptoxanthin (a mono-hydroxy xanthophyll with similar bonding
structure and functional groups to MXs) was effective in activating
ABCA1. Duncan et al (134) reported that exposure of human RPE
cell cultures to glyburide, a nonspecific ABCA1 inhibitor (also
inhibiting SCARB1), prevents HDL-stimulated basal transport of
photoreceptor-derived lipids implicated in AMD pathogenesis.
These findings are intriguing, considering the MX-binding ca-
pacity of SCARB1, the role of ABCA1 in MX transport, and the
putative activation of ABCA1 by MXs via RARA and RARG.

Meyers et al (80) reported variations in MPOD related to
allelic variants in the ABCA1 SNP rs1929841; persons carrying
the CC genotype showed a 20% lower value for MPOD than persons
with AA or AC genotypes. Sequence variants in ABCA1 have been
associated with AMD in numerous large-scale genotyping pro-
jects (81, 95, 98, 124, 135, 136).
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Apolipoprotein E

Apolipoprotein E (apo E) is an apolipoprotein acting in lipid
metabolism as a ligand to lipoprotein receptors and in response to
injury within the central nervous system (137, 138). apo E is
necessary for the normal catabolism of HDL, triglyceride-rich
components of chylomicrons, and VLDL (73). SNPs in the APOE
gene (19q13.2) are associated with increased plasma concen-
trations of cholesterol and triglycerides. DNA sequence variants
in APOE have been a focus of work on AMD, because apo E is
a component of drusen (retinal lipid deposits first evident in early
AMD). In the retina, APOE is expressed primarily in astrocytes
and Müller cells; it has been localized to Bruch’s membrane, the
RPE, and the photoreceptor outer segment layer (reviewed in
reference 117) (Figure 2). MXs are transported in serum on apo
E in HDL and LDL (73, 139).

Six-month-old ApoE2/2 C57BL/6 mice fed standard labora-
tory feed pellets (9605/8; Harlan Teklad TRM) showed a 50%
lower concentration of lutein in the neural retina, relative to WT
animals of the same inbred strain fed the same diet. Zeaxanthin
concentrations were unchanged (140). Retinal ultrastructure in
the ApoE2/2 mice was characterized by AMD-associated le-
sions, including severe basal laminar deposits/vacuolization and
thickening of Bruch’s membrane. Choroid-RPE homogenates of
these animals showed 42% higher VEGF concentrations than
those in WT mice, as analyzed by Western blots. Abnormal lipid
accumulation in the RPE and Bruch’s membrane in a transgenic
mouse expressing the human APOEe2 risk variant has been reported.
Compared with WTmice, the APOEe2 transgenic animals exhibited
an overexpression of VEGF and basic fibroblast growth factor
(bFGF). Dysregulation of VEGF and bFGF are central events in
diseases characterized by pathologic retinal angiogenesis.

DNA variants in APOE are associated with MPOD concen-
trations. Loane et al (73) reported that persons carrying at least
one APOEe4 allele have higher MPOD values across the macula
than did noncarriers. Meyers et al (80) did not observe MPOD
variation with haplotypes of the SNPs (rs7142, rs429358) ex-
amined by Loane et al. The APOE-AMD relations reported by
Souied et al (113) and Klaver et al (137) in 1998 were among the
first gene-AMD associations published. Findings have been repli-
cated numerous times (138, 141–145). An age-, sex-, and smoking-
adjusted pooled analysis of 15 studies (n = 21,160) confirmed the
protective association of the APOEe4 alleles and risk of the
APOEe2 alleles on late AMD (96). Our findings on rs405509 are
similar to those of the pooled analysis. A large multicenter study
incorporating data from.77,000 people identified advanced AMD
associations with the presence of the A allele in rs4420638 (94).

CETP

CETP is a secreted soluble protein that acts with ABCA1 in the
transfer of cholesteryl esters between lipoproteins during reverse
cholesterol transport; it is encoded by the CETP gene (16q21)
and expressed in retina mainly within the photoreceptor outer
segments and the outer plexiform layer (117). A study exam-
ining exchange of carotenoids between human VLDL and HDL
(146) showed that CETP inhibitors significantly increased the
proportion of lutein in HDL. To our knowledge. there are no studies
using in vivo model systems to examine the role of CETP on health
and disease of the retina or the actions of MXs.

Meyers et al (80) examined the influence of 3 intronicCETP SNPs
(rs173539, rs3764261, and rs708272) on retinal MX status. In no
case were these variants associated with MPOD. AMD-associated
DNA sequence variants in CETP (rs173539, rs3764261, rs1864163)
have been reported in numerous studies (94, 95, 135).

LPL

LPL is a water-soluble enzyme that hydrolyzes triglycerides in
lipoproteins and enables cellular uptake of chylomicron remnants,
cholesterol-dense lipoproteins, and free fatty acids. The enzyme
is encoded by the LPL gene (8p22) and requires the apolipo-
protein C2 (encoded by the APOC2 gene) as a cofactor in these
processes. In the primate, the LPL protein is localized within the
inner retinal layers (nerve fiber, ganglion cell, inner plexiform,
and inner nuclear layers) and the choroid (147) (Figure 2).
Within the choroid, it is most likely to be attached to the luminal
epithelium. Carriers of an exonic sequence variant X447 (rs328)
in LPL show a 20% reduction in serum MXs, relative to carriers
of the S447S alleles (148). The authors of this work suggest that
this stop polymorphism alters shedding of MXs from their sur-
face positions on chylomicrons during lipolysis. To our knowl-
edge, there are no reported relations of LPL sequence variants
with MPOD, although one (rs328) was tested in this capacity by
Meyers et al (80). A sequence variant in LPL known to influence
HDL cholesterol (rs12678919) has been reported in association
with advanced (95), but not early (136), AMD. We have reported
on another variant (rs10099160) also associated with advanced
AMD (124).

The state of evidence on HDL-related genes both expressed in
retina and implicated in retinal transport of intake-based MXs
within model systems indicates the following: 1) animal models
of ABCA1 and APOE gene deletions yield substantial reductions
in retinal lutein, and in the case of APOE, manifest aspects of AMD-
like lesions; 2) human MPOD has varied with DNA variants in
ABCA1 and APOE in some studies; and 3) ABCA1-, APOE-, and
CETP-AMD relations have been replicated in large cohorts. We
also reported on a HDL-related gene (LPL) expressed in retina
and implicated in MX release from its carrier protein. While
LPL-AMD relationships have been reported for advanced forms
of the disease, there is no current support for influence on human
macular status of MXs.

CONCLUSIONS AND FUTURE DIRECTIONS

MX concentrations in the retina are, in some cases, dependent
on and modifiable by MX intake. In this report, we recognize con-
verging fields of evidence that implicate the influence of genes
encoding constituents of HDL metabolism and transport systems
with both with retinal MX status (106, 108) and AMD risk (95).
At least 4 of the 6AMD-associatedHDL-related genes we discussed
are known to carry DNA polymorphisms linked to variation in
MPOD, a measure of retinal MX concentration in the retinal area
sustaining AMD pathology. Animal models characterized by gene
knockouts in SCARB1, ABCA1, and APOE yielded both alterations
in retinal MX amounts and AMD-like pathology. Extensive testing
of sequence variants in the 6 reviewed genes for effects on MPOD
has not been applied in diverse cohorts and it is necessary to rep-
licate findings while accounting for predictors and correlates
(see Table 2) of MPOD status. Future studies should be
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designed with the provisions from a number of expert reviews
that offer insightful commentary on strengths and limitations of
in vivo imaging modalities for AMD-MX research (110, 149).

Neovascular AMD has been associated consistently with lower
reported intakes of lutein + zeaxanthin (Supplemental Table
S2 under “Supplemental data” in the online issue). We believe
that this is the endpoint on which gene-MPOD studies are most
likely to yield informative results. A recent work combining data
from .77,000 people has shown neovascular AMD-ABCA1 and
-CETP relations (94). The AMD-associated SNPs in these genes
(and SNPs coinherited with these) should be examined for in-
fluence on MPOD response to MX intake. Many proteins encoded
by AMD-associated HDL-related genes act together; as such, it
is essential to evaluate gene-gene relations for both MPOD and
AMD endpoints. Epistasis (gene-gene interactions) for AMD-
and MPOD-related SNPs should be examined within and be-
tween genes. The first AMD-APOE relations reported (113, 137)
were based on allele combinations from 2 independent SNPs; this
may be the case with other gene-based effect modifiers of AMD risk.

Diet influences the expression of CD36 (150); to our knowledge,
the other genes discussed above have not been tested for this
capacity, and such information would aid in inference on retinal
response to MX intake. The interindividual variation in CD36
expression within the RPE is formidable, with an up to a 20-fold
difference between donor eyes analyzed by Zheng et al (125).

Cholesterol efflux is important for preventing cytotoxic oxy-
sterol production in the retina (101). Actions of ABCA1 appear to
influence this process, and there is a link here with pathologic
choroidal neovascularization (102). Oxidative degradation products
of MXs exist in the retina (42), and we suspect that ABCA1 may
alsowork in efflux of these compounds. The issue may be germane
for AMD prevention because some oxidative degradation products
of lutein have been shown to damage DNA of an immortalized
RPE cell line in a dose- and time-dependent manner (151). An
important opportunity now exists to examine the influence of ABCA1
on the clearance of oxidized xanthophylls from retinal cells.

In summary, a more-thorough investigation of AMD- and HDL-
associated loci for their putative actions in the intake status–structure
function axis in AMD-MX relations is reasonable given the fol-
lowing: 1) the joint actions of lipoprotein-related genes in cho-
lesterol and MX transport and metabolism and 2) the biological
plausibility of cholesterol and MXs and their metabolites for
influencing processes implicated in AMD pathogenesis.
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