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Brief Definit ive Report

The discovery and characterization of the in-
nate lymphoid cell (ILC) family in recent years 
has greatly contributed to our understanding of 
antimicrobial, autoimmune, and tissue-protective 
immune responses at barrier surfaces (Spits and 
Di Santo, 2011; Spits et al., 2013). Although the 
common gamma chain cytokine receptor and 
the cytokine IL-7, but not RAG proteins, are 
required for ILC development (Spits and 
Cupedo, 2012), and the early inflammatory 
cues that control the wide spectrum of ILC  
responses (types 1, 2, and 3) are rapidly being 
elucidated (Sonnenberg et al., 2013; Spits  
et al., 2013; Walker et al., 2013), the transcrip-
tional regulation of ILC development is less 
clear. The transcription factor inhibitor of 
DNA binding 2 (Id2) is required for the devel-
opment of a common lymphoid precursor 
thought to represent an NK cell/ILC precursor 

(ILCP; Yokota et al., 1999; Moro et al., 2010; 
Satoh-Takayama et al., 2010), although an  
ILCP distinct from the NK cell precursor has 
been recently described (Klose et al., 2014). 
Additional factors such as RORt, aryl hy
drocarbon receptor (Ahr), and T-bet (Tbx21) 
specify ILC3 development (Eberl et al., 2004; 
Satoh-Takayama et al., 2008; Veldhoen et al., 
2008; Luci et al., 2009; Sanos et al., 2009; Kiss 
et al., 2011; Lee et al., 2012; Qiu et al., 2012; 
Sciumé et al., 2012; Klose et al., 2013; Rankin 
et al., 2013), and factors such as Rora, Gata3, 
Tcf7, and Gfi control ILC2 development (Yang 
et al., 2011, 2013; Halim et al., 2012; Hoyler  
et al., 2012; Liang et al., 2012; Mjösberg et al., 
2012; Wong et al., 2012; Furusawa et al., 2013; 
Klein Wolterink et al., 2013; Mielke et al., 
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The bZIP transcription factor Nfil3 (also known as E4BP4) is required for the development 
of natural killer (NK) cells and type 1 innate lymphoid cells (ILC1s). We find that Nfil3 
plays a critical role in the development of other mucosal tissue-associated innate lympho-
cytes. Type 3 ILCs (ILC3s), including lymphoid tissue inducer (LTi)–like cells, are severely 
diminished in both numbers and function in Nfil3-deficient mice. Using mixed bone marrow 
chimeric mice, we demonstrate that Nfil3 is critical for normal development of gut-associated 
ILC3s in a cell-intrinsic manner. Furthermore, Nfil3 deficiency severely compromises  
intestinal innate immune defense against acute bacterial infection with Citrobacter roden-
tium and Clostridium difficile. Nfil3 deficiency resulted in a loss of the recently identified 
ILC precursor, yet conditional ablation of Nfil3 in the NKp46+ ILC3 subset did not perturb 
ILC3 numbers, suggesting that Nfil3 is required early during ILC3 development but not for 
lineage maintenance. Lastly, a marked defect in type 2 ILCs (ILC2s) was also observed in 
the lungs and visceral adipose tissue of Nfil3-deficient mice, revealing a general require-
ment for Nfil3 in the development of all ILC lineages.
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at steady-state (Gascoyne et al., 2009; Kamizono et al., 2009; 
Kashiwada et al., 2010; Firth et al., 2013; Fuchs et al., 2013). 
Thus, we investigated whether Nfil3 may regulate the devel-
opment or homeostasis of additional innate lymphocyte 
populations. Here, we used Nfil3-deficient mice to demon-
strate a critical role for the transcription factor Nfil3 in the 
development of group 1, 2, and 3 ILCs and resistance against 
intestinal pathogen challenge.

RESULTS AND DISCUSSION
Intestinal group 3 ILCs are severely reduced  
in Nfil3-deficient mice
Consistent with previously reported findings (Gascoyne  
et al., 2009; Kamizono et al., 2009; Kashiwada et al., 2010; 
Firth et al., 2013; Fuchs et al., 2013), we found a dramatic 
deficiency in NK cells and group 1 ILCs (ILC1) in multiple 

2013; Spooner et al., 2013). In many of these studies, genetic 
ablation of individual transcription factors resulted in a defect 
in ILC subset numbers and/or function, resulting in suscepti-
bility to pathogen challenge at mucosal surfaces.

Nfil3 (also known as E4BP4) is a basic leucine zipper 
transcription factor that has been shown to control an exten-
sive range of cellular processes in lymphocyte subsets, in
cluding the transcription of IL-3 in T cells (Zhang et al., 
1995), survival and class-switching in B cells (Ikushima et al., 
1997; Kashiwada et al., 2010), development and response 
of macrophages and dendritic cell subsets (Kashiwada et al.,  
2011b; Kobayashi et al., 2011), modulation of TH2 responses  
(Kashiwada et al., 2011a; Motomura et al., 2011), and regula-
tion of TH17 responses via circadian clock (Yu et al., 2013). 
However, arguably the most striking phenotype in Nfil3- 
deficient mice is the near complete loss of NK cells and ILC1s 

Figure 1.  Nfil3 is required for intestinal 
ILC3 and LTi cell development. (A) Gating 
strategy for analysis of the total ILC popula-
tion (CD90.2+ CD127+ cells within the CD45+ 
Lineage population) is shown. (B) Flow cyto-
metric plots show the percentage of RORt+ 
ILC3s within the CD45+ Lineage population 
in the PPs. Graphs show percentage and ab-
solute number of ILC3s within the CD45+ 
Lineage population for SI, LI, PP, MLNs, and 
spleen from WT and Nfil3/ mice. (C) Graph 
shows the percentage of IL-22–producing 
cells within the MLN ILC3 population of WT 
and Nfil3/ mice after IL-23 stimulation.  
(D) Percentages of intestinal CD4+ RORt+ LTi 
cells within the total ILC population of WT 
and Nfil3/ mice are shown. (E) Plots show 
the percentage of SI NKp46 and NKp46+ 
ILC3s, and graph shows absolute numbers of 
LTi, NKp46 ILC3, and NKp46+ ILC3. All data 
are representative of n = 3–5 mice per group, 
with error bars showing standard deviation, 
repeated in 2 (panel E) or 4 (panels B-D) inde-
pendent experiments. *, P ≤ 0.05; **, P ≤ 0.01; 
***, P ≤ 0.001.
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2008; Cella et al., 2009; Sonnenberg et al., 2011; Qiu et al., 
2012; Sonnenberg et al., 2012). Given the defective ILC3 
numbers in Nfil3/ mice compared with WT mice, we next 
investigated whether Nfil3/ mice were more susceptible to 
oral challenge with C. rodentium. In our studies, WT and 
Nfil3/ mice, along with Nfil3+/ heterozygous control mice 
containing intact ILC3 development (unpublished data), were 
cohoused for a minimum of 2–3 wk before infection to en-
sure normalization of mouse commensal microbial commu-
nities (Elinav et al., 2011; Ubeda et al., 2012). After oral  
C. rodentium infection, all three experimental cohorts were as-
sessed for disease status and bacterial titers (Fig. 3 A). Within 
4 d post infection (PI), Nfil3/ mice began to lose body 
weight at a greater rate than WT mice or Nfil3+/ litter
mates (Fig. 3 B) despite comparable C. rodentium titers in all  
experimental groups early after infection (not depicted). 
The Nfil3/ mice showed significantly greater weight loss at 
days 7 and 11 PI, whereas WT and Nfil3+/ mice maintained 
body weight (Fig. 3 B). All groups were sacrificed at day 11 PI 
and Nfil3/ mice had higher bacterial titers within cecal con-
tents (Fig. 3 C), with some showing bacterial dissemination to 

tissues, including small intestine (SI), Peyer’s patches (PPs), 
lung, and spleen (unpublished data). Given that NK cells and 
ILC1s are found at extremely reduced frequency in Nfil3/ 
mice at steady-state, we investigated whether Nfil3 was also 
required for development or homeostasis of other innate 
lymphocyte populations. Because ILCs (identified as lineage-
negative cells that coexpress CD45, IL-7R [CD127], and 
Thy 1 [CD90]) are found in relatively high abundance at gut 
mucosal sites (Sonnenberg et al., 2013; Spits et al., 2013; 
Walker et al., 2013), we analyzed these innate lymphocytes 
(Fig. 1 A) in the lamina propria of SI and large intestine (LI), 
and in PPs of WT and Nfil3/ mice. In contrast to WT 
mice, Nfil3/ mice contained severely diminished ILC3 
numbers in all intestinal sites examined (Fig. 1 B). The defect 
in ILC3 numbers in the gut was also observed in mesenteric 
LNs (MLNs) and spleen of Nfil3/ mice (Fig. 1 B), suggest-
ing that the defect was not due to an inability to properly 
home to mucosal sites. Furthermore, the few residual intesti-
nal ILC3s identified phenotypically from Nfil3/ mice were 
functionally impaired in their ability to produce IL-22 when 
stimulated ex vivo with IL-23 (Fig. 1 C). Within the RORt+ 
ILC3 population, intestinal CD4-expressing lymphoid tissue 
inducer (LTi) cells from Nfil3/ mice were also dramatically 
reduced compared with WT mice (Fig. 1 D), as were both 
NKp46 and NKp46+ ILC3s (Fig. 1 E), demonstrating the 
critical role of Nfil3 for the development of all type 3 ILCs.

Cell-intrinsic requirement for Nfil3 in ILC3 development
To rule out the possibility that ILC-extrinsic factors in 
Nfil3/ mice may underlie the observed ILC3 defects, we 
generated mixed BM chimeric mice where lethally irradiated, 
congenically distinct recipient mice (CD45.1) received a 1:1 
mixture of BM from WT (CD45.1 × 2) and Nfil3/ 
(CD45.2) mice. We analyzed the mice 8–12 wk after BM 
transplantation (BMT), as we have previously observed devel-
opment of donor ILC3s in recipient intestines at this time 
after BMT (Hanash et al., 2012). Although there were no 
substantial differences in myeloid, T, or B cell chimerism (not 
depicted), intestinal ILC3s from the WT donor population 
greatly outnumbered the ILC3s from the Nfil3/ donor 
population (Fig. 2 A). In the chimeric mice, ILC3 develop-
ment from Nfil3/ donor marrow was impaired in multiple 
compartments, including SI, LI, and PP, compared with the 
WT donor population (Fig. 2 B). Furthermore, upon ex vivo 
stimulation of total ILC3s with IL-23, the IL-22–producing 
cells were overwhelmingly found within the WT population 
(Fig. 2 C). Because the mixed chimera setting possesses both 
WT stromal and hematopoietic elements, our findings imply 
that Nfil3 acts in a cell-intrinsic manner to drive ILC3 devel-
opment and/or homeostasis.

Nfil3 is essential for resistance against intestinal pathogens
ILC3s have been shown to be critical for host protection 
against the murine enteric pathogen Citrobacter rodentium, as 
mice lacking ILC3s or depleted of ILCs become susceptible to 
bacterial dissemination and mortality (Satoh-Takayama et al., 

Figure 2.  Cell-intrinsic role for Nfil3 in development of ILC3s.  
(A) Percentages of intestinal WT (CD45.1 × 2) and Nfil3/ (CD45.2) ILC3 
populations in mixed BM chimeric mice are shown. The CD45.1+ population 
in each plot represents WT host ILC3s. (B) Graphs show percentages of WT 
and Nfil3/ ILC3 derived from donor BM in the SI, LI, and PP of chimeras. 
(C) Representative plots and graphs show the percentage of IL-22–producing  
cells within the intestinal WT and Nfil3/ ILC3 populations after IL-23 
stimulation. All data are representative of n = 3–5 mice per group, with 
error bars showing standard deviation, repeated in 2 (C) or 3 (A and B) 
independent experiments. **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001.
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Within 3 d PI, all of the Nfil3/ mice succumbed to C. dif-
ficile infection, whereas control groups recovered from initial 
weight loss (Fig. 3 H). Together with the C. rodentium stud-
ies, infection with C. difficile demonstrates that the transcrip-
tion factor Nfil3 contributes to host protection against 
multiple intestinal bacterial pathogens.

Development of the ILCP depends on Nfil3
To better understand at which developmental stage Nfil3 
is required for generation of mature ILC3s, we analyzed  
the expression level of Nfil3 mRNA in the earliest progenitor 
cells by microarray, and in ILCPs and mature ILC3s by  
qRT-PCR. We found that Nfil3 expression increases as the 
hematopoietic stem cell differentiates into the multilineage 
progenitor and then the Id2-expressing common lymphoid 
progenitor (CLP; Fig. 4 A). Indeed, these data are consistent 
with recent findings demonstrating Nfil3 expression as early 
as the CLP stage (Male et al., 2014). From the CLP to ILCP 
to mature ILC3 stage, Nfil3 expression continues to increase, 
with highest levels of Nfil3 in gut ILC3 (Fig. 4 A). Thus, we 
analyzed CLP (Lin CD45+ CD27+ CD127+ c-Kit+) and 
ILCP (Lin CD45+ CD27+ CD127+ c-Kit+ CD135 47+) 
populations in the BM of WT and Nfil3/ mice (Fig. 4 B), 
using surface markers previously described to delineate these 
precursors (Sawa et al., 2010; Fathman et al., 2011; Possot  
et al., 2011; Cherrier et al., 2012; Walker et al., 2013; Serafini  
et al., 2014). Whereas CLP numbers in the BM were compa-
rable between WT and Nfil3/ mice, ILCP numbers were 
strikingly reduced in Nfil3/ mice (Fig. 4 C), suggesting 
that Nfil3 is required for the transition from the CLP stage to 

the liver (not depicted), compared with control groups. Con-
sistent with C. rodentium–induced colitis, infected Nfil3/ 
mice had shorter colons relative to WT and Nfil3+/ mice 
(Fig. 3 D), even though we have not observed shorter colons 
in uninfected Nfil3/ mice (not depicted). Finally, WT but 
not Nfil3/ ILC3s dominated the total intestinal ILC3 pop-
ulation in chimeric mice infected with C. rodentium (Fig. 3 E), 
suggesting that inflammation generated during infection is 
unable to expand or recruit gut ILC3s lacking Nfil3. The in-
ability of ILC3s to undergo prolific expansion was confirmed 
by the lack of BrdU incorporation in mice infected with  
either C. rodentium or MCMV (unpublished data), the latter 
of which was previously shown to drive Ly49H+ NK cells to 
expand in Nfil3/ mice (Firth et al., 2013).

Next, we tested susceptibility of Nfil3/ mice against 
pathogenic bacteria using a clinically relevant model of  
intestinal Clostridium difficile infection. C. difficile is an oppor-
tunistic gram-positive bacterium that can cause severe colitis 
and diarrhea when the normal microbiota is disrupted after 
antibiotic treatment (Rupnik et al., 2009), and the inci
dence of infection in hospital settings is increasing, especially 
among BMT patients (Kelly and LaMont, 2008). As with the  
C. rodentium model, experimental mice were first cohoused 
for 2–3 wk; mice were then treated with an antibiotic regi-
men (diagrammed in Fig. 3 F) previously shown to disrupt the  
intestinal microbiota and induce susceptibility to C. difficile 
spores and colitis (Buffie et al., 2012). Antibiotic-treated 
Nfil3/ mice orally challenged with a pathogenic strain of  
C. difficile demonstrated extreme weight loss within 48–72 h PI, 
in contrast to WT and Nfil3+/ heterozygous mice (Fig. 3 G). 

Figure 3.  Nfil3/ mice are susceptible to in-
testinal pathogens. (A) Schematic of C. rodentium 
experiment. (B) Body weight of mice from WT, 
Nfil3+/, and Nfil3/ groups was assessed during the 
course of C. rodentium infection. (C and D) Infected 
WT, Nfil3+/, and Nfil3/ mice were sacrificed on day 
11 PI, and C. rodentium colony forming units (CFU) in 
cecal content was determined (C), and colon length 
measured (D). (E) Mixed WT:Nfil3/ chimeric mice 
were infected with C. rodentium, and percentages of 
WT and Nfil3/ cells within the total colonic ILC3 
population on day 2 PI are shown. (F) Schematic of  
C. difficile experiment. (G and H) Body weight (G) and 
survival (H) of mice from WT, Nfil3+/, and Nfil3/ 
groups was assessed during the course of C. difficile 
infection. All data are representative of n = 3–5 mice 
per group, with error bars showing standard devia-
tion (B–E) and SEM (G), repeated in 2 independent 
experiments. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; 
****, P ≤ 0.0001.
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were also found in the spleen and MLNs of Nfil3fl/fl × Nkp46iCre 
mice and littermate controls (Fig. 4 F). Together, these data 
suggest that Nfil3 is required for ILC3s at a developmental 
stage preceding the acquisition of NKp46 expression, and that 
the maintenance of NKp46+ ILC3s is independent of Nfil3.

ILC2 populations are severely diminished  
in Nfil3-deficient mice
Given the dependence of ILC3s on Nfil3, as well as the previ-
ously reported dependence of type 1 ILCs on Nfil3 (Gascoyne 
et al., 2009; Kamizono et al., 2009; Kashiwada et al., 2010; 
Firth et al., 2013; Fuchs et al., 2013), we investigated whether 
type 2 ILCs are also diminished in Nfil3-deficient mice. ILC2s 
have been characterized as the predominant subset of ILC in 
healthy lungs, and can mediate lung inflammatory responses 
and pulmonary immunity against pathogens (Spits and Cupedo, 
2012; Sonnenberg et al., 2013; Walker et al., 2013). We discov-
ered that Nfil3/ mice contain markedly reduced numbers of 
ILC2s (identified as Lineage-negative cells that coexpress 
CD45, IL-7R [CD127], Thy 1 [CD90], and Gata3; Fig. 5 A) 
in lung tissue relative to WT mice (Fig. 5 B). Because ILC2s 
have also been described to constitute a major source of Th2 

the ILCP stage. Thus, it is possible that Nfil3 is expressed 
earlier than and may regulate the expression of RORt and 
Gata3, neither of which is expressed in CLP, although ILCP 
expressed Gata3 (Fig. 4 D), consistent with recent findings 
(Serafini et al., 2014).

Nfil3-independent maintenance of mature NKp46+ ILC3s
Expression of Nfil3 in mature ILC3s is greater than in con-
ventional NK cells (Fig. 4 A; Klose et al., 2014), even though 
maintenance of mature NK cells is Nfil3-independent (Firth 
et al., 2013). Our data and previous studies have found that a 
large fraction of intestinal ILC3s express the activating receptor 
NKp46 (Fig. 1 E; Satoh-Takayama et al., 2008; Cella et al., 
2009; Sanos et al., 2009; Sawa et al., 2010). To investigate 
whether Nfil3 is required for maintenance of a mature ILC3 
population beyond the developmental stage when NKp46 is 
first expressed, we crossed Nkp46iCre mice (Narni-Mancinelli 
et al., 2011), which express Cre-recombinase under control of 
the NKp46 gene, to Nfil3fl/fl mice (Motomura et al., 2011). 
Nfil3fl/fl × Nkp46iCre mice contained a normal number of  
mature intestinal ILC3s compared with littermate control mice  
lacking Cre expression (Fig. 4 E). Similar ILC3 frequencies 

Figure 4.  Nfil3 is critical during CLP to ILCP 
transition but not for maintenance of mature 
ILC3s. (A) Relative Nfil3 expression was determined 
by Immgen microarray dataset (left graph) and qRT-
PCR (right graph) on indicated cell populations. Data 
are shown as fold change relative to Nfil3 expression 
in NK cells. (B) Gating strategy shown for analysis of 
CLP (CD127+ c-Kit+ cells within the CD45+ CD27+ 
Lineage population) in BM. (C) Plots show percent-
age of BM ILCP (CD135 47+) within the CLP pop-
ulation. Graphs show percentages of CLP and ILCP in 
BM and ILC3 in the spleen of WT and Nfil3/ mice. 
(D) Histograms show expression of RORt and Gata3 
in CLP (tinted) and ILCP (black line). (E) Percentages of 
intestinal ILC3s in Nfil3fl/fl × Nkp46iCre mice and litter-
mate control (without Cre) are shown. (F) Graphs 
show percentage of ILC3s in the indicated tissues 
from Nfil3fl/fl × Nkp46iCre mice and littermate controls. 
Data are representative of n = 3–5 mice per group, 
with error bars showing standard deviation, repeated 
in 2 (C–F) or 3 (A) independent experiments.  
*, P ≤ 0.05; ***, P ≤ 0.001.
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patients (Kobayashi et al., 2011). Although the precise mecha-
nisms of Nfil3-mediated host protection from inflammatory 
bowel disease (IBD) remain to be elucidated, our current find-
ings suggest that absence of the Nfil3-dependent ILCs may 
contribute toward greater risk of intestinal injury and colitis, 
and morbidity during pathogenic bacteria exposure.

Given the broad role for Nfil3 in regulating a diverse range 
of immune cells, our findings importantly demonstrate that the 
activity of Nfil3 in the general development of ILCs is cell-
intrinsic and may not be required beyond the early ILC devel-
opmental stages, reminiscent of the Nfil3-independent lineage 
maintenance recently reported for NK cells (Firth et al., 2013). 
Thus, the transcription factor Nfil3 may play the role of a 
master promoter of ILC development, acting in an early  
ILCP similarly to Id2 (Yokota et al., 1999; Moro et al., 2010;  
Satoh-Takayama et al., 2010), or, as recently described, Gata3 
(Serafini et al., 2014) and Plzf (Constantinides et al., 2014). 
Further elucidation of the regulation and targets of Nfil3 in 
ILC development will be valuable for determining the lineage 
relationships between ILC subsets. Our findings may be useful 
for understanding pathophysiology of inflammatory processes 
at mucosal surfaces and for developing therapeutic interven-
tions for multiple causes of infectious and noninfectious in-
testinal injury, including IBD and graft versus host disease.

MATERIALS AND METHODS
Mice. Wild-type C57BL/6 (B6), congenic (CD45.1 and CD45.1xCD45.2), 
Nfil3/ (Kashiwada et al., 2010), Nfil3fl/fl (Motomura et al., 2011), and  
Nkp46iCre (Narni-Mancinelli et al., 2011) mice were bred and maintained at 
Memorial Sloan-Kettering Cancer Center (MSKCC). Mice were housed 

cytokines in visceral adipose tissue (VAT; Moro et al., 2010; 
Molofsky et al., 2013), we investigated whether ILC2s were 
defective in the VAT of Nfil3/ mice. Indeed, compared 
with WT mice, both ILC2 numbers and function (as mea-
sured by IL-13 secretion) were drastically diminished within 
VAT of Nfil3/ mice (Fig. 5, C and D), demonstrating that 
the ILC2 defect in the absence of Nfil3 is not restricted to the 
lungs. A recent study showed that a consequence of ILC2 
presence in the lungs is the regulation of basal eosinophil ho-
meostasis (Nussbaum et al., 2013). When we assessed eosino-
phils in the lungs of Nfil3/ mice, we found diminished 
numbers compared with WT mice (Fig. 5 E), suggesting that 
Nfil3 control of ILC2 development may contribute to regulat-
ing tissue eosinophil accumulation at steady-state. Using 1:1 
WT:Nfil3/ mixed chimeric mice, as described earlier (Fig. 2), 
we found that ILC2 in lung and VAT consisted of cells de-
rived from WT marrow in significantly greater frequency 
than from Nfil3/ marrow (Fig. 5, F and G), suggesting that 
like ILC3s, development of ILC2s requires Nfil3 activity via a 
cell-intrinsic mechanism. Altogether, these findings demon-
strate that Nfil3 deficiency results in the disrupted develop-
ment of ILC1, ILC2, and ILC3 subsets.

In summary, our study demonstrates a critical role for the 
bZIP transcription factor Nfil3 in the development of all innate 
lymphocyte subsets. The loss of the ILC3 subset in Nfil3/ 
mice may account for the loss of intestinal integrity at steady-
state and the development of spontaneous colitis which was re-
cently reported (Kobayashi et al., 2014). Indeed, Nfil3 represents 
a susceptibility gene in Crohn’s disease and ulcerative colitis 

Figure 5.  Nfil3/ mice are deficient in 
lung and fat ILC2s and eosinophils. (A) Gating 
strategy shown for analysis of lung ILC2 
(CD90.2+ Gata3+ cells within the CD45+ Lineage 
population). (B) Percentage (of CD45+) and abso-
lute number of ILC2s in lungs of WT and 
Nfil3/ mice are shown in plots and graph.  
(C and D) Graphs show total ILC2s (C) and  
IL-13–secreting ILC2s (after stimulation with 
PMA + Ionomycin; D) in VAT from WT and 
Nfil3/ mice. (E) Absolute number of eosino-
phils (Lin CD45+ CD90 NK1.1 CD11b+  
SiglecF+) in lungs of WT and Nfil3/ mice is 
shown. (F) Percentages of WT (CD45.1 × 2) and 
Nfil3/ (CD45.2) lung ILC2 populations from 
mixed BM chimeric mice are shown. The CD45.1+ 
population in each plot represents WT host 
ILC2s. (G) Graph shows percentages of WT and 
Nfil3/ lung and VAT ILC2s derived from donor 
BM in chimeric mice. All data are representative 
of n = 3–5 mice per group, with error bars 
showing standard deviation, repeated in 2 (E),  
3 (F and G), or 4 (B–D) independent experiments.  
*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001.
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