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Abstract

Converging evidence suggests that addiction can be considered a disease of aberrant learning and

memory with impulsive decision-making. In the past decades, numerous studies have

demonstrated that drug addiction is involved in multiple memory systems such as classical

conditioned drug memory, instrumental learning memory and the habitual learning memory.

However, most of these studies have focused on the contributions of non-declarative memory, and

declarative memory has largely been neglected in the research of addiction.

Based on a recent finding that hippocampus, as a core functioning region of declarative memory,

was proved biased the decision-making process based on past experiences by spreading associated

reward values throughout memory. Our present study focused on the hippocampus. By utilizing

seed-based network analysis on the resting-state functional MRI datasets with the seed

hippocampus we tested how the intrinsic hippocampal memory network altered towards drug
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addiction, and examined how the functional connectivity strength within the altered hippocampal

network correlated with behavioral index ‘impulsivity’.

Our results demonstrated that HD group showed enhanced coherence between hippocampus which

represents declarative memory system and non-declarative rewardguided learning memory

system, and also showed attenuated intrinsic functional link between hippocampus and top-down

control system, compared to the CN group. This alteration was furthered found to have behavioral

significance over the behavioral index ‘impulsivity’ measured with Barratt Impulsiveness Scale

(BIS). These results provide insights into the mechanism of declarative memory underlying the

impulsive behavior in drug addiction.

Keywords

drug addiction; hippocampus; declarative memory; functional connectivity; impulsivity; decision-
making

1. Introduction

One of the defining clinical characteristics of drug dependence is uncontrolled drug use in

the face of adverse consequences, making the “loss of impulsive control” the hallmark of

drug addiction [1–5]. Individuals with addiction are unable to base their decision-making on

the long-term outcome of their choices and exhibit uncontrolled impulsive behavior [6, 7].

Converging evidence from cellular, behavioral and pharmacological studies suggests that the

abnormality in decision-making of addicted subjects can be considered a disease of aberrant

learning and memory [8–11]. In the past decades, studies from animal models to human

subjects have demonstrated that drug addiction is involved in multiple memory systems. For

example, the mechanisms involved in classical Pavlovian conditioned drug memory and

instrumental conditioned incentive learning memory, mediated in part by nucleus

accumbens (NAcc), amygdala, and the orbitofrontal cortex (OFC) could be responsible for

the drug reinforcement and motivational drive, resulting in executive control failure [5, 6,

12–15]. The procedural (habitual) learning disorder, mediated in part by the caudate and the

putamen, represents a transition at the neural level from prefrontal cortical to striatal control

over drug seeking and drug-taking behavior [16]. Recent resting-state functional studies

supported these findings and illustrated abnormalities in these abovementioned brain regions

involved in multiple memory systems in addiction [17–20].

Despite having established a significant role for learning and memory in addiction, most of

these studies have focused on the contributions of non-declarative memory. Nevertheless,

memory is not a unitary process but rather consists of multiple processes that engage distinct

neural substrates. For drug memory, a major dissociation is between declarative drug

memory and non-declarative drug memory [21– 23]. Distinguished from our understanding

of mechanisms of non-declarative memory such as conditioned incentive learning memory

and habitual learning memory, mechanisms of declarative memories have largely been

neglected in research of addiction [22, 23]. Declarative memory consists of knowledge of

facts, events and biographical memory of the personal experiences that can be explicitly

stated and relies crucially on the integrity of hippocampus and surrounding medial temporal
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lobes (MLT) [22–27]. In addiction for example, declarative drug memory includes places,

people or paraphernalia associated with past drug-using experiences [28].

Understanding the contributions of the declarative memory encoded by the hippocampus

may present new direction in decision-making research and highlight how humans flexibly

use previous memorized information to guide future choices in novel context, especially

those whose decision-making is adversely affected by disease such as addiction [22].

Recently, it was reported that as a core functioning region of declarative memory,

hippocampus was activated to dynamically modulate value representations, spreading

reward values across associated item pairs, thereby creating biased decisions based on past

experience [29]. With this new mechanism in decision-making, the present study focuses on

the hippocampus [22, 23]. We tested how the intrinsic hippocampal memory network altered

towards drug addiction, and examined how the functional connectivity strength within the

altered hippocampal network correlated with behavioral index ‘impulsivity’ measured with

Barratt Impulsiveness Scale (BIS) in abstinent heroin-dependent subjects.

2. Material and Methods

2.1. Participants

Thirty abstinent heroin-dependent (HD) subjects were recruited from Beijing Ankang

Hospital (Beijing, China), and 20 healthy control nondrug users (CN) also participated in

this study. Both groups of participants were comprised of right-handed males with normal

intelligence and were well matched for age and years of education. Detailed inclusion and

exclusion criteria for heroin abusers and control subjects were described in our previously

publications [17, 30, 31]. Briefly, the HD subjects met DSM-IV criteria for heroin-

dependence, with more than two years of heroin use, and were abstinent for at least four

weeks. They were also tested negative for morphine in the urinalysis and negative for human

HIV in blood test. None of the subjects had a history of neurological and psychiatric

diseases, seizures, head injury or abnormalities demonstrated by an anatomical MRI scan.

The inclusion and exclusion were assessed by two experienced psychiatric physicians in

accordance with the Structured Clinical Interview for DSM-IV (SCID) (for demographic

information see Table 1). The study was approved by the Research Ethics Committee of

Beijing Ankang Hospital and the Beijing Institute of Basic Medical Science and conducted

in accordance with the Declaration of Helsinki. Written informed consent was obtained from

all individual subjects prior to the study. Eight HD and five CN subjects were excluded from

this study due to motion artifact (i.e., translational movement exceeded 1mm or more than

1° rotational movement), thus leaving 22 and 15 subjects in the HD and CN groups for

further analysis, respectively.

2.2. Behavioral measurement

We used impulsivity as behavioral marker of heroin addiction. Impulsivity was assessed by

using the Barratt Impulsiveness Scale ver.11 (BIS-11, Chinese revised edition) [32], which

constitutes 30 4-point Likert-type items. Higher scores signify higher impulsivity, and vice

versa. All participants completed the questionnaire.
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2.3. MRI acquisition

MR-Images were acquired by using a 3T Signa GE scanner with a standard quadrature

transmit-receive head coil. The whole-brain resting-state fMRI data was acquired with a

single-shot gradient-recalled echo planar imaging (EPI) sequence, and the scanning

parameters were as follows: TE/TR=25/2000ms, flip angle=90°, slice=20, slice

thickness=5mm (with an additional 1-mm gap space), matrix size=64 × 64, FOV=24cm ×

24cm. The total 180 time points of images were collected. During the 6- minute resting

scans, all the subjects were instructed to rest, keep their heads still, eyes closed and not to

fall asleep. We also obtained high resolution anatomical images of each individual using

three dimensional T1-weighted spoiled gradient-recalled echo (SPGR) scans with the

following scanning parameters: TE/TR=4.8/10.4ms, flip angle=15°, slice=140, slice

thickness=1mm, matrix size=256 × 256, FOV=24cm × 24cm. Besides, we also recorded

cardiac activity and respiratory activity of each subject for further use in physiological

motion correction for fMRI signals.

2.4. Image preprocessing

All imaging data preprocessing and functional synchrony analyses were conducted using the

Analysis of Functional NeuroImages software (AFNI, http://afni.nimh.nih.gov/afni/),

Statistical Parametric Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) on

Matlab platform. For imaging preprocessing, the first five volumes of the datasets were

discarded due to the T1 nonequilibrium effect. This was followed by slice timing correction

and volume registration (3dTshift, 3dvolreg, AFNI), linear de-trend (3dDetrend, AFNI) and

physiological motion correction (respiratory and heart rate, 3dretroicor, 3dDeconvolve,

AFNI). Possible contamination from noise including signal from white matter, cerebral

spinal fluid (CSF), global signal, and six-way motion vectors (as well as their 1st order

derivatives) were regressed out (3dDeconvolve, AFNI). A band-pass filter was then applied

to keep the low-frequency fluctuations between 0.015Hz and 0.1 Hz (3dFourier, AFNI) [33,

34].

2.5. Structural image analysis

Optimized Voxel-Based Morphometric (o-VBM) analysis was conducted using SPM8

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8) [35] to identify the gray matter (GM)

volume of each subject in the two groups. The individual T1-weighted images for all

subjects were first segmented into three parts: GM, white matter (WM) and cerebral spinal

fluid (CSF). The segmented GM was then normalized into MNI space. In the mean time, the

anatomical images were also normalized into MNI space using the deformation field

generated by the normalization of GM. The normalized anatomical images were then

segmented for the second time into GM, WM and CSF. The o-VBM procedure was finished

and the current segmented (2nd time) GM (modulated images) could be extracted using a

cluster detection method to determine the GM volume for each individual (3dclust, AFNI,

cluster detection size set as voxel size = 2mm×2mm×2mm). The GM volume of each

individual underwent 2-sample t-test to see if they have significant group difference in GM

volume. If yes, the GM volume of each individual would be further used as controlled
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covariate of no interest to control the GM atrophy effects when conducting the ANCOVA

test, as described below.

2.6. Intrinsic hippocampus functional network analysis with predefined seed regions

Based on the recently demonstrated new role of the hippocampus in value-based decision-

making through dynamic modulating value representations in reward associated declarative

memory, seed regions of interest (ROIs) from the bilateral hippocampus (spherical ROI

centered at [26, -34, -12] in MNI space or [26, -33, -8] in Talairach space, with 4-mm radius,

along with its opposite side: [-26, -34, -12] in MNI space or [-26, -33, -8] in Talairach space)

were selected [29]. These predefined generic seed ROIs were further resampled and

transformed into the original space of each individual in reference with their anatomical

images (3dfractionize, AFNI). Only voxels in EPI functional images that occupied more than

70% of the masked anatomical images in the resampled ROI masks were included in the

voxel-wise analysis [31]. For each individual, the averaged time courses within the seed

ROIs were then extracted from the preprocessed EPI functional images and correlated with

the time courses of all voxels within the whole brain by using Pearson Cross-Correlation

Coefficient (CC). Next, the connectivity maps (CC map) were spatially normalized to the

Talairach space and resampled to 2-mm isotropic voxels. After applying the Fisher r-to-z

transformation [z = 0.5 × log(1+r)/(1-r)] and the smoothing procedure with a Gaussian

kernel (4-mm FWHM), the intrinsic hippocampus functional network map (z-map, hereafter

referred to as ‘m-map’ or ‘m-value’ to avoid confusion between ‘Fisher z’ and the

normalized statistical ‘z-value’ ) for each individual was generated and ready for our next

step group comparison.

2.7. Statistical analysis

To identify the significant patterns of group-level intrinsic hippocampus functional network

for each of the two groups (results shown in Fig. 1), we conducted a voxel-wise one-sample

t test with the m-map of each individual (3dttest++, AFNI). The results were further

corrected for multiple comparisons (3dClustSim, AFNI, α=0.05, p<0.05, cluster size >

2630mm3).

To find group differences of the intrinsic hippocampus functional network (results shown in

Fig. 2 and Table 2), a voxel-wise Analysis of Covariance (ANCOVA) was employed based

on the m-map across all subjects (3dRegAna, AFNI). We combined the left- and the right-

side of the m-maps together benefitted from their spatial symmetry in pattern with a

covariate labeling the ‘side’ and regressed out the ‘side’ covariate to obtain a generalized,

non-lateralized intrinsic hippocampus connectivity group difference map. The factors such

as age and years of education were also regressed out from the main effects of group as

covariates of no interest, and the GM volume was regressed out as well to reduce the effects

of grey matter atrophy to functional connectivity difference. The voxel-wise results of group

difference were corrected for multiple comparisons (3dClustSim, AFNI, α=0.05, p<0.05,

cluster size > 2630 mm3).

Further, in order to detect brain regions with behavioral significance of decision-making

tendency regarding the behavioral index ‘impulsivity’ (results shown in Fig. 3), we
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conducted a whole-brain voxel-wise linear regression analysis (3dRegAna, AFNI) between

the m-maps and the measured BIS total scores of all subjects within each of the two groups.

This analysis was performed separately for the HD and the CN group. Similar to the

procedure of group difference analysis, the factors such as ‘side’, age, years of education

and GM volume were controlled as covariates of no interest. The behavioral significance

maps of the two groups were also corrected for multiple comparisons (3dClustSim, AFNI,

α=0.05, p<0.05, cluster size > 2630 mm3).

Finally, through conjunction analyses between the impulsivity behavioral correlation

patterns of CN and HD group, we assessed those overlapped regions of the two groups that

exhibited behavioral (impulsivity) significance. The regions based on conjunction analysis

results are used as ROIs to identify the linear correlation relationship between the averaged

m-values within each of the ROIs and the BIS total scores for the CN and the HD groups

respectively.

3. Results

3.1. Demographic and psychometric data of the behavioral measurement

The demographic and Clinical Evaluation information in Table 1 showed no significant

difference in age and years of education between the HD and the CN group. The BIS total

score of the HD group was significantly higher than that of the CN group (p<0.05).

3.2. oVBM results of the HD and CN groups

Our oVBM analysis revealed that the gray matter volume of subjects in HD group was

significantly lower than that of the CN group (p<0.05), as shown in Table 1. The GM

volume obtained for each individual was further utilized as controlled covariate in the

following ANCOVA test to control the effect of GM atrophy.

3.3. Connectivity patterns of the intrinsic hippocampus functional network for the CN and
HD groups

As shown in Fig. 1A (left panel), for the left hippocampus network, in the CN group, the

positively correlated regions included the bilateral hippocampus, parahippocampal gyrus,

amygdala, middle temporal gyrus (MTG, BA21), anterior temporal pole (aTP, BA38),

subcallosal gyrus (BA25), orbital frontal cortex (OFC, BA11), thalamus, posterior cingulate/

precuneus (PCC, BA23/31), cuneus (BA23) and lentiform nucleus/putamen, right insula.

The anticorrelated regions included the bilateral fusiform gyrus (BA37), lingual gyrus,

dorsal anterior cingulate cortex (dACC, BA24/32), dorsal medial prefrontal cortex (DMPFC,

BA8/6), dorsal lateral prefrontal cortex (DLPFC, BA9/46), postcentral gyrus (BA2/3/4),

inferior parietal lobule (IPL, BA40) and left precentral gyrus (BA6). In the HD group as

shown in Fig. 1A (right panel), the positively correlated regions were mainly located in the

regions of the temporal-parietal cortices and subcortical regions, including the bilateral

hippocampus, precuneus (BA7), PCC (BA23/31), cuneus (17/18/19), orbital frontal cortex

(OFC, BA11), amygdala, parahippocampal gyrus, subcallosal gyrus (BA25), thalamus,

lentiform nucleus/putamen, caudate, nucleus accumbens (NAcc), insula (BA13), superior

temporal gyrus (STG, BA41) and right AG/TPJ (angular gyrus/temporal-parietal junction,
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BA/39). The anticorrelated regions were mainly located in the frontal system including the

bilateral DLPFC (BA9/46), DMPFC (BA9/6), inferior frontal gyrus (IFG, BA44/45), dACC

(BA24/32) and the right fusiform gyrus (BA37). Similar patterns of the right hippocampus

network for both the CN and the HD groups are illustrated in Fig. 1B.

3.4. Group-level difference of the intrinsic hippocampus functional network between the
HD and the CN groups

Several brain regions within the intrinsic hippocampus functional network showed

significant differences between the HD group and the CN group via ANCOVA procedure.

Among these regions, increased functional connectivity could be seen mainly in the limbic

areas and some of the cortical regions, including bilateral insula (BA13), putamen, caudate,

subcallosal gyrus/subgenual ACC (SCG/sACC, BA25), PCC (BA23/31), paracentral lobule

(BA31/5), precuneus (BA7), cuneus (BA18), and TPJ, while the decreased functional

connectivity were largely distributed in the cortices and some subcortical areas, including

the bilateral DLPFC (BA9/46), DMPFC (BA6/9), right anterior temporal pole (aTP, BA38),

dorsal anterior cingulate cortex (dACC, BA32) left MTG (BA22), amygdala, aTP and

fusiform face area (FFA, BA37). These results are illustrated in Fig. 2 and Table 2.

3.5. Neural correlation between the intrinsic hippocampus functional network strength (m-
value) and the behavioral index ‘impulsivity’ in the HD and the CN groups

The voxel-wise multivariate regression analysis identified distinct behavioral correlation

patterns of the hippocampus network for the two groups. In the CN group (Fig. 3A), the

positive correlation pattern mainly consisted of the regions including the bilateral IFG

(BA47), ACC (BA32), MTG (BA21), parahippocampal gyrus, ITG, cuneus/lingual gyrus

(BA18), ventral lateral thalamus and aTP (BA38), left DMPFC (BA6/8), right AG/TPJ

(BA39). The negatively correlated regions of the CN group include the bilateral FFA

(BA37), dorsal thalamus, dorsal caudate body, postcentral gyrus (BA3), precentral gyrus

(BA4), paracentral lobule (BA6), precuneus (BA7), IPL (BA40), and the right lentiform/

putamen. In the HD group (Fig. 3B), positively correlated areas included the bilateral dorsal

medial thalamus, MCC (BA24), right dorsal caudate body, left FFA (BA37) and MFG

(BA6/8), while the negatively correlated regions of the HD group included the bilateral IPL

(BA40), ACC (BA24/32), left DLPFC (BA9), and the right insula/IFG (BA47).

The conjunction analysis identified the overlapped regions between Fig. 3A and Fig. 3B, as

shown in Fig. 4A. These regions included the bilateral dorsal thalamus, left ITG (BA20/37),

ACC (BA24/32), postcentral gyrus, precentral gyrus, right dorsal caudate body, MFG

(BA6), IPL and IFG. From the multivariate regression analysis, as shown by Fig. 4B and

Fig. 4C, the CN and the HD group exhibited contrary correlation pattern in the following

regions: the right caudate body and the left ACC. For the right caudate body (Fig. 4B), in the

CN group, the m-value was negatively correlated with the BIS total score, indicating the

stronger connectivity with hippocampus of right caudate body, the less evident the

impulsivity. However, in the HD group, such a relationship was the opposite. The stronger

the m-value, the severer the impulsivity, the impulsivity in HD group is positively correlated

with the connectivity strength of the right caudate body to hippocampus. For the left ACC

(Fig. 4C), in the CN group, the m-value was positively correlated with the BIS total score,
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indicating the stronger the impulsivity, the stronger the connectivity strength with the

hippocampus. In the HD group, however, it was the opposite, suggesting impaired

controllability.

4. Discussion

Understanding how hippocampus is intrinsically connected to the other part of the brain

provides insight into the mechanisms of declarative memory in drug-taking and drug-

seeking behaviors in addiction.

Our current study demonstrated a new set of results that in both of the two groups,

hippocampus was functionally connected to NAcc, OFC, caudate and putamen. The HD

subjects showed stronger functional connectivity between hippocampus and multiple

cortical and subcortical regions including putamen, caudate, PCC, precuneus, insula and

temporal-parietal junction and relatively weaker connectivity in regions of amygdala and

cortical areas including anterior temporal pole, DLPFC, ACC and DMPFC, compared to the

CN subjects (Fig. 2 and Table 2). Further from the results of the multivariate regression

analysis, we identified distinct behavior correlation of impulsivity in each of the two groups

(Fig. 3). We also identified overlapped regions between the impulsivity correlation patterns

of the two groups by using conjunction analysis (Fig. 4A). Our main finding of behavioral

correlation analysis is that the CN group and HD group revealed contrary impulsivity

correlation in the regions of the left ACC and right dorsal caudate body within the

hippocampus memory network (Fig. 4B and Fig. 4C). For the right dorsal caudate body, the

connectivity strength was positively correlated with impulsivity in HD subjects, whereas in

CN subjects, such a correlation was negative. For the left ACC, the connectivity strength

was negatively correlated with impulsivity in HD subjects, whereas in CN subjects, such a

relationship was positive correlation.

These results corroborate earlier findings and extend them in three ways [11, 36]. First, our

findings demonstrate that declarative memory system and non-declarative memory (reward-

related learning) system are intrinsically connected. In both the HD and the CN groups, as

central node of declarative memory, hippocampus was intrinsically connected to NAcc,

OFC, caudate and putamen. NAcc and OFC have been demonstrated to be involved in

reward-related learning such as classical and instrumental conditioned-incentive learning

and memory, habit/procedure learning and instrumental learning [6, 12–16, 37–39]. The

intrinsic connectivity between hippocampus and these regions involved in the reward-related

learning suggests that multiple memory systems are functionally associated.

Second, our findings have implications that the declarative drug memory system and non-

declarative drug memory (reward-related learning) system have enhanced association in

heroin addiction. In our study, the caudate and putamen showed stronger connectivity with

hippocampus in the HD group. These regions are not only involved in non-declarative

learning memory [22, 23], but also are major parts of the ventral neural network or the 'β-

network' in neuroeconomics’ term which mediates immediate rewards [40, 41]. According

to the neuroeconomics' theory, reward-related valuation is the central part in the process of

making decisions when facing alternative options [42–44]. The stronger coupling between
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these two memory systems could bias immediate and impulsive behaviors in HD subjects

[45]. The present study further supports this notion by demonstrating stronger intrinsic

functional coupling between the hippocampus and the dorsal striatum, indicating stronger

declarative - non-declarative memory coherence in the HD subjects. Furthermore, this

stronger connectivity between the hippocampus and caudate in HD subjects has behavioral

significance. The stronger the connectivity, the severer the impulsivity. The nature of this

positive correlation provides a biological basis as to why drug-associated declarative

memory could trigger impulsive drug use.

Third, our findings not only indicate that the declarative drug memory system is more

closely associated with non-declarative drug memory (reward related learning) system in the

HD group, as described above, but also has attenuated intrinsic link with the top-down

executive control system. In our study, the dACC, DLPFC and DMPFC showed relative

weaker connectivity with hippocampus in the HD group. The DLPFC plays an important

role in high order executive control such as self-impulse control by integrating sensory and

mnemonic information [46, 47]. Various studies have identified that the dACC and DMPFC

are crucially functioning in error detection and conflict monitoring for impulsive inhibitory

control [48, 49]. Attenuated activity in ACC and decreased connectivity between

hippocampus and DMPFC were also detected in subjects with cocaine addiction, nicotine

addiction, heroin/opiate addiction, and even subjects with acute heroin administration [30,

50–54]. These regions with decreased hippocampus connectivity are also the major regions

of the 'δ network' in neuroeconomics theory and are considered to carry out the executive

control function by taking the long-term value into account when facing alternatives in

decision-making [40, 41, 45, 55]. Furthermore, the connectivity between the hippocampus

and ACC also has behavioral significance. For the CN group, the stronger the connectivity,

the higher the impulsivity, indicating strengthened functional coupling between

hippocampus and ACC for stronger controllability in individuals with higher impulsive level

in CN group. However in HD group, this behavioral correlation was reversed. The weaker

the connectivity, the severer the impulsivity, indicating their relativity weaker controllability

for impulsive behaviors.

In summary, the strengthened connectivity between the hippocampus and the non-

declarative drug memory (reward-related learning) regions could be neural mechanisms

underlying the pathologically enhancement of motivational drive toward impulsive drug-

related behaviors at a system level in the HD group. While the attenuated connectivity

between the hippocampus and the executive control related regions therefore could be neural

mechanisms underlying the impaired impulsive control ability over drug-related behaviors at

a system level in the HD group. In heroin addiction, these two parts reciprocally form an

imbalance between the impetus and the resistance towards drug-related behavior. Based on

these discussions, we could further infer that the decision-making processes and the

impulsive behaviors are dependent not only on the executive control system for top-down

control [3], but also on the non-declarative reward-related learning memory system for

bottom-up drive. It is dependent on the balance of the two systems, instead of on one system

alone. Such an inference may advance the debate among the single model, dual valuation

model and self-control model during the conflict decision-making processes [40, 41, 46, 56].
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Digging into the intrinsic connectivity of hippocampus could provide scientific evidence for

brain mechanisms of declarative memory, thus shedding light on the process of developing

new strategy of treating addiction. New candidate treatment strategy should focus not only

on non-declarative drug memory extinction and disruption of declarative drug memory

reconsolidation process, but also on shearing the interaction between these two memory

systems and reestablish the association between the memory system and the executive

control system.

Several limitations of our study should be considered. First, we revealed functional

reorganization in the hippocampus declarative memory network in abstinent heroin

addiction subjects. However it is not clear whether it is the alteration in functional

connectivity lead to addiction or it is the long-term exposure to addictive drugs lead to the

alteration in functional connectivity. Future studies could be conducted to probe into this

question by exploring the genetic factor in addiction, such as sibling study. Second, this is a

cross-sectional study without treatment. Future studies entailing longitudinal studies with

detoxification treatment are needed to evaluate the alterations in brain function under

treatment and might provide new insight into the treatment strategy of drug addiction.
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Highlights

We revealed brain mechanism of how declarative memory affected addicted brain.

We based memory network on new role of hippocampus in value-based decision-making.

We utilized R-fMRI combined with temporal binding model using the seed hippocampus.

Non-declarative learning and executive control regions are imbalanced link with seed.

Dorsal caudate body and ACC have reversed impulsivity correlation between two groups.
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Fig. 1.
Connectivity patterns of the intrinsic hippocampus functional network for two groups both

seeded in the left (Fig. 1A) and right (Fig. 1B) hippocampus. The bright color marked brain

regions with positive functional connectivity and the blue color show anticorrelated

connectivity. The left part of the Fig. 1A and Fig. 1B indicates connectivity patterns for the

CN group, and the right part for the HD group. The letters ‘R’ and ‘L’ on top of the axial

images show the side of the hemisphere; the numbers below the axial images indicate the

slice position at the z-coordinate. This group-level pattern is obtained via a voxel-wise 1-

sample t-test and significance level was set at threshold p < 0.05. The results were corrected

for multiple comparisons (3dClustSim, AFNI, α=0.05, p<0.05, cluster size > 2630mm3).

Abbreviations: CN, control non-drug users; HD, heroin dependent subjects.
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Fig. 2.
Illustration of the group-level difference of the intrinsic hippocampus functional network

between the HD and the CN groups. The bright color illustrates brain regions with higher

connectivity strength in the HD group while the blue color indicates lower connectivity

strength, compared to the CN group. Significance level of this group-level difference was set

at threshold p < 0.05, and p value of each voxel was obtained via a voxel-wise analysis of

covariance (ANCOVA) with age, years of education and grey matter volume of each

individual as covariance of non-interests. The results were corrected for multiple

comparisons (3dClustSim, AFNI, α=0.05, p<0.05, cluster size > 2630mm3).

Abbreviations: DLPFC, dorsal lateral prefrontal cortex; Amy, amygdala; aTP, anterior

temporal pole; PCC, posterior cingulate cortex; FFA, fusiform face area; DMPFC, dorsal

medial prefrontal cortex; AG, angular gyrus; TPJ, temporal-parietal junction; dACC, dorsal

anterior cingulate cortex; CN, control non-drug users; HD, heroin dependent subjects.
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Fig. 3.
The voxel-wise correlation between the intrinsic hippocampus functional network strength

(m-value) and the BIS Total score in the HD group (A) and the CN group (B). Bright color

in these patterns indicates positive correlation between BIS total score and the connectivity

strength, while blue color indicates negative correlation. The age, years of education and

gray matter volume of each individual were controlled as covariates of no interests. The

significance level of these two distinct behavioral correlation patterns were set at threshold p

< 0.05, and the results were corrected for multiple comparisons (3dClustSim, AFNI, α=0.05,

p<0.05, cluster size > 2630mm3).

Abbreviations: CN, control non-drug users; HD, heroin dependent subjects.
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Fig. 4.
(A) Results from the conjunction analysis between Fig. 3A and Fig. 3B. (B) The significant

correlations between the connectivity strength of hippocampus - right dorsal caudate body

and the BIS total score in CN subjects (the left panel) and in the HD subjects (the right

panel). (C) The significant correlations between the connectivity strength of hippocampus -

left ACC and the BIS total score in CN subjects (left panel) and in the HD subjects (right

panel).

Abbreviations: rdCaudBody, right dorsal caudate body; lACC, left anterior cingulate cortex.
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Table 1

Demographic information and the behavioral measurement.

HD (n=22) CN (n=15)
p

value
Mean SD Mean SD

Age (years) 33.05 6.04 28.87 8.12 0.10

Education (years) 10.86 2.40 9.60 2.16 0.10

Duration of heroin use (years) 6.59 3.72 N/A N/A N/A

Dosage of heroin use (g/day) 0.96 1.26 N/A N/A N/A

Abstinent period (days) 139 17.69 N/A N/A N/A

BIS total score 66.45 10.07 59.33 6.51 0.01

Gray matter volume (mm3) 600.7 57.94 668.28 89.04 0.02

Abbreviations: HD, heroin dependent subjects; CN, control non-drug users; SD, standard deviation; BIS, Barat impulsive scale.
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