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Abstract

Protein–protein interactions play critical roles in biology, and computational design of interactions

could be useful in a range of applications. We describe in detail a general approach to de novo

design of protein interactions based on computed, energetically optimized interaction hotspots,

which was recently used to produce high-affinity binders of influenza hemagglutinin. We present

several alternative approaches to identify and build the key hotspot interactions within both core

secondary structural elements and variable loop regions and evaluate the method's performance in

natural-interface recapitulation. We show that the method generates binding surfaces that are more

conformationally restricted than previous design methods, reducing opportunities for off-target

interactions.
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Introduction

Protein–protein interactions play key roles in diverse cellular processes, including cell

signaling, immune response, and host–pathogen recognition. The atomic structures of

thousands of protein complexes have been solved by X-ray crystallography and nuclear

magnetic resonance spectroscopy. Together with biophysical studies on the contribution of

individual amino acid residues to binding, these experimental data provide a detailed view

of the molecular basis for association of natural proteins.

Despite this wealth of information, until recently, general tools for computational design of

novel protein binders were not available, suggesting deficiencies in our understanding of
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protein association. Indeed, most existing technologies for generating specific binding

proteins have been confined to in vitro screening and selection of antibodies and specialized

protein scaffolds such as ankyrins and fibronectin domains.1–5 Though such methods have

resulted in promising therapeutics and diagnostics, they do not allow targeting of a specific

region of interest on a target protein surface. They also rely on a handful of protein scaffolds

from which new binders are evolved (e.g., the immunoglobulin fold), and an optimal

topology for binding to a target surface might be inaccessible to any of the scaffolds in a

given experiment. By contrast, computational design of protein binders allows the testing

and refining of our understanding of molecular recognition and can take advantage of many

different scaffolds.

Structures of biologically relevant protein–protein interfaces (in contrast to crystal lattice

interactions) reveal that 1600 ± 400 Å2 of the previously solvent-accessible surface area is

buried upon complexation.6 Shape complementarity (Sc)7 between the two surfaces is

exquisite with clusters of core interactions providing a disproportionate amount of the

binding energy (examples are shown in Fig. 1). These clusters, originally termed interaction

hot-spots by Clackson and Wells, have been subsequently characterized in many protein

complexes (reviewed in Ref. 11).12 Upon single-site mutation of hotspot residues to alanine,

binding affinity typically decreases by several orders of magnitude.13 The interactions

mediated by these hotspot residues are energetically very favorable, involving hydrogen

bonds, tight van der Waals packing, and favorable electrostatics, and are more evolutionarily

conserved on average than the remainder of the interface.14–16 Co-crystal structures show

that several different proteins that interact with a single target surface often use analogous

key residues in spite of large differences in the binders' folds. In a phenomenon termed

structural mimicry,17 bacterial effectors of host proteins position the same hotspot residues

in spatially overlapping locations with those of the host effector proteins (Fig. 1d), though

sharing no secondary structural elements. Such evolutionary convergence on the same

placement of key residues may indicate that these hotspot residues represent an optimal

solution to the challenge of binding to the target surface.

Computational motif-grafting approaches have been used to design protein binders of DNA

and other proteins. Liu et al. identified a set of three key residues in human erythropoietin

(Epo) interacting with erythropoietin receptor (EpoR) and grafted these residues on an

unrelated protein to obtain a high-affinity binder to EpoR.18 Havranek and Baker used

restraints on backbone positions to guide backbone sampling to conformations that are

compatible with positioning residue motifs for binding DNA sequences.19 Although

powerful, a limitation of grafting methods is that they are restricted to the interactions

previously observed in crystal structures. Such restrictions result in a limited repertoire of

viable backbones and do not take full advantage of the plasticity of hotspots implied by the

above-mentioned examples of structural mimicry.17

Side chains that make important contributions to binding are conformationally restricted by

dense interaction networks involving surrounding side chains and backbone atoms on their

host monomer, thereby disfavoring nonnative binding modes.20 Recently, a computational

method for two-sided design centering on the incorporation of high-affinity residue

interactions at the interface of two naturally noninteracting proteins yielded a de novo high-
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affinity interacting pair.21 However, a co-crystal structure of a close variant of the

computational design showed significant rearrangements at the interface compared with that

of the model, such that the experimentally determined interface utilized the same surfaces

but reoriented by 180°. Taken together, these observations suggest that, to achieve specific

molecular recognition, design methodology should incorporate elements of negative design,

where off-target states are penalized.22 However, explicit modeling of all alternative states

during design is computationally intractable for even modestly sized protein systems.23, 24

We reasoned that the clustering of hotspot residues, often observed in natural interfaces,

may lead to dense interaction networks disfavoring alternative states as any rearrangement

of the network would likely result in the elimination of favorable interactions and

introduction of steric overlaps, conformational strain, or energetically unfavorable voids.

The strategy of forming dense interaction networks is computationally affordable, as it does

not require explicitly modeling alternative states.

Based on this reasoning, we recently developed a computational method to generate high-

affinity binders of influenza hemagglutinin by constructing a diverse hotspot conception

comprising thousands of potential amino acid residue combinations and incorporating these

interactions on diverse scaffolds.25 This method opened the way, in principle, to the design

of proteins binding any desired protein target. Here, we generalize this method to a range of

design scenarios and show that it produces interfaces which recapitulate some key properties

of native interfaces.

Results

A flowchart describing a generalization of our method is shown in Fig. 2. Our strategy

centers on forming high-affinity interactions at the core of the interface. The first step (1A in

Fig. 2) involves the construction of an interaction hotspot region by single-residue docking

with RosettaDock26 using rigid-body sampling and side-chain repacking. We require that

hotspot residues form dense interactions, interacting favorably with both one another and the

target surface, as seen in natural interfaces (Fig. 1). This step can be used to precompute

interactions with an arbitrarily large number of surfaces on the target protein. Hotspot

residues can be of any type but, as in natural interfaces, are primarily larger amino acids

such as aromatics. A specific hotspot region typically contains multiple types of amino acids

to best complement the physicochemical properties of the binding surface. For each hotspot

residue, all rotamers compatible with the computed binding mode are used—each results in

an alternative position for the backbone of the scaffold position that will ultimately support

it (step 2A). In a parallel step, which is completely independent from the first step, we use

coarse-grained docking of the two protein partners to compute high-shape-complementary

configurations of the designed scaffold protein and the target surface (1–2B). Next (step 3),

the results from the first two steps are combined: in the vicinity of each of the coarse-

grained binding modes found in the second step, a search is carried out for rigid-body

orientations that support as many of the hotspot residue backbones as possible. In step 4, the

hotspot-placement step, the hotspot residues are explicitly incorporated on the scaffold

protein, followed by structural and energetic filters (step 5). The remainder of the residues in

the scaffold that are at the protein–protein interface are then designed (step 6) and refined,

and several filters including ones that are tailored specifically for the particular target (such
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as specific hydrogen-bonding patterns at the interface) are used to screen the resultant

designs (step 7). RosettaScripts27 implementations for each of the cases described here are

available as Supplemental Data.

Hotspot interactions are dominated by short-range contacts, such as van der Waals packing,

hydrogen bonding, and the burial of hydrophobic surfaces, which are generally well

modeled by the Rosetta all-atom energy. Thus, the use of hotspot-based constraints is

unlikely to improve design simply by compensating for errors in the energy function.

Instead, by designing the hotspot residues so they interact favorably both with the target

surface and one another, we increase the chances that the binding surface would adopt the

designed conformation even in the target's absence, precluding other conformational states

of the designed surface that would be incompatible with binding the target.20

Three strategies for generating hotspot residue libraries (steps 1A and 2A)

De novo design of high-affinity interactions—To identify high-affinity interactions

in an unbiased way, we exhaustively dock all amino acid residues (except Cys, Gly, and

Pro) against the target's surface. Each residue is treated as a small-molecule ligand, and

RosettaDock26 is used to sample the rigid-body interactions between the side chain and the

target protein, similar to the method of Ben-Shimon and Eisenstein.28 As the docked

residue's backbone will not be fully accessible for interaction in the context of a designed

protein, the force field used in docking the residue only considers the steric repulsion terms

related to backbone atoms. The target protein can be held fixed or allowed to repack to

identify potential binding sites not observed in the crystal structure, producing more diverse

hotspots.

We find that the lowest-energy interactions identified in fixed target docking calculations

form clusters of chemically similar residues with respect to the target surface, for example,

of acidic residues interacting with basic patches on the target and vice versa (Fig. 3a). These

interactions sometimes recapitulate natural hotspot interactions, as observed in the docking

of Glu residues in a manner very similar to that of the barstar's Asp39 hotspot residue (Figs.

1a and 3b). However, by focusing on single-residue docking, this strategy cannot, by itself,

generate clusters of interacting hotspot residues as observed in many natural interfaces (Fig.

1a–c). To generate such clusters of favorably interacting residues, one could conduct a

second round of residue docking against a protein surface comprising the target site and

previously identified hotspot residues and select residues that form high-affinity interactions

with both the target surface and the previously identified hotspot residues.

Diversified native hotspots: Co-crystal structures of natural protein complexes reveal only

one or, in favorable cases, a handful of different bound structures involving any target site,

thus limiting the usefulness of crystal structures for design of novel binders. However, the

hotspot interactions observed in natural binders can be diversified to generate a hypothetical

hotspot region comprising thousands of combinations of residue interactions with the target

surface. We developed two strategies for doing so: inverse rotamers starting from a fixed

side-chain functional group and rigid-body docking.
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Inverse rotamers: This approach is suitable for interactions in which the hotspot residue

functional group makes very favorable and geometrically constrained interactions with the

target surface. Since the functional group interactions are very well defined in this case,

diversification is restricted to non-clashing residue conformations that position the

functional group in the appropriate location for interaction with the target. This

diversification procedure was used to generate a diverse set of interactions with the

immunity protein (Im) 9 surface based on the Phe86 hotspot residue from the colicin

endonuclease (E) 929 (Fig. 3c). The identities of the hotspot residues can be further

diversified by choosing chemically similar side chains that are compatible with interacting

with the target surface (e.g., the other aromatics in addition to Phe).

Rigid-body docking: In this approach, a hotspot residue observed in the co-crystal structure

is docked against the target surface, isolating high-affinity interactions. This procedure is

better suited to hotspot residues where the geometric constraint is more lax and where a

larger diversity of backbone positions is desired, for example, the E9-Tyr83-based hotspot

position against the Im9 surface (Fig. 3d). While docking the hotspot residue, previously

isolated hotspot residues can be positioned in an optimal location ensuring that the docked

side chain interacts favorably with other hotspot residues, as well as with the target surface

forming native-like densely interacting clusters of hotspot residues.

Docking in a hotspot-restraint-based force field

Pairs of target and scaffold proteins are first docked using PatchDock30 to identify shape-

complementary configurations without any hotspot-based restraints (steps 1B and 2B). In

this study, we restrict ourselves to the top 100 PatchDock orientations, but typically,

PatchDock produces several thousand configurations for each scaffold protein with respect

to the target site, providing many alternative binding modes. These preliminary

configurations are coarse-grained, and many steric overlaps are observed at the interface,

which are relieved by subsequent rounds of sequence design and all-atom refinement.

The PatchDock orientations are then refined using low-resolution RosettaDock to generate

rigid-body orientations compatible with the hotspot residues identified as described in the

previous section.26 Docking refinement is limited to rigid-body orientations in the vicinity

of the PatchDock-computed configuration to retain high shape complementarity. The force

field that is normally used by RosettaDock is augmented with strong hotspot-based restraints

to enrich for configurations of the scaffold that would be compatible with harboring as many

hotspot residues as possible [Fig. 4a and Eqs. (1) and (2)], and configurations that do not

satisfy at least one restraint are triaged, thereby pruning design trajectories that are unlikely

to produce hotspot-containing interfaces.

Following Monte-Carlo-based low-resolution docking, side chains on the scaffold protein

within 10 Å of the target surface are reduced to their Cβ atom (excepting Pro, Gly, and

disulfide-linked cysteines, which are not designed), and the side-chain conformations and

rigid-body configuration of the two proteins are minimized, again with strong hotspot

restraints (Fig. 4b and step 3). Even though the minimized configuration is often extremely

close to the native, with the Cα atoms of the hotspot residues under 1 Å from those of the
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natural complex, we found that sequence design following this docking minimization step

usually does not produce a native-like hotspot-containing region, highlighting the

ruggedness of the energy landscape around the native configuration. We therefore follow

docking with an explicit hotspot-placement step.

Hotspot residue placement on redesigned scaffolds

Following docking refinement, the scaffold protein is within close distance to a

configuration that may be compatible with harboring the precomputed hotspot residues. We

next iterate over scaffold positions within 4 Å of the hotspot residues within each hotspot

residue library and place them on the scaffold (step 4). We implemented three methods of

incorporating the hotspot residues, different combinations of which could be used in

different design scenarios.

Scaffold placement superimposes the scaffold protein such that one of the scaffold residues

matches one of the precomputed hotspot residues precisely. The advantage of this placement

strategy is that it results in a designed scaffold that reproduces exactly the interaction with

the target protein that was computed for the disembodied amino acid residue in the hotspot

residue library. This strategy is optimal for interactions where a precise geometric

relationship between the hotspot residue and the target surface is required. An example of

such a scenario is given by Phe86 in the colicin E9, which is conformationally highly

restricted (Fig. 3c). Following scaffold placement, the rigid body of the scaffold protein and

the side-chain degrees of freedom of the designed hotspot residue are minimized to reduce

strain. This step can result in eliminating the critical contacts between the hotspot residue

and the target, for instance, the aromatic interactions between the Phe hotspot residue and

Im9's Tyr54 (Fig. 3c), and is followed by energetic and structural filters to ensure that the

hotspot residues retain their close-to-optimal positions (step 5). Scaffold placement cannot

be invoked more than once without deforming the scaffold protein's main chain, and thus,

subsequent placements require other strategies, two of which are outlined below.

Hotspot residue placement iterates over each hotspot residue in a library and minimizes the

configuration of the scaffold protein matching a randomly chosen scaffold position within 4

Å of the idealized hotspot residue with a single hotspot residue subject to the restraints of

Eqs. (1) and (2). If other hotspot residues were previously placed, we take advantage of the

dihedral degrees of freedom of these side chains by freeing them during minimization,

subject to the constraint that the hotspot residue's functional group maintains its position

with respect to the target. For colicin E9–Im9 design (Fig. 3c and d), we minimized the

dihedral degrees of freedom of the first placed aromatic hotspot residue (corresponding to

E9's Phe86) starting from the side chain's Cγ going back to the scaffold's backbone.

Following minimization, the second hotspot residue (corresponding to E9's Tyr83) is

explicitly modeled on the selected scaffold position, and the configuration of the complex is

further minimized in an all-atom force field.

If more than two hotspot residues are to be placed or if many different conformations need

to be scanned, such as when backbone conformational changes are modeled, the iterative

grafting protocols described above become computationally very demanding. We therefore

implemented a third variant called simultaneous placement. In this protocol, multiple
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scaffold positions are simultaneously coupled to multiple-site hotspot residue libraries. The

choice of which amino acid to design at each position is determined by the fit between the

orientation of the backbone position and the hotspot residue as well as the distance between

their Cβ atoms [Eq. (1) and further details in Methods]. These scaffold residues are then

redesigned to identities of the hotspot residues that were coupled to them. This strategy is

computationally efficient and was used in the flexible backbone design of antibody loops

(see below).

Following each hotspot-placement step, the resulting configurations are filtered based on the

all-atom energy to ensure that the hotspot residue is energetically favorable in the context of

the scaffold protein (step 5). In some cases, we impose additional target-dependent structural

filters, as different hotspot placements imply different filtering requirements, such as

contacts with the target surface and the formation of hydrogen bonds with specific chemical

groups on the target. These filtering steps prune the majority of modeling trajectories that

are unlikely to result in productive binding modes prior to the computationally intensive

steps of full design and refinement of the interface. The rigid-body orientation and the

hotspot side chains are then minimized. Following the design of the core hotspot region on

the scaffold protein, the surface of the scaffold protein is designed using RosettaDesign31 for

increased interaction energy (step 6). Scaffold hotspot residues are not allowed to repack

during this stage so as to maintain the clustering of the hotspot originally envisioned in the

hotspot libraries.

At the end of the design process, the complexes are filtered (step 7) for computed binding

energy32 [below −15 Rosetta energy units (R.e.u.), roughly −7.5 kcal/mol33], buried surface

area (above 1200 Å2), and shape complementarity (Sc
7 above 0.66). Additional target-

specific structural filters, such as hotspot residues satisfying particular hydrogen bonds, were

also used (see RosettaScripts in Supplemental Data). In this report, only automatic filters

were used, but prior to experimental characterization, the designs are generally visually

inspected for fine tuning and selection of candidates for testing;25 the effect (productive or

counterproductive) of this final step based on human intuition requires further investigation.

A recapitulation benchmark for protein-interface design

Standard native complex recapitulation tests are not sufficient to test the hotspot-based

method since if the natural hotspot residues are included in the hotspot libraries, the natural

binding mode would very likely be recapitulated. Indeed, the more restrictive the hotspot

conception, the higher the likelihood that the protocol would single out the natural complex

from alternatives, so that high preference for the native binder and binding mode is a trivial

outcome of our method. However, in the context of de novo design, we are interested in

generating proteins that incorporate native binder-like features in scaffolds other than the

natural binding partner. In the following, we use an interface design recapitulation

benchmark to demonstrate that an appropriately diverse set of hotspots generates native-like

interfaces in both natural and proteins that are not the natural partners of the target protein.

We assembled a diverse set of naturally occurring protein complexes (Table 1). All of these

interactions are non-obligatory and span a wide range of dissociation constants, from the

femtomolar (barnase–barstar38 and colicin immunity39) to the mid-nanomolar (Fc–protein
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A).40 Some are electrostatically steered (barnase–barstar and colicin), and others comprise

mainly hydrophobic interactions at the interface (hemagglutinin–CR6261). The benchmark

spans several functional classes, including pathogen–host recognition (Fc–protein A),

antibody inhibitors of protein function (hemagglutinin–CR6261) and enzymes (lysozyme–

antibody), and signaling (hGH–hGHR). Two complexes, barnase–barstar and colicin E9–

Im9, are used twice each, once with one chain as the target and the other as scaffold and vice

versa.

Each protein scaffold was repacked in the absence of the target to eliminate memory of the

binding configuration. It was then redocked using PatchDock.30 We find that, in the

constrained setup mentioned here, a close-to-native configuration [< 4-Å root-mean-square

deviation (RMSD) over all backbone atoms] is often identified among the highest-ranking

100 PatchDock solutions (but not in the case of hGH and its receptor, see below). The 100

best-scoring PatchDock configurations were subjected to the hotspot-centric design

protocols provided as Supplemental Information using two different sets of hotspot residue

libraries: (1) diversified from the co-crystal structure (see Table 1 entries labeled Native)

and (2) the hotspot residues in (1) augmented with de novo computed hotspot residues

(combined in Table 1).

The majority of scaffolds designed with the hotspot-centric method find configurations that

are very close (<1.0 Å) to the configuration observed in the natural complexes (Table 1).

Even trajectories that start from a PatchDock generated configuration that is as remote as 24

Å from the native end in a configuration that is very similar to that of the experimentally

determined one (hGH and its receptor in Table 1), indicating that, in some cases, restraint-

driven docking and hotspot placement have a very large radius of convergence. Sequence

recovery rates in hotspot-guided simulations are largely in line with those reported for an

enzyme design benchmark.41 These rates are approximately 30%, in keeping with the

findings that amino acid identities outside of the hotspot region are less evolutionarily

conserved14,15,42 and considerably more insensitive to mutation than those at the

hotspot,13,43–46 though improved recapitulation rates may be obtained by using an energy

function expressly optimized for protein interfaces.47

As a concrete example of the characteristically high recapitulation of the natural interaction

using this method, we demonstrate the results of subjecting the natural complex between the

bacterial ribonuclease, barnase, and its protein inhibitor barstar38 to our design protocol

(Fig. 5). The side chains of the hotspot residues are recaptured with high accuracy, and other

interacting residues are also largely recapitulated. Despite starting from 100 nonredundant

rigid-body configurations for the pair, no other configuration of the barnase–barstar system

could incorporate the desired hotspot and satisfy the specified energetic and structural filters,

illustrating the protocol's specificity and restrictiveness. Similar results were obtained for all

interfaces in the natural-interface recapitulation set (Table 1).

Redesign of nonnative scaffold proteins to incorporate hotspot-like interactions

To test the method's ability to design proteins that are not the natural partners of the target

protein as binders, we conducted a cross-design experiment, where each target protein in the

natural-interface recapitulation test was coupled to all nonnative binders in the set, and the
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same procedure as in the natural-interface recapitulation test was used. In this experiment,

the constraints implied by the hotspot strategy almost completely preclude alternative

scaffolds (Table 1, under “Alternative scaffolds”). By contrast, the Fc target, when designed

with a combined set of diversified native and de novo hotspot residues, produces designs

from all seven nonnative binders in the cross-docking experiment. The high permissibility of

Fc observed here is likely due to the fact that the two hotspot residues we selected from

protein A34 occupy positions that are separated by a single helical turn—a structural feature

that is quite common on exposed protein surfaces. The lower permissibility of the majority

of the scaffolds can be overcome by using many more scaffold proteins for design than the

seven used here. Indeed, in the design of influenza hemagglutinin binders using a total of

865 nonredundant scaffolds, multiple plausible designs were obtained despite the

conformationally restrictive nature of the target site.25

Figure 6 shows two examples in which scaffold proteins other than barstar were subjected to

this protocol to generate designed barnase binders. A redesigned protein A shows a solution

where a helix that harbors the hotspot Asp residues in a way that highly resembles the

interaction between barnase and barstar was identified (Fig. 6a). By contrast, a redesigned

colicin E9 incorporates the hotspot residues derived from barstar on a very different

backbone (Fig. 6b), with the hotspot residues nevertheless matching those seen in barstar

very closely. This solution is reminiscent of structural mimicry (Fig. 1d). In both redesigned

scaffolds, the procedure finds opportunities to form favorable interactions across the

interface that are different from those observed in the barnase–barstar complex.

Hotspot residue placement on loops generates antibody-like interactions

So far, we have discussed only scenarios where the modeled scaffold protein's backbone was

minimally perturbed. By contrast, interactions involving antibodies clearly demonstrate the

potential utility of sequence changes in loops. Our approach is easily adapted to handle a

scenario where an initial interaction has been structurally characterized and where further

interactions involving a loop segment are desired (e.g., for added affinity or specificity). In

such a case, the rigid-body orientation between the two partners can be kept fixed, and the

hotspot residues placed on completely remodeled loops of variable length. We developed a

protocol (see Supplemental Material) in which the rigid-body orientation of the scaffold

with respect to the target protein was held fixed, and residues were either inserted or deleted

from a specified loop. The loop was then modeled from scratch using kinematic loop closure

as implemented in the Rosetta software suite48 in the presence of strong hotspot-based

restraints [Eqs. (1) and (2)] and minimized. A similar approach has been used to

computationally reengineer enzyme specificity.49 Other loop-modeling strategies can be

used in place of kinematic loop closure.

As an example of the potential usefulness of this strategy, we remodeled a loop on an

antibody that interacts with lysozyme via Tyr and Arg residues. As in the approach

described above, the Tyr and Arg hotspot residues were first docked against the lysozyme

surface in the vicinity of the antibody hotspot residues and were diversified to include all

energetically compatible rotamers for each residue. The hotspot-restraint-guided loop

protocol was used to remodel the backbone by inserting one residue, two residues, or three
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residues or by deleting one residue followed by simultaneous placement of Tyr and Arg

hotspot residues. (The protocol is available in Supplemental Data.) Only one solution

comprising a two-residue insertion compared to the original antibody's sequence was

identified (Fig. 7). In this solution, the functional groups of the hotspot tyrosine and arginine

residues closely aligned with those of the original antibody's even though their backbones

were very different: whereas the original pair of residues are sequential, in the design, they

are separated by an insertion.

Hotspot-centric design yields native-like side-chain conformational probabilities

We observed previously that residues that make substantial contributions to binding affinity

in natural interfaces are conformationally restricted in the unbound state, disfavoring

conformations that would be incompatible with binding.20 Residues that were computed to

contribute substantially to binding energy were found to form dense interaction networks

with their host monomers in natural protein interfaces. By contrast, proteins designed using

a “traditional design strategy”, where binders were selected based mostly on computed

binding energy, showed lower side-chain conformational probabilities in the unbound state

than key side chains in natives. The designed binders' key side chains made more atomic

interactions across the interface than natives but fewer stabilizing interactions with their host

monomer. In fact, the contribution to binding energy from these designed residues was

computed to be higher on average than those in natural hotspots. This finding suggested that

hotspot residue stabilization in the unbound state is a negative design aspect disfavoring

alternative conformations of natural hotspots that would be incompatible with the natural

binding mode.

To test whether hotspot-centric design yields higher-probability conformations for interface

side chains, we used a recently published benchmark comprising 87 protein complexes that

were de novo designed using the hotspot-centric strategy (Fleishman et al., in press) and

contrasted the Boltzmann conformational probability distributions in the unbound state with

those observed in the docking benchmark comprising 120 natural protein complexes50, 51

(Fig. 8). The hotspot-centric de novo designed interfaces were computed and selected

without considering the interface side chains' Boltz-mann conformational probabilities. We

additionally compared these two distributions to the conformational side-chain probabilities

obtained by a more traditional dock and design strategy, where the chief criterion for design

selection was computed binding affinity (data taken from Ref. 20).

Encouragingly, the proportion of very low probability conformations (<0.05 probability) in

the hotspot-centric designs and natural sets is comparable and considerably less than that in

designs selected solely based on binding energy. While there are differences in the

distribution in the intermediate probability range (0.1–0.5), the energetic consequences of

probability differences in this range are probably within the error of the method. A few side

chains in natural interfaces have very high probability conformations (>0.50 probability),

whereas none of the designs do. This difference may in part underlie the low success rate in

protein-interface design25 (Fleishman et al., in press) and suggests that explicit modeling of

side-chain conformational probabilities may be helpful in future methodological

developments. The very high conformational probabilities in natural hotspots were found
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previously to be largely due to backbone and Cβ atoms in the host monomer eliminating a

significant fraction of alternative side-chain conformations for residues making interactions

across the interface. Hence, designing very high probability side-chain conformations may

require explicit backbone remodeling strategies such as the one described above for loop

remodeling (in most of the calculations described here, the backbone degrees of freedom

determining the positioning of backbone and Cβ atoms were not varied to avoid introducing

further sensitivity to errors in the energy function or insufficient sampling). Nevertheless,

the reduced proportion of very low probability conformations is an encouraging sign that the

hotspot-centric design strategy implicitly incorporates elements of negative design,

disfavoring alternative side-chain conformations in the unbound state.

Discussion

We have described in detail a method to design protein binders of, in principle, any desired

protein surface. The method centers on the observation that cores of natural protein

interfaces have energetically highly optimized and spatially clustered residue interactions.

Our approach can target surfaces for which crystal structures of natural binders are not

known by using hotspot interactions found in de novo residue docking calculations. The key

elements in the binder design procedure are to start with a configuration of the scaffold

protein that shows high shape complementarity toward the target surface and then to sculpt

it in a way that favors the incorporation of the precomputed hotspot residues. The resultant

redesigned scaffolds incorporate the hotspot and form additional interactions with the target.

Molecular recognition demands very high precision. To achieve this precision, binders must

favor the bound state as well as disfavor the many alternatives that are incompatible with

binding the target and those that would associate with myriad off-target molecules. Thus,

binders must employ elements of positive53 and negative22 design. Our method produces

designs with side-chain conformational probabilities in the unbound state that are

comparable to those of native complexes, thus disfavoring alternative, nonproductive

conformations. This result is significant as it shows that the clustering of side chains on

designed protein surfaces implicitly introduces elements of negative design, which are likely

to be crucial to preclude off-target binding modes as recently observed.21 As explicit

negative design is too computationally demanding for all but very limited design

problems,23,24 similar approaches could make headway in still intractable biopolymer

design problems such as flexible loop redesign and ligand binding.

Conclusions

Advances in gene synthesis and computing54 are yielding a continuing decrease in the cost

and effort needed to assemble new genes and an increase in capabilities of sampling

conformations and sequences in silico. New protein structures are added to public databases

at a high rate, not least through the various Structural Genomics Initiatives.55 The hotspot-

centric approach provides a means to leverage these technological developments for

identifying many different native-like solutions to binding of a target surface. These will

hopefully lead to efficient design of novel, high-affinity inhibitors, diagnostics, and

laboratory molecular probes that target specific surfaces on proteins.
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Methods

The design strategy follows that introduced in Ref. 25. To effectively generate hotspot-

containing de novo binders of target epitopes, we divided the computational design

procedure into three steps (Fig. 2): (1) hotspot-like interactions comprising two or more

disembodied residues interacting with the target epitope were precomputed. The residues

were clustered into separate libraries, in each of which the residues constitute a spatially

distinct interaction site. (2) Hotspot residue libraries then bias the conformational sampling

of scaffold proteins, and attempts are made to incorporate hotspot residues from the libraries

in each scaffold. (3) RosettaDesign31 was used to design interfacial residues on the scaffold

protein outside the hotspot with the aim of enhancing affinity.

De novo hotspots

To explore the effects of diversification of hotspots on protein design, we developed a de

novo search that identifies hotspot-like interactions with the target epitope. The results of the

search can be used if it is necessary to identify many more potential hotspot-like interactions

with the target site than existing crystal structures provide. Our approach is to treat the

“disembodied” amino acid of a potential hotspot residue as a ligand, searching for favorable

interactions by exhaustively docking the side chain against the target protein. Resulting

conformations are filtered on the basis of binding energy, and a small percentage is used as

candidates in a hotspot residue library. Thus, a “cloud” of residues interacting with the target

protein is narrowed down to a small number of very favorable interactions. Ben-Shimon and

Eisenstein28 have recently described a similar strategy for mapping residue interactions with

a protein target, using a pre-calculated surface representation to identify pockets that might

accommodate a hotspot.

The search for hotspot interactions is carried out using residue identities typical of a hotspot

(e.g., Trp, Tyr, and Arg).11 However, specific knowledge on a target may indicate the use of

other residue identities. For recapitulation of a native interaction, the identity of the

experimentally determined hotspot residue was used, together with conservative

substitutions. The force field used for a hotspot search up-weights the contribution of

hydrogen bonds and ignores the environmental dependence of the hydrogen-bonding energy,

attempting to approximate the burial of the hotspot upon its incorporation on a scaffold

protein. Hotspot searches can also be constrained to a particular epitope or allowed to

explore the entire target surface, depending on the amount of prior knowledge available.

Here, the hotspot search was constrained to within 25 Å of the center of the native interface.

Of 10,000 search trajectories with computed binding energy of less than −1.0 Rosetta energy

units (R.e.u.), only the top 1% per residue identity was used to construct hotspot libraries

(Fig. 3a).

Native-complex-based hotspot libraries

A diverse hotspot residue library based on a known protein–protein
interaction—Hotspot residues in a natural complex can be identified through

experimental13 or computational alanine-scanning mutagenesis.56,57 These hotspot residues

are then excised from the protein binder and diversified by two means: (1) they are docked
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against the target epitope using RosettaDock26 to generate a diversity of hotspot residues

(Fig. 3d). (2) Starting froman atomat the root of the functional group (the Cγ of aromatic

residues, the Cδ of glutamine, etc.), we construct inverse rotamers. A “fan” of residue

backbones that maintain the position of the amino acid's functional group vis-à-vis the target

protein is thus generated (Fig. 3c).

For each target, multiple libraries of spatially distinct hotspot residues are used. For

example, one library may contain Tyr and Trp side chains that interact favorably with the

target, while a second library may contain hydrophobic amino acids that engage in favorable

interactions with the target protein. As clustering of hotspot residues is often observed in

natural interfaces and could be a source of the reduced plasticity of binding sites in natural

proteins,20 docking of hotspot residues could be performed in the presence of other hotspot

residues to ensure favorable interaction energies between them.

Low-resolution docking of scaffold proteins against the target epitope—To

obtain high-shape-complementary configurations of the scaffold protein with respect to the

target epitope, we employ the PatchDock feature-matching algorithm.30 Constraints are used

to prune conformations of each scaffold protein that do not interact with the target epitope.

The surviving conformations are clustered at 4-Å RMSD. PatchDock was run with default

parameters.

Backbone restraints guide low-resolution docking of scaffold proteins to
configurations that favor hotspot residue placement—The hotspot residue libraries

are used to identify configurations of the scaffold protein with respect to the target that may

accommodate the placement of these hotspot residues. Each hotspot residue computed in the

library implies an approximate location for a position on the scaffold protein and an

orientation for the Cα−Cβ and the C–N vectors. Using Fig. 4a as a guide, we formulate

scoring restraints to bias conformational sampling to configurations that would favor the

placement of the hotspot residues. For each hotspot residue h and each scaffold position i,

we formulate scoring restraints  to bias conformational sampling to configurations that

would favor the placement of the hotspot residues:

(1)

where ΔGh is the computed binding energy for hotspot residue h, is always negative, and

was chosen to be −3 in all design trajectories; β, α, C, and N are the coordinates of the Cβ,

Cα, C, and N atoms; k (the spring constant) is arbitrarily set to 0.5; min is the minimum

function ensuring that the restraint is negative or zero; the quantities within the square

brackets are the dot products of the relevant vectors; and

 is a normalization constant.

This form of the restraint function reaches a minimum when the distance between the Cβ of

the hotspot residue and a position on the scaffold is 0 and when the Cα–Cβ and C–N vectors

are matched. Thus, a given restraint is best satisfied when a potential grafting position on the
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scaffold is perfectly aligned with a precomputed hotspot residue. If the orientation of either

of the two vectors of position i with respect to hotspot h is more than 90°, then  is set to 0.

A library of n hotspot residues thus implies n restraints. Each residue i is then assigned the

smallest of these n restraints:

(2)

Eq. (2) then assigns the minimal restraint to each amino acid position on the scaffold, so that

each scaffold position is affected only by the most appropriate hotspot restraint at any given

time during conformational search.

Since only the locations of the Cβ and the backbone atoms are required in evaluating , the

restraints can be computed efficiently during low-resolution Monte-Carlo-based docking of

the scaffold protein with respect to the target. Importantly, the restraints can be used during

minimization as Eq. (1) is readily differentiable.

Hotspot residue placement—Following the identification of a configuration of the two

partners that may be favorable for placing the hotspot residues contained in the library on

the scaffold protein, we explicitly model hotspot residues onto the scaffold protein. We

developed three methods for hotspot residue placement for use in different contexts. For all

methods, we start with the configuration of the scaffold protein that was obtained from

hotspot-residue-guided docking and minimization and with one of the hotspot residue

libraries. With the exception of Gly, Pro, and disulfide-linked cysteines, interfacial residues

on the scaffold protein within 10 Å from the target protein are reduced to alanine to increase

the chances of accommodating the hotspot residues.

Placement of the scaffold onto an idealized hotspot residue

The residues within the hotspot residue libraries define configurations that are optimal for

realizing the hotspot interaction. Here, for a given interfacial scaffold position, we iterate

over each of the nearby hotspot residues in the library and rotate and translate the scaffold

protein so as to align it perfectly with the rotamer of the hotspot residue. Scaffold positions,

for which the Cβ atoms are farther than 4.0 Å from the relevant hotspot residue or whose C–

N or Cα–Cβ vectors are misaligned with the hotspot residues by more than 60°, are triaged

to avoid compromising the initial high-shape-complementarity configuration of the two

partners (see Fig. 4a for an illustration of these vectors). We then minimize the rigid-body

orientation and the side-chain degrees of freedom of the placed hotspot residue in a reduced

force field that only considers the punitive energy terms for van der Waals clashes and

rotameric energies. If the energy of the placed hotspot residue is higher than 1.0 R.e.u., we

discard this placement.

Placement of a hotspot residue onto a scaffold position

Here, for each interfacial scaffold position, we minimize the configuration of the scaffold

protein with respect to the target in the context of a single restraint [Eq. (1)] derived from

the hotspot residue. All other parameters and cutoffs are as in the previous section.
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Simultaneous placement of multiple hotspot residues

For each hotspot residue library, we identify a position on the scaffold protein that produces

themost favorable restraint score as defined by Eq. (1) compared to the remainder of the

hotspot residue libraries. Each such scaffold position is then coupled to the appropriate

hotspot residue library. If not all hotspot residue libraries are matched to different scaffold

positions, the configuration of the scaffold with respect to the target is discarded. Upon

success, we simultaneously redesign the identities of the relevant scaffold positions to those

amino acid identities contained in their matched hotspot residue libraries. Since only a

handful of positions are designed in this scheme and since the identities of the designed

residues are limited based on the relevant hotspot residue library, adding off-rotameric

conformations into the design step is computationally affordable.

Redesign of residues outside of the hotspot

Following the successful placement of residues from all hotspot residue libraries, a shell of

scaffold positions that are at most 10 Å from the target protein is redesigned using

RosettaDesign,31 while the target protein side chains are allowed to repack. Gly, Pro, and

disulfide-linked cysteines are left as in the wild-type sequence. Minimization of backbone,

rigid-body, and side-chain degrees of freedom at the interface is interspersed between

various design schemes that ramp up and down the van der Waals clash and rotameric strain

penalties. These minimization and design steps are useful in obtaining higher sequence

diversity in design. The last design step uses a force field with high weights on the punitive

energy terms, such as steric clashes and rotameric strain to ensure that the designed residues

do not assume high-energy conformations.

During these design simulations, the side chains of the grafted hotspot residues are biased

toward the coordinates of the idealized hotspot residues as present in the hotspot residue

library (similar to the implementation in Ref. 19). This bias is implemented as harmonic

coordinate restraints on, typically, three atoms that define the functional group of the side

chain, in effect pulling the placed hotspot residue's functional group toward its idealized

position with respect to the target protein. For example, these atoms would be the three

carbon atoms at the root of an aromatic ring or the three polar atoms in the side chains of

Gln, Asn, Glu, and Asp residues. To ensure that the placed residues are stable in their

position on the scaffold, we gradually remove all restraints during the simulation, and carry

out the last packing and minimization step in the absence of restraints.

Each resulting model is automatically filtered according to computed binding energy32 and

shape complementarity.7 In this study, we do not carry out any additional manual filtering.

Binding-energy calculations

In keeping with Ref. 32, the binding energy is defined as the difference between the total

system energy in the bound and unbound states. In each state, interface residues are allowed

to repack. For numerical stability, binding-energy calculations were repeated three times,

and the average was taken.
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Boltzmann conformational probabilities of interface side chains

For comparison with published results, we used the same method, parameters, and reference

set of natural complexes as in Ref. 20. For each complex, the method first separated the

partners, and for each residue that makes an appreciable contribution to binding (binding

energy increases by more than 1.5 R.e.u. upon mutation to alanine), it iterated over all of its

rotameric states as defined in the Dunbrack library of backbone-dependent rotamers,58

excluding rotamers that are predicted to form steric clashes with protein main chain or Cβ

atoms. For each rotamer placement, all residues within a 6-Å shell were repacked and

minimized. The energy E of each such state was then evaluated using the Rosetta all-atom

energy function,59 which is dominated by van der Waals, hydrogen bonding, and solvation

terms. The probability of the conformation of residue i, pi, was then computed assuming a

Boltzmann distribution:

(3)

where s is the rotameric state, kB is the Boltzmann constant, and T is the absolute

temperature. kBT was set to 0.8 R.e.u. in all simulations. Ei is the energy of the unbound

state.

Shape complementarity

Shape complementarity was computed using the CCP4 v6.02 sc program.60

Source code availability

The methods have been implemented within the Rosetta macromolecular modeling software

suite and are available through the Rosetta Commons agreement†. All of the methods have

been implemented through Rosetta-Scripts, and all scripts are available as Supplemental

Data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Examples of naturally occurring hotspots. (a) Bacterial ribonuclease barnase (pale cyan) and

its inhibitor barstar (green). Hydrogen bonds between a hotspot aspartate on barstar and

three basic side chains are marked as yellow dashed lines. (b) Bacterial colicin endonuclease

E9 (green) and immunity protein Im9 (pale cyan). E9 hotspot residue Phe86 and Im9 hotspot

residue Tyr54 are shown in sticks. The hotspot is supported by peripheral interactions, such

as a salt bridge involving Arg54 (E9) and Glu30 (Im9). (c) Human growth hormone receptor

(green) and human growth hormone (pale cyan). Two Trp hotspot residues are shown in

sticks. (d) Structural mimicry shows key residues that are conserved between proteins that

interact with a similar surface. Human Cdc42 GTPase-activating protein8 (green) and

Salmonella SptP9 (gold) share a key arginine residue at the core of the interface, through

which they interact with a GTPase (pale cyan). Sticks show key residues, including hotspot

residues. All molecular representations were generated using PyMOL.10
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Fig. 2.
Overview of the hotspot-centric design strategy. Labels (1A, 1B, etc.) are used in Results to

refer to individual steps in the design process. The first two steps, 1 and 2, are divided into

two independent design paths, signified by labels A and B.

Fleishman et al. Page 21

J Mol Biol. Author manuscript; available in PMC 2014 August 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3.
Construction of hotspot residue libraries. (a) A de novo hotspot library of the barnase surface

highlights the barstar hotspot-binding site (yellow arrow). Ten thousand trajectories of all

natural amino acids except Gly, Cys, and Pro were evaluated, and the best 1% by calculated

binding energy of each residue identity was used to build a hotspot library. The barnase

surface is colored by electrostatic charge using vacuum electrostatics in PyMOL. (b) De

novo identified hotspot interactions of Glu (pink sticks) closely recapitulate the interaction

of barstar Asp39 (green sticks) with barnase. (c) Inverse rotamers of the colicin E9 hotspot

Phe86 (yellow sticks) against the surface of Im9. Im9 hotspot residue Tyr54 is shown in

pale-cyan sticks. Highly optimal π-stacking interactions between E9 Phe86 and Im9 Tyr54

restrict the rigid-body orientation of the Phe hotspot residue. (d) E9 hotspot Tyr83 has more

conformational freedom against the Im9 surface than the Phe86 of (c), allowing for rigid-
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body docking of the Tyr residue (orange). For each docked conformation, inverse rotamers

were built as in (c) but, for clarity, are not shown in this figure.
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Fig. 4.
Hotspot-based restraints. (a) Hotspot-based restraints are derived according to Eq. (2) from

hotspot residues (green) and applied to scaffold positions (gold). (b) The rigid-body

conformation of native barstar (green) was locally docked (purple) and then minimized

(orange) against its target surface on barnase (pale cyan) in the presence of strong hotspot-

based restraints. The hotspot aspartates are shown as sticks in all three models. The

distances between the Cα atoms of the hotspot residues in the native state compared to the

redocked state are 1 Å, and after minimization, the distances are below 0.2 Å.
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Fig. 5.
Redesigned barnase–barstar interaction closely recapitulates the native complex. The native

interface is shown in green, and the redesign is shown in gold. Barnase is represented in pale

cyan. Conserved residues at the interface are shown as sticks.
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Fig. 6.
Redesigned proteins that mimic the hotspot barnase–barstar interaction and form additional

interactions across the interface. Barnase is shown in pale cyan, and the native barstar is

shown in green. The redesigned scaffold protein is in gold. (a) Redesigned protein A. (b)

Redesigned colicin E9. The hotspot aspartates and the additional interactions between the

designed proteins and barnase are shown in sticks.
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Fig. 7.
Complete redesign of antibody-like loop interactions with a target surface. Lysozyme (pale

cyan) interacts with an antibody (green). Hotspot residues on the antibody are shown in

sticks. Following complete redesign of a loop, a two-residue insertion was identified in the

antibody loop that encompasses the two hotspot residues, which places the functional groups

of the hotspot residues on the redesigned antibody (gold) in close proximity to their natural

counterparts.

Fleishman et al. Page 27

J Mol Biol. Author manuscript; available in PMC 2014 August 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 8.
Comparison of side-chain conformational probabilities in natural and designed complexes.

The side-chain conformational probabilities in the unbound state [Eq. (3)] were computed

using the method in Ref. 20. Hotspot-centric design yields complexes with a comparable

proportion of low-probability conformations (≤ 0.05 probability) to native complexes,

whereas the “traditional designs” selected on the basis of binding affinity show

proportionately more low-probability side-chain conformations. Both design strategies have

fewer high-probability conformations (>0.50) than do natural interfaces, potentially

explaining the low success rate in the protein binder design. The energetic consequences of

differences in the intermediate probability range (0.1–0.5) are less significant than in the

extremes of the probability. The native set contains the docking benchmark complexes (120

proteins);52 the hotspot designed set is taken from the protein-interface design benchmark

(87 proteins) (Fleishman et al., in press), and the traditional designs are taken from Ref. 20.
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