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Copyright © 2014 Joanna Lecka et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), like other ectonucleotidases, controls extracellular nucleotide levels
and consequently their (patho)physiological responses such as in thrombosis, inflammation, and cancer. Selective NTPDase1
inhibitors would therefore be very useful. We previously observed that ticlopidine in its prodrug form, which does not affect P2
receptor activity, inhibited the recombinant form of human NTPDase1 (𝐾

𝑖
= 14 𝜇M). Here we tested whether ticlopidine can be

used as a selective inhibitor of NTPDase1. We confirmed that ticlopidine inhibits NTPDase1 in different forms and in different
assays. The ADPase activity of intact HUVEC as well as of COS-7 cells transfected with human NTPDase1 was strongly inhibited
by 100 𝜇M ticlopidine, 99 and 86%, respectively. Ticlopidine (100 𝜇M) completely inhibited the ATPase activity of NTPDase1 in
situ as shown by enzyme histochemistry with human liver and pancreas sections. Ticlopidine also inhibited the activity of rat and
mouse NTPDase1 and of potato apyrase. At 100 𝜇M ticlopidine did not affect the activity of human NTPDase2, NTPDase3, and
NTPDase8, nor of NPP1 and NPP3.Weak inhibition (10–20%) of NTPDase3 and -8 was observed at 1mM ticlopidine.These results
show that ticlopidine is a specific inhibitor of NTPDase1 that can be used in enzymatic and histochemistry assays.

1. Introduction

Extracellular nucleotides are released during different pro-
cesses including exocytosis (e.g., platelets), shear stress (e.g.,
red blood cells), cell activation (e.g., platelets, endothelial
cells), and cell lysis [1, 2]. Once released the effect of nucle-
otides is exerted via the activation of several specific recep-
tors, namely, P2X1-7 and P2Y

1,2,4,6,11–14, and perhaps also via
cysLT1R, cysLT2R, and/or GPR17 [3, 4].

The action of nucleotides (ATP, ADP, UTP, and UDP) on
P2 receptors is regulated by ectonucleotidases [5, 6]. Nucle-
oside triphosphate diphosphohydrolase-1 (NTPDase1) is
the main ectonucleotidase at the surfaces of vascular endo-
thelial cells, blood cells, and smooth muscle cells [7, 8].
NTPDase1 is present all along the cell surface and it was also
observed in caveolae, a specialized structure of the plasma
membrane [9, 10]. Similar to other ectonucleotidases, NTP-
Dase1 catabolizes extracellular nucleotides [11].

By controlling extracellular nucleotides’ levels, NTPDase1
affects various biological processes such as haemostasis [12,
13], vascular smoothmuscle cell contraction [14, 15], pain per-
ception [3, 16], angiogenesis, vascular permeability [17, 18],
airway epithelial transport [19], endocrine secretion [20],
neurotransmission and neuromodulation [21], inflammation,
and immune reactions [11, 22–25]. An imbalanced ATP/ADP
hydrolysis ratio was observed in patients with coronary
artery disease and abdominal aortic aneurysm [26, 27] where
NTPDase1 would be expected to be involved. The product of
NTPDase1 activity, AMP, can be further catabolized by ecto-
5󸀠-nucleotidase to adenosine, the agonist of P1 receptors [28].
Adenosine is also involved in various functions regulated by
ATP and most often exerts an opposite effect to ATP such as
in the regulation of the vascular tone, cell migration, prolif-
eration, and differentiation [29]. NTPDase1 inhibitors may
therefore represent a valuable tool to potentiate various phys-
iological actions of nucleotides and could also serve as
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potential drug candidates for the treatment of some diseases
associated with functions of NTPDase1 such as in cardiovas-
cular [11, 22, 27] and immune diseases [23, 30] and cancer
[31, 32].

We previously observed that, by blocking endothelial cell
NTPDase1 activity, the thienopyridines ticlopidine (Tyklid)
and clopidogrel (Plavix) impaired platelet aggregation [33].
While clopidogrel is solubilized poorly in polar solvents,
ticlopidine is easier to solubilize, making it amore convenient
candidate for inhibition assays. It is noteworthy that ticlopi-
dine (Tyklid) and clopidogrel (Plavix) are widely prescribed
after heart attacks. As prodrugs they must be metabolically
activated to the forms that irreversibly block platelet P2Y

12

receptors [34, 35]. Although ticlopidine cannot obviously be
used in a long-term basis as a therapeutic agent to block
NTPDase1 in human (due to its catabolism by the liver to a
P2Y
12

antagonist) it can have several other advantages such
as studying NTPDase1 functions. As several NTPDases have
distinct functions, specific NTPDase inhibitors would be
greatly valuable. For example, while NTPDase1 abrogates
platelet aggregation and their recruitment in intact vessels via
the hydrolysis of ADP, NTPDase2, by the hydrolysis of ATP
toADP, has the ability to facilitate platelet activation at sites of
extravasation [7]. Indeed, while NTPDase1 is expressed by
vascular endothelial cells, in touch with blood components,
NTPDase2 is expressed in the subendothelium of veins and
in the adventitial cells of arteries [36] which are exposed to
platelets only after blood vessel breakage. In this study, we
demonstrate that ticlopidine in its prodrug form can be used
as a selective NTPDase1 inhibitor.

2. Materials and Methods

2.1.Materials. Aprotinin, nucleotides, apyrase gradeVII, phe-
nylmethanesulfonyl fluoride (PMSF), ticlopidine, and mala-
chite green were purchased from Sigma-Aldrich (Oakville,
ON, Canada). Tris was obtained from VWR (Montreal, QC,
Canada). DMEM was obtained from Invitrogen (Burlington,
ON, Canada). Fetal bovine serum (FBS) and antibiotics-
antimycotics solution were from Wisent (St-Bruno, QC,
Canada). Formalin and acetone were obtained from Fisher
Scientific (Ottawa, ON, Canada). OCT freezing medium was
purchased from Tissue-Tek, Sakura Finetk (Torrance, CA).

2.2. Plasmids. The plasmids used in this study have all been
described in published reports: human NTPDase1 (GenBank
accession number U87967) [37], human NTPDase2
(NM 203468) [38], human NTPDase3 (AF034840) [39],
human NTPDase8 (AY430414) [40], mouse NTPDase1
(NM 009848) [12], rat NTPDase1 (NM 022587) [41], human
NPP1 (NM 006208) [42], and human NPP3 (NM 005021)
[43].

2.3. Cell Transfection and Protein Preparation. COS-7 cells
were transfected with an expression vector (pcDNA3) con-
taining the cDNA encoding for each ectonucleotidase using
Lipofectamine (Invritrogen) and harvested 72 h later, as pre-
viously described [33]. For the preparation of protein extracts,

transfected cells were washed three times with Tris-saline
buffer at 4∘C, collected by scraping in harvesting buffer
(95mM NaCl, 0.1mM PMSF, and 45mM Tris, pH 7.5), and
washed twice by centrifugation (300 g, 10min, 4∘C).The cells
were then resuspended in the harvesting buffer supplemented
with 10 𝜇g/mL aprotinin to block proteinases and sonicated.
Nucleus and large cellular debris were discarded by cen-
trifugation (300×g, 10min, 4∘C) and the supernatant (there-
after called lysate) was aliquoted and stored at −80∘C until
used. Protein concentration in the lysates was estimated by
Bradford microplate assay using bovine serum albumin as a
standard [44].

2.4. Enzymatic Activity Assays

2.4.1. NTPDases and Apyrase (EC 3.6.1.5.). Activity was
measured as described previously [5] in 0.2mL of incubation
medium (5mM CaCl

2
and 80mM Tris, pH 7.4) or Tris-

Ringer buffer (inmM, 120 NaCl, 5 KCl, 2.5 CaCl
2
, 1.2 MgSO

4
,

25 NaHCO
3
, 5mM glucose, and 80 Tris, pH 7.4) at 37∘C with

or without ticlopidine. Ectonucleotidase lysates were added
to the incubationmixture and preincubated at 37∘C for 3min.
The reaction was initiated by the addition of 100𝜇M ATP or
ADP for NTPDases, with or without ticlopidine (100 𝜇M or
1mM) and stopped after 15min with 50 𝜇L malachite green
reagent. The activity of either enzyme at the surface of intact
Human Umbilical Vein Endothelial Cells (HUVEC, passage
2) or NTPDase1 transfected cells was measured in 24 well
plates with the buffers indicated above supplemented with
125mM NaCl. The reaction was initiated as above and
stopped by transferring a 200𝜇L aliquot of the reaction mix-
ture to a tube containing 50 𝜇L malachite green reagent. The
liberated inorganic phosphate (Pi) was measured at 630 nm
according to Baykov et al. [45]. The increase of phosphate
concentration due to enzyme activity was calculated by sub-
tracting the phosphate concentration of the control reaction
mixture, where the substrate was added after the malachite
green reagent, from that of the respective reaction mixture.
All experiments were performed in triplicate. One unit of
enzymatic activity corresponded to the release of 1 𝜇mol
Pi/min⋅mg of protein or 1 𝜇mol Pi/min/well at 37∘C for
protein extracts and intact cells, respectively.The lysates from
nontransfected COS-7 cells exhibited less than 5% of the ATP
or ADP hydrolysis generated by lysates from COS-7 cells
transfected with either NTPDases’ expressing plasmid and
as such the activity of the contaminating nucleotidases was
considered negligible.

2.4.2. NPPs (EC 3.1.4.1). Activity assays of human NPP1 and
human NPP3 were carried out with paranitrophenyl thymi-
dine 5󸀠-monophosphate (pNP-TMP) as the substrate [42].
pNP-TMP hydrolysis was carried out at 37∘C in 0.2mL of
the following incubation mixture: in mM, 1 CaCl

2
, 130NaCl,

5 KCl, and 50 Tris, pH8.5, with orwithout 100𝜇Mticlopidine.
Recombinant human NPP1 or human NPP3 cell lysates were
added to the incubation mixture and were preincubated at
37∘C for 3min. The reaction was initiated by the addition of
the substrate pNP-TMP (100 𝜇M), with or without 100 𝜇M
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ticlopidine. The production of p-nitrophenol in the reaction
mediumwasmeasured at 310 nm, 15min after the initiation of
the reaction. The protein extracts from nontransfected COS-
7 cells exhibited less than 5% of the pNP-TMP hydrolysis
obtained with lysates from either NPP1 or NPP3 transfected
cells, and as such was considered negligible.

2.4.3. Enzyme Histochemistry Assays. For histochemical
studies, 5 𝜇m sections of freshly dissected tissues were
embedded in OCT freezing medium and snap-frozen in
isopentane in dry ice and stored at −80∘C until use. Sections
of 6𝜇m were obtained and fixed in 10% phosphate-buffered
formalin mixed with cold acetone as before [46]. Localiza-
tion of ectonucleotidase activities was determined using the
Wachstein/Meisel lead phosphate method [47]. Fixed slices
were preincubated for 30min at RT in 50mM Tris-maleate
buffer, pH 7.4, containing 2 mMCaCl

2
, 250mM sucrose, and

2.5mM levamisole as an inhibitor of alkaline phosphatases.
Enzymatic reaction was performed for 1 h at 37∘C in the
same buffer supplemented with 5mMMnCl

2
to inhibit intra-

cellular staining [48], 2mM Pb(NO
3
)
2
, 3% Dextran T-250

and in the presence of 200𝜇M ATP with or without 100 𝜇M
ticlopidine. For the control experiment, substrate was either
omitted or added in the absence of divalent cations, which are
essential for NTPDases’ activity.The reaction was revealed by
incubation with 1% (NH

4
)
2
S v/v for exactly 1min. Samples

were counterstained with aqueous haematoxylin, mounted
with Mowiol mounting medium, and visualized and pho-
tographed with a BX51 Olympus microscope.

2.5. Statistic. Statistical analysis was done with the two-way
ANOVA test.𝑃 values below0.05were considered statistically
significant.

3. Results

3.1. Influence of Ticlopidine on NTPDase Activity. We previ-
ously observed that ticlopidine inhibited recombinant human
NTPDase1 [46]. In this workwe verified if this compound can
be used as a specific inhibitor of the enzyme. We first con-
firmed that ticlopidine was an inhibitor of NTPDase1 from
different sources. The ADPase activity of NTPDase1 express-
ing cells, namely, intact COS-7 cells transfected with human
NTPDase1 or HUVEC, was strongly inhibited by 100 𝜇M
ticlopidine, 99 and 75% inhibition, respectively (Figure 1).
ATPase activity was inhibited by about 25% in both cell types
(Figure 1). The same ticlopidine concentration inhibited the
ADPase activity of lysates from COS-7 cell transfected with
an NTPDase1 expression vector by about 58% (Figure 2(a)),
while the ATPase activity was decreased more modestly
than the ADPase activity by about 32%, showing a similar
tendency than what was observed for intact cells (Figures 1
and 2(a)). One mM ticlopidine further increased the inhi-
bition of ADPase up to 73% and that of ATPase up to 64%
(Figure 2(a)). At 100 𝜇Mticlopidine did not impair ATPase or
ADPase activities of lysates fromCOS-7 cells transfectedwith
NTPDase2, NTPDase-3, or NTPDase-8 (Figures 2(b)–2(d)).
At 1mM concentration, ticlopidine inhibited only weakly the
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Figure 1: Influence of ticlopidine on intact HUVEC andCOS-7 cells
transfected with an expression vector encoding human NTPDase1.
The substrate (ATP or ADP) was added together with ticlopidine,
both at 100𝜇M. Relative activities are expressed as the mean ± SD of
3 independent experimentswith confluent cells (HUVEC from three
different donors at passage 2), each performed in triplicate; mean
cell number in one well was in the order of 250,000. The activity
(without ticlopidine, which was set at 100%) with the substrate ATP
corresponded to 2.5 ± 0.12 and 16.7 ± 0.8 nmol Pi⋅min−1⋅well−1 for
HUVEC and transfected COS-7 cells, respectively, and with ADP
to 3.5 ± 0.17 and 9.1 ± 0.45 nmol Pi⋅min−1⋅well−1 for HUVEC and
transfectedCOS-7, respectively. Data are presented as themean± SD
of 3 experiments carried out in triplicate. ∗𝑃 = 0.04; ∗∗𝑃 = 0.0003;
∗∗∗
𝑃 = 0.0001.

ADPase activity (32%) of NTPDase3 as well as its ATPase
activity (14%, Figure 2(c)) and the ATPase activity (19%) of
NTPDase8 (Figure 2(d)).

3.2. Influence of Ticlopidine on Murine NTPDase1 Activity.
We next investigated whether ticlopidine could also inhibit
NTPDase1 from other species. At 100 𝜇M, ticlopidine inhib-
ited the ATPase activity of both, mouse and rat NTPDase1, 23
and 36%, respectively (Figure 3), and ADPase activity by
about 30 and 41%, respectively. The inhibition level was sim-
ilar for all tested species at 1mM ticlopidine, about 60–70%
of ATPase and ∼75% of ADPase activity (Figures 2(a) and 3).

3.3. Influence of Ticlopidine on Other Ectonucleotidases. In
our previous work we observed that 60 𝜇M ticlopidine, the
calculated concentration of the compound after its adminis-
tration to human patient [46], slightly inhibited rat ecto-5󸀠-
nucleotidase but not human ecto-5󸀠-nucleotidase. Here we
tested the effect of ticlopidine on other ectonucleotidases,
including NTPDase from plant that is commercially available
and widely used, namely, potato apyrase.TheADPase activity
of this plantNTPDase1 was also slightlymore affected than its
ATPase activity; the inhibition of ADPase activity by ticlo-
pidine was 80 and 98% at 100 𝜇M and 1mM ticlopidine,
respectively, and its ATPase activity, 75 and 95% for 100 𝜇M
and 1mM ticlopidine, respectively (Figure 4(a)).

There are also 2 other ectonucleotidases, NPPs, that effi-
ciently hydrolyse ATP and ADP: NPP1 and NPP3. For these
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Figure 2: Influence of ticlopidine on recombinant human NTPDase activities. Enzymatic assays were carried out with lysates from COS-
7 cells transfected with an expression vector encoding the indicated enzyme. The substrate (ATP or ADP at the concentration of 100𝜇M)
was added alone or together with ticlopidine at the concentration of either 100𝜇M or 1mM. The 100% activity in the absence of ticlopidine
corresponded to the following: for human NTPDase1 to 670 ± 29 and 550 ± 21 nmol Pi⋅min−1⋅mg protein−1 for ATP and ADP as substrates,
respectively (a), for humanNTPDase2 to 1023±58 nmol Pi⋅min−1⋅mgprotein−1 for ATP as substrate (b), for humanNTPDase3 to 256±37 and
103 ± 10 nmol Pi⋅min−1⋅mg protein−1 for ATP and ADP as substrates, respectively (c), and for human NTPDase8 to 148 ± 16 and 33 ± 6 nmol
Pi⋅min−1⋅mg protein−1 for ATP and ADP as substrates, respectively (d). Data are presented as the mean ± SD of 3 experiments carried out in
triplicate. ∗𝑃 = 0.018; ∗∗𝑃 = 0.0002.

enzymes we used the synthetic substrate pNP-TMP in our
assay. Ticlopidine (100 𝜇M) did not affect the activity of either
enzyme (Figure 4(b)). As the NPP activity was tested at a pH
(slightly alkaline) that decreases the solubility of ticlopidine,
we did not test higher concentrations of ticlopidine.

3.4. Ticlopidine Inhibits NTPDase1 Activity in Human Tissues.
We then tested whether ticlopidine can also inhibit NTP-
Dase1 in situ. Enzyme histochemistry assays were performed
with liver and pancreas tissue sections where NTPDase1 is
highly expressed in blood vessels (arteries, veins, capillaries,
and sinusoids) as well as in the exocrine cells of the pancreas.
Here we have used 200𝜇M of ATP and 100 𝜇M ticlopidine.
Under these conditions ticlopidine abolished the ATPase
activity of NTPDase1 (Figure 5).The inhibition observed was
even more potent than in assays with cell lysates, similar

to what we measured with the experiments with intact cells
(Figures 1, 2(a), and 5).

4. Discussion

By regulating extracellular nucleotide levels, NTPDase1
affects haemostasis [12, 13, 37], leukocyte migration [24, 25],
immune responses [6, 49], angiogenesis, vascular permeabil-
ity [17, 50], and vasoconstriction [8, 15]. Therefore the iden-
tification of selective NTPDase1 inhibitors would be valuable
tools to study the function and pathological consequence of
dysregulation of NTPDase1 activity. Additionally, changes in
ATP and ADP levels, potent ecto-5󸀠-nucleotidase inhibitors,
change the level of adenosine andmodulate the physiological
responses of P1 receptor activation for which adenosine is the
agonist [33, 51].
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Figure 3: Comparative effect of ticlopidine on recombinantmurineNTPDase1. ATPase andADPase activity ofmouse (a) or rat (b)NTPDase1
without andwith either 100 𝜇Mor 1mM ticlopidine are presented.The 100% activitywithATP as the substrate in the absence of ticlopidinewas
2781±136 and 1502±66 nmol Pi⋅min−1⋅mg protein−1 formouse and rat NTPDase1, respectively, and with ADP 2219±105 and 1103±56 nmol
Pi⋅min−1⋅mg protein−1 for mouse and rat NTPDase1, respectively. Data are presented as the mean ± SD of 3 experiments carried out in
triplicate. ∗𝑃 = 0.0049; ∗∗𝑃 = 0.0007.
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Figure 4: Influence of ticlopidine (100 𝜇M or 1mM) on the ATPase and ADPase activity of apyrase (a) and (100𝜇M) on human NPP1 and
humanNPP3 (b).The activity of apyrase without ticlopidine was 159±7 and 87±4 𝜇moles Pi/min⋅mg protein for ATP and ADP, respectively.
Data are presented as the mean ± SD of 3 experiments carried out in triplicate. The 100% activities without ticlopidine with pNP-TMP as the
substrate were 71 ± 3 and 17 ± 1 nmol p-nitrophenol/min⋅mg protein for NPP1 and NPP3, respectively. ∗𝑃 = 0.0045; ∗∗𝑃 = 0.0002.

Some inhibitors of NTPDase1 have been described and
characterized. Unfortunately most of them are not specific as
they also inhibit other ectonucleotidases or affect purinocep-
tor activity. 𝑁6,𝑁6-diethyl-D-𝛽-𝛾-dibromomethylene-ATP,
also named ARL 67156, was found to be a weak and
nonselective NPP1, NTPDase1, and NTPDase3 inhibitor
[52, 53]. Polyoxometalate (POM-1) inhibits NTPDase1 but
its action is limited by off-target actions on synaptic
transmission [53, 54]. 1-amino-2-sulfo-4-(2-naphthylamino)
anthraquinone was shown as a potent inhibitor of NTPDase1
but it inhibited at a similar level NTPDase3 [55]; suramin and
sulfonate dyes such as reactive blue and pyridoxal phosphate-
6-azophenyl-2󸀠,4󸀠-disulfonic acid (PPADS) are also nonspe-
cific inhibitors of NTPDase1 activity [31, 56–59]. Recently

we have synthesized and characterized potent and selec-
tive inhibitors of NTPDase1 that are analogues of adenine
nucleotides, namely, 8-BuS-ADP and 8-BuS-AMP [46]. Here
we report that ticlopidine is also a potent and selective
inhibitor of NTPDase1 and as such can be used as a tool to
study this ectonucleotidase function and pathophysiological
consequences of abnormal activity. Ticlopidine is routinely
administered to patients as a part of an antithrombotic
therapy [60], but before it is activated by the liver it does not
activate nor antagonize P2 receptors [61]. In a previous work
we showed that thienopyridines, in their respective prodrug
forms, preventNTPDase1 antiplatelet activity, due to the inhi-
bition of itsADPase activity [33]. 100 𝜇Mticlopidine inhibited
the hydrolysis of ADP by about 80% [33]. Kinetic assays
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Figure 5: Inhibition of NTPDase1 ATPase activity in human tissues by ticlopidine. Enzyme histochemistry was performed on serial sections
with the substrate ATP at a final concentration of 200𝜇M in the presence or absence of 100𝜇Mticlopidine. In both tissues (liver and pancreas)
NTPDase1 ATPase activity is located in endothelial cells of all blood vessels including capillaries and sinusoids as well as in smooth muscle
cells of arteries and in resident macrophages (Küpffer cells in the liver). In addition, in the pancreas NTPDase1 is also expressed at the luminal
surface of acinar cells and in zymogen granules. The ATPase activity is seen as a brown precipitate and is completely absent in presence of
ticlopidine. Nuclei were counterstained with haematoxylin. Scale bar = 50𝜇m. V = vein; ∗ = Langerhans islet; arrows = Küpffer cells.

of the recombinant NTPDase1 showed a mixed type inhibi-
tion by ticlopidine with a 𝐾iapp of 14 [33]. Here we further
showed that ticlopidine can be used as a specific inhibitor
of NTPDase1 from various species, human, mouse, and rat
(Figures 2(a) and 3). At 100 𝜇M concentration, ticlopidine
inhibited the murine forms of NTPDase1 less efficiently than
human NTPDase1, but at 1mM we observed the same level
of inhibition for all tested species (Figures 2(a) and 3). The
most important value of this molecule is its selectivity in its
prodrug form. Indeed at 100 𝜇M, ticlopidine did not affect
the activity of the other major ectonucleotidases, namely,
NTPDase2, NTPDase3, NTPDase8, NPP1, and NPP3 (Fig-
ures 2(b)–2(d) and 4), whereas at 1mM, ticlopidine weakly
impeded the activities of NTPDase3 and the ATPase of
NTPDase8 (10–20% inhibition, Figures 2(c) and 2(d)). In
our previous study, we saw that ticlopidine had no effects on
the human ecto-5󸀠-nucleotidase activity and decreased the
activity of rat ecto-5󸀠-nucleotidase by about 25% at the
concentration of 300𝜇M [33].

An interesting aspect in the actual study was the observa-
tion that the inhibition of NTPDase1 was more striking with
a near complete inhibition when the enzyme was tested in its
intact natural form, at the surface of cells such as in HUVEC
or in tissues compared to the recombinant enzyme from a cell
lysate (Figures 1 and 5).This characteristic, which needs to be
further investigated, makes ticlopidine a good candidate for
inhibition assays with cells that express NTPDase1.

In summary, we identified ticlopidine as a new specific
inhibitor of NTPDase1 that is specifically efficient with cell
expressed NTPDase1.
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