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Abstract

A high-throughput, competitive fluorescence polarization immunoassay has been developed for

the detection of methyltransferase activity. The assay was designed to detect S-

adenosylhomocysteine (AdoHcy), a product of all S-adenosylmethionine (AdoMet)-utilizing

methyltransferase reactions. We employed commercially available anti-AdoHcy antibody and

fluorescein–AdoHcy conjugate tracer to measure AdoHcy generated as a result of

methyltransferase activity. AdoHcy competes with tracer in the antibody/tracer complex. The

release of tracer results in a decrease in fluorescence polarization. Under optimized conditions,

AdoHcy and AdoMet titrations demonstrated that the antibody had more than a 150-fold

preference for binding AdoHcy relative to AdoMet. Mock methyltransferase reactions using both

AdoHcy and AdoMet indicated that the assay tolerated 1 to 3 μM AdoMet. The limit of detection

was approximately 5 nM (0.15 pmol) AdoHcy in the presence of 3 μM AdoMet. To validate the

assay’s ability to quantitate methyltransferase activity, the methyltransferase catechol-O-

methyltransferase (COMT) and a known selective inhibitor of COMT activity were used in proof-

of-principle experiments. A time- and enzyme concentration-dependent decrease in fluorescence

polarization was observed in the COMT assay that was developed. The IC50 value obtained using

a selective COMT inhibitor was consistent with previously published data. Thus, this sensitive and

homogeneous assay is amenable for screening compounds for inhibitors of methyltransferase

activity.
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Methyltransferases are a diverse class of enzymes that catalyze the transfer of a single

methyl group from a methyl donor molecule to a methyl acceptor. The vast majority use S-

adenosylmethionine (AdoMet)1 as the methyl donor [1,2]. AdoMet is the second most
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widely used substrate molecule in the cell after ATP. Methylation is an essential and highly

choreographed regulatory metabolic process. Small organic molecules and peptides and

most types of cellular macromolecules, including DNA, RNA, protein, and lipids, can serve

as substrates for methylation (for detailed reviews, see Refs. [2–7]).

A rapidly growing area of methyltransferase research focuses on methylation of histone tails

by histone methyltransferases (HMTs) (for reviews, see Refs. [8,9]). Histone methylation is

an epigenetic modification that has a role in formation of heterochromatin, X chromosome

inactivation, and modification of gene expression patterns. Histone methylation occurs on

arginine and lysine residues and is catalyzed by methyltransferases belonging to three

distinct families of proteins: the protein arginine N-methyltransferase 1 (PRMT1) family, the

SET-domain-containing protein family, and the non-SET-domain proteins DOT1/DOT1L.

This histone methylation alters chromatin structure and, thus, regulates gene transcription.

The methylation sites on histone proteins can serve as docking sites for different effector

proteins that can mediate either activation or repression of gene transcription. Another

process by which epigenetic modifications directly effect gene expression and chromatin

organization is methylation of DNA at cytosine residues by DNA methyltransferases

(DNMTs) (for reviews, see Refs. [5,10]). Several reports have detailed how deregulation of

methylation can be the direct cause or result of cellular dysfunction. For example, in certain

cancers, hyper- and hypomethylation of specific regions of DNA by DNMTs and

rearrangement of chromatin due to HMTs are observed routinely and serve to silence and

activate genes related to cell growth and malignancy [11–16].

The study of methyltransferase activity and its regulation continues to be an important and

promising area of research in fields from oncology to neurology. Thus, there currently is a

demand for the ability to screen large compound libraries to identify and optimize small

molecules that modulate methyltransferase activity. Published methods for determining

methyltransferase activity are not optimal for high-throughput screening; they are non-

homogeneous, are labor intensive, require large volumes, and/or are not very sensitive. In

most currently used methyltransferase assays, the substrate to be methylated is fluorescently

labeled or radiolabeled and the reaction products must be separated from substrate using

chromatographic or extraction techniques. There have been reports of homogeneous

methyltransferase assays [17–19]; however, they are not considered sensitive, involve the

use of several enzymes, and/or require large volumes. Two recent reports detailed

methyltransferase assays suited for high-throughput screening [20,21]. The assay by Woo

and co-workers is an enzyme-linked immunosorbent assay (ELISA)-based restriction

protection technique specific for DNA methyltransferases [21]. In that work, they were able

to adapt their assay for low volumes for use in microtiter plates. However, the assay is non-

homogeneous, requiring several wash and incubation steps. The assay by Kurkela and

coworkers is comparable to HPLC methods in sensitivity, but was optimized for a 96-well

1Abbreviations used: AdoMet, S-adenosylmethionine; HMT, histone methyltransferase; PRMT1, protein arginine N-methyltransferase
1; DNMT, DNA methyltransferase; ELISA, enzyme-linked immunosorbent assay; COMT, catechol-O-methyltransferase; FP,
fluorescence polarization; mP, millipolarization; FPIA, fluorescence polarization immunoassay; AdoHcy, S-adenosylhomocysteine;
BGG, bovine γ-globulin; DTT, dithiothreitol; DBA, dihydroxybenzoic acid; Ro 41-0960, 2′-fluoro-3,4-dihydroxy-5-
nitrobenzophenone; PMSF, phenylmethanesulfonyl fluoride; FITC, fluorescein isothiocyanate; DMSO, dimethyl sulfoxide; L-DOPA,
3-(3,4-dihydroxyphenyl)-L-alanine; RFU, relative fluorescence units; LOD, limit of detection.
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format and is substrate specific—developed only for detection of catechol-O-

methyltransferase (COMT, EC 2.1.1.6) activity [20].

The methyltransferase assay we present employs fluorescence polarization (FP), a well

accepted and frequently used technology for high-throughput assays [22]. FP takes

advantage of the inverse relationship between the rotational speed of fluorescent molecules

in solution and the size of the labeled molecule or complex (for a review, see Ref. [23]).

Briefly, the fluorophore absorbs photons of light, resulting in an excited state of the

molecule. The duration of the excited state of the fluorophore depends on the identity of the

particular fluorophore. For example, for fluorescein, the half-life of the excited state is 9 ns.

In the excited state, the fluorophore releases a photon of light that is of a longer wavelength

than the excitation light and the fluorophore returns to the ground state. During the excited

state, the molecule has time to rotate or spin in solution, depending on its size. Small

molecules can rotate and release the light at a different angle than the light was absorbed.

Larger molecules do not rotate as quickly, and the light becomes polarized; the angle of

release becomes more acute and eventually goes toward zero as molecular mass increases.

This polarization is quantified using the ratio of fluorescence measured in the parallel and

perpendicular planes relative to the excitation plane. This ratio value is unitless and is

referred to as polarization value (P) or, more commonly, is multiplied by 1000 to give

millipolarization (mP) values. In general, high mP values indicate that a fluorophore has a

high apparent molecular mass, whereas low mP values indicate a low apparent molecular

mass. Since FP is a ratiometric fluorescence technique, it is subject to less variability than

are other non-ratiometric assays.

The competitive fluorescence polarization immunoassay (FPIA) was first described by

Dandliker and co-workers and incorporates the use of an antibody to increase the apparent

size of a small analyte analog coupled to a fluorophore [24]. In principle, the concentration

of unlabeled analytes (e.g., products of enzymatic reactions) can be determined by their

ability to compete with fluorescently labeled analogs, commonly called a tracer, for

antibody binding. In the absence of product, the tracer is antibody bound, dramatically

increasing its apparent mass and decelerating its rotational motion. This reduced molecular

rotation results in an increase in FP indicated by high mP values. When present, analyte

competes with tracer for antibody binding, thereby decreasing polarization of the tracer.

Competitive FPIA has been widely used for the detection of kinase activity [25–28] as well

as in diagnostic tests for small molecule analytes such as metal ions [29], cAMP [30], and

“illicit” amphetamines [31]. In this article, the development of a rapid and sensitive

homogeneous methyltransferase assay is described using competitive FPIA technology.

AdoMet is considered as the universal methyl donor. AdoMet-dependent methyltransferase

reactions yield two products: the methylated molecule and S-adenosylhomocysteine

(AdoHcy) derived from AdoMet. Our competitive FP assay was developed to detect the

AdoHcy product of the methyltransferase reaction and, thus, to measure methyltransferase

activity. Since AdoHcy is measured, the assay is considered “universal”; it is capable of

detecting enzyme activity of any AdoMet-using methyltransferase. The competitive FPIA

assay is a simple one-addition assay requiring only the reaction mixture, fluoresceinated

AdoHcy tracer, AdoHcy antibody, and a fluorometer capable of measuring FP. The assay
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makes it feasible and cost-effective to perform high-throughput screening for inhibitors or

activators of methyltransferases.

Materials and methods

Materials

Black 384-well untreated Costar assay plates were purchased from Corning (Corning, NY,

USA). Tris, EDTA, and sodium azide were obtained from Fisher (Fair Lawn, NJ, USA).

Dibasic anhydrous sodium phosphate (Na2HPO4) was obtained from Mallinckrodt

(Hazelwood, MO, USA). Monobasic monohydrate sodium phosphate (NaH2PO4-H2O) was

purchased from VWR (West Chester, PA, USA). Sodium chloride (NaCl), magnesium

chloride (MgCl2), bovine γ-globulin (BGG), dithiothreitol (DTT), dihydroxybenzoic acid

(DBA), 2′-fluoro-3,4-dihydroxy-5-nitrobenzophenone (Ro 41-0960), AdoHcy, and COMT

from porcine liver were obtained from Sigma (St. Louis, MO, USA).

Phenylmethanesulfonyl fluoride (PMSF) was obtained from Calbiochem (San Diego, CA,

USA). AdoMet was obtained from GE Healthcare (Piscataway, NJ, USA). The anti-AdoHcy

antibody and fluorescein–AdoHcy conjugate (tracer) were donated by Abbott Laboratories

(Abbott Park, IL, USA) as part of the IMx homocysteine FPIA reagent pack (cat. no.

7D29-20) produced by Axis–Shield Diagnostics for Abbott Laboratories.

Methods

All enzyme reactions and FP assays were performed at a constant laboratory room

temperature of 23 °C. For all FP assays, final dilution factors for anti-AdoHcy antibody and

tracer were 80 and 160, respectively, in a volume of 50 μl. All FP measurements were made

using the Envision 2102 Multilabel Reader from PerkinElmer (Waltham, MA, USA). A

fluorescein isothiocyanate (FITC) single or dual mirror was used. The excitation wavelength

was 480 nm with a bandwidth of 30 nm. The emission wavelength was 535 nm with a

bandwidth of 40 nm. Excitation was performed with 200 flashes.

Mock methyltransferase reactions using AdoMet and AdoHcy

Mock methyltransferase reactions were performed in 30-μl volumes using AdoMet and/or

AdoHcy at indicated concentrations in sodium phosphate buffer (20 mM, pH 7.5) or Tris

buffer (20 mM Tris, pH 8.0, 4 mM EDTA). Here 20 μl anti-AdoHcy antibody (1:32 dilution

from kit) and tracer (1:64 from kit) were coincubated for 30 min in either FPIA buffer A (20

mM sodium phosphate buffer [pH 7.5], 250 μg/ml BGG, and 0.02% sodium azide) or FPIA

buffer B (20mM Tris [pH 8.0], 4 mM EDTA, 1.5 M NaCl, 250 μg/ml BGG, and 0.02%

sodium azide). Mock reactions and anti-AdoHcy antibody/tracer complex of matching

buffer type were combined, and FP was measured at indicated times.

Competitive FP assay for methyltransferase activity

COMT endpoint methyltransferase assays were performed using an enzyme reaction volume

of 30 μl followed by the addition of 20 μl anti-AdoHcy antibody/tracer complex. COMT

enzyme reactions used 0 to 0.33 μg COMT enzyme as indicated, 250 μM DBA, and 3 μM

AdoMet in COMT assay buffer (20 mM sodium phosphate [pH 7.5], 5 mM MgCl2, and 1

mM DTT). Reactions proceeded for the indicated length of time. Anti-AdoHcy antibody and
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tracer were coincubated in FPIA buffer A for 30 min as before. For the COMT assay, the

anti-AdoHcy antibody/tracer solution was supplemented with 25 mM EDTA to stop enzyme

activity. FP was measured 1 h after the addition of anti-AdoHcy antibody/tracer complex to

the reaction. For IC50 determination, serial dilutions of the Ro 41-0960 COMT inhibitor

were added to the reaction mixture at concentrations ranging from 1.5 nM to 10 μM with a

final dimethyl sulfoxide (DMSO) concentration of 1%.

Calculations and statistical analysis

mP values were calculated from the following equation:

where IS is the parallel emission intensity and IP is the perpendicular emission intensity. The

IP value was adjusted by a G-factor multiplier that generated an mP value of 27 for free

fluorescein. Background fluorescence was subtracted from the parallel and perpendicular

emission intensities using complete reactions that lack only tracer. Differential mP is defined

as the change in mP value in the presence and absence of AdoHcy in mock reactions or

substrate in the enzyme reactions. The EC50 values for AdoMet and AdoHcy were

calculated concentrations that produced an mP value halfway between the maximum and

minimum mP values of the assay. The IC50 value was defined as the concentration of

inhibitor that generated a 50% reduction in assay signal. IC50 values and Hill slopes were

calculated using a four- or three-parameter dose–response (variable slope) equation. All

statistical analyses were performed with GraphPad Prism software. Each data point is the

average of at least three determinations, and error bars indicating standard deviations are

included on all graphs except graphs of differential mP values (see Figs. 3B and 4B later).

Data presented are representative of at least three independent experiments unless otherwise

indicated.

Results

Principle of the assay

The antibody and tracer components of an FPIA were used in the development of a sensitive

and homogeneous assay for determining activity of any AdoMet-using enzyme. This

commercial FPIA system quantifies homocysteine levels by converting homocysteine to

AdoHcy and then detecting AdoHcy using a competitive FPIA and is intended for use with

human serum or plasma [32]. Here assay conditions and FPIA kit components were

optimized for sensitive quantization of methyltransferase activity in a format designed for

high-throughput screening. Endpoint methyltransferase reactions were incubated with the

anti-AdoHcy antibody and fluorescein–AdoHcy conjugate tracer obtained from the

commercial reagent kit. As part of the initial large antibody/AdoHcy complex, the tracer

generates high FP mP values. AdoHcy generated as a result of methyltransferase activity

competes with the tracer for antibody binding. The tracer displaced by AdoHcy is free in

solution; therefore, fluorescence of the tracer is depolarized. The decrease in FP is directly

proportional to the amount of AdoHcy present and, thus, to methyltransferase activity.

Graves et al. Page 5

Anal Biochem. Author manuscript; available in PMC 2014 August 26.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Antibody/Tracer optimization

Black 384-well plates and 50-μl final assay volumes were used in the development of the FP

assay. All steps of the assay were performed at 23 °C for maximal compatibility with high-

throughput screening. Dilutions of the original antibody and tracer commercial FPIA

components were used to determine optimal concentrations of each component in the assay.

For optimal sensitivity to AdoHcy, the amount of tracer was set as low as possible without

affecting signal variability. The largest dilution factor for the tracer that produced a total

fluorescence signal-to-background ratio greater than 10 and polarization values with a

standard deviation of less than 2 mP was 160 (data not shown). In addition, for maximal

sensitivity to AdoHcy, the concentration of tracer binding sites should be equal to, or

slightly less than, the concentration of tracer. Therefore, an antibody titration in which 20 μl

antibody diluted into FPIA buffer A was added to 30 μl tracer (also diluted in FPIA buffer A

at the optimal tracer concentration) was performed (Fig. 1). Peak FP values persisted to an

antibody dilution factor of approximately 80. Therefore, for all subsequent assays, the

optimized dilution factors of 160 for tracer and 80 for antibody were selected. These dilution

factors are relative to the final 50-μl assay volume. The rate of association of antibody and

tracer was determined by mixing 25 μl of each in FPIA buffer A at optimal assay

concentrations and measuring FP every 5 min for 1 h (data not shown). Based on the

maximal mP values obtained, it was determined that antibody and tracer were completely

associated after 30 min of coincubation. Therefore, antibody and tracer were incubated

together for at least 30 min prior to use in the assay. Preforming the antibody/tracer complex

has the advantages of eliminating extra variability due to separate additions and reducing

development steps to one liquid addition.

FP assay detection of AdoHcy/AdoMet

This competitive FP assay must be able to specifically detect AdoHcy produced from the

methyltransferase reaction. AdoMet, being one of the substrates of methyltransferases, is

present at much higher concentrations than AdoHcy and is similar in chemical structure to

AdoHcy. Therefore, the ability of both AdoHcy and AdoMet to displace tracer from

antibody was evaluated using two different FPIA buffers, designated A and B (see Materials

and Methods for composition).

A range of AdoHcy concentrations from 170 nM to 10 μM and AdoMet concentrations from

1.7 to 100 μM in 30 μl were tested by the addition of 20μl antibody/tracer complex under the

two different buffer conditions (Fig. 2). As expected, AdoHcy was a much better competitor

of tracer in both buffer systems compared with AdoMet. The average calculated EC50 and

standard deviation determined for AdoHcy was 18.3 ± 0.4 nM in FPIA buffer B and 95 ± 17

nM in FPIA buffer A compared with AdoMet EC50 values of 2.9 ± 0.5 μM in FPIA buffer B

and 17.0 ± 1.2 μMin FPIA buffer A. Thus, depending on buffer composition, the production

of approximately 0.9 to 4.7 pmol AdoHcy can lower the mP value to the midpoint between

maximum and minimum mP values, whereas it would take 145 to 850 pmol AdoMet to

achieve the same results. After 2 h of incubation time, the ratios of AdoMet EC50 to

AdoHcy EC50 were 158 and 180 using FPIA buffers B and A, respectively. These data

demonstrate that the antibody is highly selective for binding AdoHcy relative to AdoMet.

However, AdoMet concentrations greater than 3 μM can significantly interfere with the
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assay by lowering mP values and reducing sensitivity to AdoHcy. FPIA buffer B conditions

produced a 5.2-fold enhanced sensitivity to AdoHcy compared with buffer A. However, it

also lowered the maximum mP value obtainable, resulting in a maximum change in mP of

approximately 180 mP, compared with approximately 250 mP under buffer A conditions.

We chose to use FPIA buffer A for all subsequent experiments.

Detection of AdoHcy in AdoMet background

Because AdoMet is present at relatively high concentrations as a required substrate in

methyltransferase reactions, the detection of AdoHcy by the FP assay in the presence of

AdoMet was examined. To mimic an endpoint methyltransferase assay, AdoHcy was titrated

into a proportionally decreasing concentration of AdoMet such that the sum total (AdoHcy +

AdoMet) concentration was held constant. AdoHcy titrations from 0 to 80 nM were tested in

1, 3, 10, or 30 μM total AdoHcy + AdoMet. Here 20 μl preincubated antibody/tracer in FPIA

buffer A was combined with 30 μl AdoHcy/AdoMet mixture, and the change in FP was

monitored from 0.5 to 6 h (Fig. 3A). Here the assay window is the difference between the

mP values obtained in the presence and absence of AdoHcy. A decrease in mP values was

observed in response to increasing concentrations of AdoHcy in the presence of AdoMet.

The response of the assay to AdoHcy was linear up to 20 nM AdoHcy, after which the assay

began to lose linearity. The nonlinear response to AdoHcy at higher concentrations was

expected due to the competitive nature of the FPIA format. Predictably, the assay was more

sensitive to AdoHcy when using lower AdoMet concentrations. After 2 h, a 100-mP

differential was obtained with 59 and 80 nM AdoHcy in 1 and 3 μM AdoMet, respectively.

In comparison, only a 50-mP differential was obtained at 80 nM AdoHcy in 10 μM AdoMet

(Fig. 3B). A high AdoHcy concentration of 320 nM could not achieve even a 50-mP

differential in the presence of 30 μM AdoMet (data not shown). When comparing the mP

values obtained for AdoHcy titrations in the presence and absence of 1 μM AdoMet, the

difference between the two is negligible (data not shown). Thus, the use of 1μM AdoMet in

the assay does not measurably alter the sensitivity of the FP assay to AdoHcy. At 3 μM

AdoMet, a small reduction in mP differential is observed, whereas at 10 μM AdoMet, there

is a large decrease in the sensitivity of the assay to AdoHcy resulting from antibody cross-

reactivity with AdoMet. An AdoMet concentration of 3 μM was used in all subsequent

enzyme reactions. This concentration of AdoMet provided the best balance between having

enough AdoMet to allow reasonable catalytic activity and yet not altering mP values greatly.

An FP measurement time course was performed to determine the stability of the signal and

the optimal time to measure FP after adding antibody and tracer to AdoHcy/AdoMet

mixtures. A 6-h time course was performed using a range of AdoHcy concentrations from 0

to 320 nM in 3 μM AdoHcy/AdoMet as before (Fig. 4A). The time course indicated a slow

time-dependent decrease in mP values with and without AdoHcy. No significant reduction

in mP values was observed in the absence of AdoMet and AdoHcy (data not shown),

indicating that the 3-μM AdoMet was slowly competing with tracer over time. At lower

AdoHcy concentrations (≤40 nM), the peak mP differential was reached at 1 h (Fig. 4B). At

higher concentrations, the 2-h FP measurement time was optimal. At all AdoHcy

concentrations, the mP differential remained relatively constant between 2 and 6 h. In
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subsequent COMT assays, a 1-h FP measurement time was selected for maximal sensitivity

to lower AdoHcy concentrations.

FP assay validation using the COMT enzyme and inhibitor with known IC50

To validate the assay’s ability to detect and quantitate methyltransferase enzyme activity, the

methyltransferase COMT and a known selective inhibitor of COMT activity were used in

proof-of-principle experiments.

In the presence of AdoMet and magnesium, COMT inactivates biologically active catechols

through O-methylation [33]. COMT has a range of catechol substrates, including dopamine,

norepinephrine, 3-(3,4-dihydroxyphenyl)-L-alanine (L-DOPA), and catecholic steroids [33–

36]. There are also several catechol-like and non-catechollike inhibitors of COMT activity

[37–39]. To demonstrate the utility of this assay to detect COMT activity, a common

substrate for COMT assays, DBA, was used along with Ro 41-0960, a potent COMT

inhibitor.

COMT enzyme titration and time course

For all COMT activity assays, the concentrations of DBA and AdoMet substrates in the

assay were 250 and 3 μM, respectively. These concentrations were selected so as to equal

published Km values for these substrates [40–42]. A range of COMT amounts from 12 to

333 ng per reaction were tested in the presence and absence of DBA substrate using a 10-

min reaction time (Fig. 5). All but the lowest concentration exhibited detectible

methyltransferase activity as measured by the FP assay. There was a linear inverse

relationship between mP value and amount of COMT, with 333 ng COMT producing an 80-

mP decrease in FP relative to the no-substrate control (Fig. 5A). The mP values for each

concentration were converted to Ado-Hcy concentration based on a standard AdoHcy curve

generated in mock reactions lacking only DBA (Fig. 5B). At 333 ng enzyme per well, the

80-mP differential corresponds to approximately 52 nM (2.6 pmol) AdoHcy generated. This

represents only 1.7% conversion of AdoMet to AdoHcy. COMT has been reported to be

inhibited by AdoHcy with a Ki of 1 μM [40]. Therefore, the 52 nM AdoHcy generated in

this COMT FP assay should not significantly affect the rate of the reaction.

A time course of COMT activity was performed using 333 ng enzyme per reaction (Fig. 6).

At each time point, the methyltransferase reaction was stopped with 10 mM EDTA as part

of the antibody/tracer solution. FP measurements were taken after 1 h. A time-dependent

decrease in mP values that was dependent on the presence of the DBA substrate was

observed. Most COMT enzyme activity occurred during the first 30 min, with 50% of the

maximum mP differential produced during the first 5 min. This time-dependent loss of

COMT activity was similar to that in another report of a COMT activity assay using the

same source of enzyme [18]. The linear range with respect to time was limited to the first 15

min of the reaction.

To further validate the competitive FP methyltransferase assay, the IC50 of a well-

characterized COMT inhibitor was determined using the assay. Ro 41-0960 is a well-known,

non-catechol-like selective inhibitor of COMT activity. Its published IC50 range is between
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5 and 42 nM, as determined from analysis of O-methylated product using GC/MS [39]. In

the presence of a range of Ro 41-0960 concentrations, enzyme activity assays using 333 ng

COMT and a 10-min reaction time were performed and stopped with the antibody/tracer/

EDTA in FPIA buffer A and after 1 h, and then FP was measured (Fig. 7). The average IC50

value and standard deviation derived from three separate experiments was 12 ± 9 nM. Thus,

the IC50 value determined with this COMT FP assay was consistent with the range of IC50

values reported in the literature. The IC50 values for this experiment were 5.0, 9.0, and 22

nM. Thus, the standard error was 5 nM, or 40% of the average value, which is comparable to

the standard errors reported for the same inhibitor in the GC/MS COMT assay in which 17

to 53% standard errors was reported [39].

Discussion

Methyltransferase activity has been determined by quantification of reaction products using

a variety of methods. A majority of the assays require separation of labeled reaction

products from labeled substrate. Currently, HPLC is widely employed for separation in

conjunction with detection of fluorescent [43–52] or radiolabeled [53,54] product, UV

detection [55–58], electrochemical detection [59–61], colorimetric detection [62], or mass

spectrometry [63]. Assays that require physical separation of product from substrate are not

well suited for high-throughput purposes due to the number of manipulations and amount of

time required for the separation process. In this article, we have detailed a homogeneous,

inexpensive, and sensitive competitive FP assay of methyltransferase activity optimized for

high-throughput screening. Unlike other routinely used methods, no separation steps are

required.

The components of a commercial diagnostic kit were used to develop a competitive FP

assay for methyltransferase activity. The AdoHcy–fluorescein tracer and anti-AdoHcy

antibody from the kit were titrated to find the optimal concentration of each. Dilutions were

chosen to maximize sensitivity to AdoHcy. The low concentration of tracer generated total

relative fluorescence units (RFU) comparable to approximately 0.5 nM fluorescein (data not

shown). Background fluorescence at this concentration of tracer was not significant for the

described enzyme assays. However, other potential methyltransferase reactions may require

a somewhat higher concentration of tracer (and thus antibody as well) to minimize the

impact of background fluorescence on measured FP. The theoretical impact of increasing

tracer and antibody concentration would be to lessen sensitivity to AdoHcy.

Given that in a methyltransferase reaction both AdoMet and AdoHcy are present, with the

former being present at a much higher concentration than the latter, the selectivity of the

anti-AdoHcy antibody was evaluated. The change in FP of the tracer complexed to antibody

was tested in response to AdoMet and AdoHcy. The EC50 values for disrupting the complex

were 95 and 17,000 nM for AdoHcy and AdoMet, respectively, using FPIA buffer A. Using

FPIA buffer B, the EC50 values were 18 and 2900 nM for AdoHcy and AdoMet,

respectively. Thus, the EC50 ratios of AdoMet to AdoHcy were 158 and 180 under the two

different buffer conditions. Depending on buffer composition, the production of

approximately 0.9 to 4.7 pmol of AdoHcy can lower the mP value to the midpoint between
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maximum and minimum mP values. This FP assay takes advantage of this window of

differential binding of AdoHcy and AdoMet to the antibody.

The use of FPIA buffer B made the assay 5.2 times more sensitive to AdoHcy but also more

sensitive to AdoMet. Furthermore, the peak mP value decreased by approximately 75

compared with that using FPIA buffer A. If substrate conversion is low, FPIA buffer B may

be desired for increased sensitivity to AdoHcy. However, if a larger assay window is

desired, FPIA buffer A allows for higher mP value differentials. Further alteration of buffer

composition after the enzyme reaction is terminated can make the assay better suited for the

needs of the particular enzyme assay.

To determine whether the differential reactivity of AdoMet and AdoHcy with antibody

could be exploited to measure methyltransferase activity, mock endpoint reactions were

employed. These mock reactions were designed to determine the sensitivity of the assay to

AdoHcy in the presence of different concentrations of AdoMet. In these experiments, the

total concentration of AdoMet + AdoHcy was kept constant by increasing AdoHcy

concentration and proportionally decreasing AdoMet concentration. Here 59 and 80 nM

AdoHcy generated a 100-mP decrease in FP in the presence of 1 and 3 μMAdoMet,

respectively. In comparison, only a 50-mP differential was obtained at 80 nM AdoHcy in 10

μM AdoMet. A high AdoHcy concentration of 320 nM could not achieve even a 50-mP

differential in the presence of 30 μM AdoMet. Thus, the optimal concentrations of AdoMet

that were well tolerated in this assay were 1 to 3 μM, with no or low impact on the

sensitivity to AdoHcy.

AdoMet concentration is a significant factor in the assay given that AdoMet is also able to

displace tracer from the AdoHcy antibody, albeit at much higher concentrations than

AdoHcy. AdoMet at 3 μM or higher causes a time-dependent decrease in mP value in the

absence of AdoHcy, a phenomenon not displayed in the absence of both AdoMet and

AdoHcy. Despite this slow competition with tracer by AdoMet, a mere 2.7% conversion of 3

μM AdoMet into AdoHcy is enough to produce a 100-mP differential compared with

control. The sensitivity of this FP assay means that it is not necessary to use high AdoMet

concentrations that might be needed in other less sensitive assays. In addition, the sensitivity

of this assay to low nanomolar concentrations of AdoHcy avoids the problem of product

inhibition by AdoHcy known to occur with methyltransferases [40,64–66].

COMT enzyme reactions were performed to test the ability of the FP assay to measure

enzyme activity of a methyltransferase. In the FP assay using terminated COMT reactions,

FP values decreased proportionally with increasing enzyme concentration and reaction time.

Under the conditions used for this COMT assay, only 1.7% of the AdoMet was converted to

AdoHcy. In addition, IC50 values determined using the competitive FP assay of a well-

described, potent COMT inhibitor were comparable to published values obtained from

GC/MS analysis.

There have been a small number of reports of universal assays for AdoMet-dependent

methyltransferases in the literature [17–19]. All of these assays are enzyme coupled.

Specifically, AdoHcy reaction product is further metabolized by AdoHcy hydrolase or
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AdoHcy nucleosidase to Hcy or S-ribosylhomocysteine, respectively. The product is then

directly assayed or further enzymatically manipulated to produce a different product. There

are several limitations to these enzyme-coupled assays. The sensitivity of each of these

reported assays to initial reaction product is low, with a limit of detection (LOD) for

AdoHcy in the single-digit micromolar range, compared with approximately 5 nM (0.15

pmol) in the competitive FP assay. Thus, the described assay is approximately 1000-fold

more sensitive to AdoHcy than are the enzyme-coupled formats. With each additional

enzymatic step, the ratio of end product to initial AdoHcy decreases due to incomplete

product conversion, limiting the sensitivity of the assay. In addition, these enzyme-coupled

assays are subject to false positives in a compound screen for inhibitors of methyltransferase

due to inhibition of the developing enzyme. In the fluorescence-based assay [18], a

noncommercial fluorescent reporter molecule that uses a disulfide tether as a linker needed

to be synthesized. Therefore, reducing agents that often are present and/or required in

enzyme reactions are incompatible with the assay. An additional requirement of the

colorimetric enzyme-coupled assay is bubbling nitrogen gas through the buffer to protect the

thiol group of homocysteine [17]. Enzyme-coupled assays are more complex to optimize

and troubleshoot compared with an FPIA. Also, the additional steps required by these assays

make them less amenable to high-throughput screening. The development enzyme(s)

required for these assays also increases the cost per well.

A recently published report of a competitive ELISA-based immunoassay for AdoHcy could

be used as a universal assay for AdoMet-using methyltransferases [67]. Although this

ELISA assay is highly sensitive to AdoHcy (LOD < 0.1 pmol), it is not homogeneous,

requiring several washing steps. ELISA-type assays are not ideal for high-throughput

screening due to inherently higher variability than homogeneous assays, difficulties in

miniaturizing them to 384- and 1536-well plate formats, and the fact that they are very labor

intensive due to the wash steps. Other assays have been reported as being high-throughput

methyltransferase assays but are specific to a particular substrate and thus are enzyme

specific [20,21]. Unlike these assays, the FP assay is “universal” because it has the potential

to quantify activity of any AdoMet-using methyltransferase. In addition, the cost of the

described assay would be less than 10 cents per well for the antibody and tracer. Thus, the

competitive FP assay is miniaturizable, homogeneous, very sensitive, low cost, and it

requires only commercially available reagents and equipment.

In the current form, this FPIA has some limitations. The major limitation is the cross-

reactivity of the anti-AdoHcy antibody with AdoMet. This property of the antibody limits

the amount of AdoMet that can be used in the assay. Depending on the Km for AdoMet of a

particular methyltransferase, this may limit the activity of the enzyme or require the use of

more enzyme. A known problem with any fluorescein-based assay is the interference of

some test compounds that are also fluorescent and typically present in micromolar

concentrations. These fluorescent compounds interfere with accurate measurement of

fluorescein. For this FPIA, fluorescent compounds could generate false positives in a screen

for methyltransferase inhibitors. False positives due to fluorescence of the compound can be

easily eliminated by either comparing the raw RFU obtained from the test compound well

with control wells or testing the compound in the absence of enzyme. For compounds with a

Graves et al. Page 11

Anal Biochem. Author manuscript; available in PMC 2014 August 26.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



low amount of fluorescence and tested in low-throughput mode, the problem potentially can

be circumvented by subtracting compound fluorescence from the signal. Using a higher

concentration of tracer (and thus antibody) would also make the assay more resistant to

interference from fluorescent test compounds but also proportionally less sensitive to

AdoHcy. Alternatively, screening compounds at a lower concentration of compound would

be expected to decrease false-positive/negative rates while selecting for more potent

inhibitors. It has been reported that assays with red-shifted fluorophores (emission peak at a

higher wavelength) have a lower incidence of false positives in a diverse compound library

screen compared with the use of fluorescein in the assay [68]. Replacing the fluorescein tag

on the tracer with a more red-shifted fluorophore should significantly reduce the number of

compounds in a high-throughput screen that interfere with the FP measurement.

Another challenge in developing a methyltransferase assay using this method is stopping the

enzyme reaction without affecting antibody integrity. Many methyltransferases are not

magnesium dependent, and so it is more of a challenge to terminate the reaction in a

homogeneous, high-throughput manner that also preserves antibody function. Due to the 1-

to 2-h time delay for peak tracer displacement, a continuous kinetic version of the assay will

not accurately reflect the status of the enzyme reaction. Potential methods of stopping the

reaction would be to add a low concentration of SDS to inactivate the enzyme prior to

adding antibody/tracer. In some cases, a concentration of SDS may be found whereby the

purified enzyme is inactivated, but the antibody is protected from the SDS by BGG or BSA

present in the FPIA buffer. Another method is to stop a reaction with the addition of acid or

base to shift the pH and then adjust it back to neutral with a modified FPIA buffer. Also, the

use of chelating agents such as EDTA, a technique used in this report, is capable of stopping

methyltransferases that are dependent on divalent cations for activity.
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Fig. 1.
Effect of AdoHcy antibody concentration on fluorescence polarization of AdoHcy tracer.

Here 20-μl AdoHcy antibody dilutions were added to 30 μl tracer. FP was measured 30 min

postaddition. Final dilution factors for anti-AdoHcy antibody in 50 μl are indicated; that of

tracer is 160. Data are representative of two independent experiments.
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Fig. 2.
Displacement of AdoHcy tracer from anti-AdoHcy antibody by unlabeled AdoHcy and

AdoMet using FPIA buffer A (A) and FPIA buffer B (B) conditions. The assay was

conducted by adding 30 μl of AdoHcy (●) or AdoMet (□) at the indicated concentrations to

20 μl antibody/tracer complex, incubating for 2 h, and measuring FP.
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Fig. 3.
Mock methyltransferase assays using increasing AdoHcy concentrations and proportionally

decreasing AdoMet concentrations. The assay was performed in 30 μl with AdoHcy at the

indicated concentrations and total AdoHcy + AdoMet concentrations of 1 μM (◆), 3 μM

(▼), 10 μM (▲), and 30 μM (■). (A) The AdoHcy/AdoMet mixtures were combined with 20

μl antibody/tracer complex, and FP was measured 2 h postaddition. (B) Differential mP was

determined by subtracting mP values at 0 AdoHcy from mP values at the indicated AdoHcy

concentrations.
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Fig. 4.
Time course of mock methyltransferase assays after the addition of antibody/tracer. Mock

enzyme reactions were made using the indicated AdoHcy concentrations in a proportionally

decreasing AdoMet background. Here 30 μl of 0 nM (■), 10 nM (■), 40 nM (●), 80 nM

(□), or 320 nM (○) AdoHcy in 3 μM total AdoHcy + AdoMet was added to 20 μl antibody/

tracer complex. (A) Fluorescence polarization was measured at the indicated times after the

addition of antibody/tracer. (B) Differential mP was determined by subtracting mP values at

0 AdoHcy from mP values at the indicated AdoHcy concentrations.
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Fig. 5.
COMT enzyme activity determined by FP assay. (A) Catechol-O-methyltransferase

reactions were performed using COMT enzyme at indicated amounts per reaction and 3 μM

AdoMet in the presence (■) or absence (▲) of 250 μM DBA substrate. The reaction volume

and incubation time were 30 μl and 10 min, respectively. The reaction was initiated by the

addition of AdoMet and was terminated with 10 mM EDTA in the 20-μl antibody/tracer

complex solution. FP was measured 1 h after termination of the reaction. (B) Concentration

of AdoHcy produced in panel A was calculated by comparing differential mP values with a

standard AdoHcy curve.
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Fig. 6.
Time course of COMT activity assay. Reactions were performed for the indicated lengths of

time using 0.33 μg COMT enzyme and 3 μM AdoMet in the presence (■) or absence (▲) of

250 μM DBA substrate. Reactions were initiated with the addition of AdoMet, and all

reactions were terminated simultaneously with the addition of 10 mM EDTA in the 20-μl

antibody/tracer complex solution. FP was measured 1 h after termination of the reaction.
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Fig. 7.
Inhibition curve using a known COMT inhibitor. Reactions were performed using 0.33 μg

COMT enzyme, 3 μM AdoMet, and 250 μM DBA substrate with indicated concentrations of

Ro 41-0960 inhibitor. COMT and Ro 41-0960 were preincubated together for 5 min, and

then the reactions were initiated by the addition of AdoMet. Reactions were terminated with

10 mM EDTA in the 20-μl antibody/tracer complex solution. FP was determined 1 h after

terminating the reaction. The average IC50 value from three independent experiments was

12 nM.
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