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Abstract

Macrophages form a heterogeneous group of hematopoietic cells that reside in tissues, where they

are required to maintain organ integrity. Tissue macrophages contribute to tissue formation,

metabolism, homeostasis, and repair. They have a unique ability to sense and respond to tissue

damage. They serve as the first line of defense during infection and help promote immune

tolerance in the steady state. Although most tissue macrophages share a high phagocytic and

degradative potential, they are heterogeneous in origin, as well as in homeostatic function and

response to insults. Here, we will discuss recent developments in our understanding of the origin

of tissue macrophages and their functional specialization in tissues.

Introduction

Macrophages form a heterogeneous group of tissue-resident hematopoietic cells of myeloid

origin that share a superior phagocytic potential and an ability to recognize and respond to

tissue damage and infection. Macrophages populate all tissues of the body and play a key

role in the maintenance of tissue integrity and repair (1, 2). Global transcriptome analysis of

purified tissue macrophage populations by the Immunological Genome Project has

contributed to a better understanding of the macrophage lineage and has revealed

considerable transcriptional diversity between macrophages from different organs (3),

emphasizing their specialized role in different tissues. The development of engineered

mouse models to trace myeloid progenitors, quantify macrophage repopulation in situ and

probe macrophage regulation in vivo has also revealed novel developmental and regulatory
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control of the macrophage lineage. In this review, we will discuss our current understanding

on the regulation of macrophage development and function that has emerged from these

studies.

Macrophage Phenotype

Macrophages are characterized by specific phenotypic features and by the expression of

particular markers, none of which is entirely restricted to the cell type. In mice, macrophages

express the hematopoietic lineage marker CD45 and lack lineage markers of other immune

cells (including Gr-1, CD3, and CD20). They express the receptor for macrophage colony-

stimulating factor (M-CSF, renamed Csf1), the integrin CD11b, Fcγ receptor 1 (FcγRI)

CD64, and the receptor tyrosine kinase MerTK. The latter two markers are particularly

indicative of the unique function of macrophages as scavengers of foreign antigens and

apoptotic cells. In certain tissues, particularly in locations where antigen presentation is

critical, such as the microbial coated intestine, macrophages constitutively express cell

surface MHC class II and the integrin CD11c, two molecules shared with dendritic cells (4).

In humans, macrophage markers include the Csf1 receptor CD115, the FcγRI CD64, the

FcγRIII CD16, and the scavenger receptors CD68 and CD163. In both mice and humans,

these markers need to be used in combination to define macrophages, as none is cell type

specific (see Fig. 1).

Macrophage Ontogeny during Steady State and in Inflamed State

The mononuclear phagocyte system

In 1908, Elie Metchnikoff (1845–1916) was awarded the Nobel Prize in Physiology or

Medicine for the discovery of phagocytosis (5). Phagocytosis, derived from the Greek word

phago meaning "to devour," refers to the process of engulfment of large particles by

phagocytes. In mice and humans, phagocytes include mononuclear phagocytes and

neutrophils, which are also called polymorphonuclear phagocytes due to the segmented

shape of their nuclei. Mononuclear phagocytes include blood-circulating monocytes, tissue-

resident macrophages, and dendritic cells. A foundational dogma in immunology suggests

that monocytes and macrophages are part of a continuum that form the mononuclear

phagocyte system, in which blood monocytes are the circulating link between bone marrow–

derived myeloid precursors and tissues macrophages (6).

Recent studies have revealed that commitment to the mononuclear phagocyte lineage is

determined at the stage of the macrophage–dendritic cell progenitor (MDP), at which point,

erythroid, megakaryocyte, lymphoid, and granulocyte fates have been precluded (7, 8).

MDP cells, phenotypically defined as lineage− c-kit+ CX3CR1+ CD115+ , give rise to

common dendritic cell progenitors (CDP), which differentiate into circulating pre–dendritic

cell precursors that leave the bone marrow to repopulate the short-lived tissue dendritic cell

pool (9–11). In parallel, MDP differentiate through the recently described common

monocyte precursor (cMoP; ref. 12) into two subsets of monocytes that are distinguished on

the basis of the expression of the lymphoid 6c (Ly6C) antigens. Ly6Chi monocytes are

short-lived cells that extravasate in inflamed tissues in response to injury signals to

differentiate into inflammatory dendritic cells and macrophages. Ly6Clo monocytes have
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distinct homing and functional properties compared with Ly6Chi monocytes (13). In contrast

to Ly6Chi monocytes, Ly6Clo monocytes cannot infiltrate tissues; they patrol the

endothelium and contribute to the maintenance of endothelial cell integrity (14). Recent data

revealed that circulating Ly6Clo monocytes in fact likely arise from Ly6Chi monocytes, and

these cells form a steady state continuum [see Fig. 2 (13)].

Tissue-resident macrophages

All tissues have resident macrophages that perform local homeostatic functions in the steady

state (16). In vivo radio-isotope-labeling studies in mice exposed to inflammatory injuries

and radiation chimera experiments led to the dogma that circulating monocytes are

constantly maintaining the tissue macrophage pool (17, 18). However, many observations

conflict with the supposed monocyte origin of tissue-resident macrophages in the steady

state. For example, the first macrophages, called primitive macrophages, appear

embryonically before the development of monocytes (19). In addition, monocytopenic

animals have normal tissue macrophage density (20, 21). Recently, novel fate-mapping

models in the mouse have revealed that, unlike most hematopoietic cells that are constantly

replenished from the bone marrow, macrophages are unique in that they are embedded in the

tissue during embryonic life.

In the embryos, hematopoiesis begins in an extra-embryonic structure called the yolk sac

around embryonic age E7.5. Yolk sac hematopoiesis wanes with time and is slowly replaced

by new waves of hematopoiesis initiated in the embryo proper, first in the aorta–gonads–

mesonephros region and later in the fetal liver (22–24). Hematopoiesis initiated in the

embryo proper is called definitive hematopoiesis as opposed to yolk sac–derived primitive

hematopoiesis. Fate-mapping analysis of primitive and definitive hematopoietic precursors

in the embryo (25) revealed that yolk sac macrophages seed most tissue rudiment in the

embryos but differentially contribute to the adult macrophage pool (F. Ginhoux and M.

Merad; unpublished data). Primitive macrophages that arise in the yolk sac can maintain the

homeostasis of adult brain macrophages, also called microglia, with minimal contribution

from hematopoiesis that arises after E7.5 (26). Langerhans cells, the macrophage-like

dendritic cells of the epidermis, are seeded initially by yolk sac macrophages. However, a

second wave of fetal liver monocytes infiltrate the skin rudiment around E14.5 and almost

entirely replace the yolk sac–derived macrophages for the maintenance of epidermal

Langerhans cells in the adult (27). A small fraction of macrophages that derive from yolk

sac precursors have also been found in several tissues of the adult mouse (28). Other tissue

macrophages may be replenished by subsequent waves from the fetal liver monocytes as

well, although this has yet to be shown in a fate-mapping model. Nonetheless, most

macrophages in the spleen, peritoneum, liver, and lung seem to be maintained by embryonic

precursors that take residence in tissues before birth, independently of adult hematopoiesis

(15, 28, 29).

Similarly in humans, numerous studies have reported that tissue macrophages can still form

despite strongly reduced levels of circulating monocytes (30–33). For example, in four

patients with a syndrome of monocytopenia and deficiencies in dendritic cells, B

lymphocytes, and natural killer cells, cutaneous macrophages were found unaffected (30).
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Similarly, a patient with a null mutation of the IFN response factor 8 (irf8) gene was found

to have a block in monocyte and dendritic cell differentiation, but despite profound

peripheral monocytopenia, macrophages were present in the lymph nodes and in the bone

marrow (32). The normalcy of macrophages in these monocytopenic patients further

suggests that tissue macrophages can develop in the absence of monocytes in humans.

Some populations of tissue-resident macrophages do arise from circulating bone marrow

precursors. Mouse intestinal macrophages are replenished by bone marrow–derived Ly6Chi

monocytes (34, 35). The kidney and uterine macrophages may also in part arise from bone

marrow precursors (2, 28). The marginal zone macrophages located at the interface between

splenic red and white pulp, where most arterial blood enters the spleen, also derive from

circulating monocytes in response to liver X receptor (LXR) nuclear receptor signaling (36).

It is unclear why some macrophages need to be maintained by circulating precursors and

some do not, and whether inflammatory cues expressed in these specific sites contribute to

their steady state turnover. These data emphasize the heterogeneity of the macrophage

lineage and the limitations of the current classification of the mononuclear phagocyte

system. A new conceptualization of the mononuclear phagocytes should include the diverse

origins of tissue macrophages.

Maintenance of tissue-resident macrophages in the steady state

Local maintenance of tissue-resident macrophages is likely due to their prolonged half-life

in tissues and their ability to repopulate locally. Local proliferation and survival of tissue-

resident macrophages are dependent on growth factors that differ between tissues. Most

tissue macrophages are dependent on Csf1 (37). However, some tissue macrophage

populations remain unaffected in the Csf1op/op mouse that carries a natural null mutation of

the Csf1 gene (37). Epidermal Langerhans cells and microglia among others persist in the

Csf1op/op mouse and yet these cells are dependent on the receptor for Csf1 (26, 38). An

alternate ligand for the Csf1 receptor, called interleukin (IL)-34, is expressed locally in the

skin and brain tissues and was found recently to be critical for maintenance of these cells

(39, 40). In addition to Csf1 and IL-34, granulocyte macrophage colony-stimulating factor

(GM-CSF; recently renamed Csf2) is another cytokine that controls local macrophage

maintenance playing an essential role in the repopulation of alveolar macrophages in the

steady state (29). The cellular steps that control local macrophage repopulation remain

unclear although recent studies from our laboratories revealed that tissue macrophage

proliferation is not restricted to a specific compartment, suggesting that macrophages should

be able to proliferate locally without relying on a dedicated progenitor population (29).

Inflammatory macrophages

In contrast with resident macrophages, infiltrating or inflammatory macrophages are found

only in injured tissues, and they derive from circulating monocytes. Most tissue injuries lead

to the recruitment of large numbers of monocytes and induce their local differentiation into

inflammatory macrophages. Circulating monocytes provide a source of infiltrating

macrophages in many pathologic settings, such as cancer (41), atherosclerosis (42), and

metabolic disease (43). The interplay of bone marrow–derived inflammatory macrophages

and tissue-resident macrophages has only recently started to be explored, and it seems to
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vary with the nature of the injury. For example, parasitic infection leads to IL-4– dependent

expansion of tissue-resident macrophages (44), and influenza viral infection (29) leads not

only to the depletion and subsequent repopulation of tissue-resident macrophages but also to

the recruitment of infiltrating macrophages. Ionized irradiation, on the other hand, ablates

tissue-resident macrophages and promotes their replacement by adult bone marrow–derived

macrophages. However, even in this case, tissue-resident macrophages can be triggered to

repopulate locally if adult bone marrow–derived precursors are impaired in their ability to

differentiate into macrophages. X-ray irradiation does not definitively eliminate the tissue-

resident macrophage pool but likely delays its repopulation potential, providing a

competitive advantage to adult bone marrow–derived macrophages (29). Detailed ontogeny

studies have not yet been carried out in chronic inflammatory conditions, but it is likely that

a mixture of tissue-resident and monocyte-derived macrophages accumulate in chronically

inflamed tissues such as in solid tumors (45). The exact contribution of tissue-resident and -

infiltrating macrophages to inflammation and repair remains to be examined. Another

important question will be to examine whether infiltrating macrophages can engraft in

tissues and acquire resident macrophage function or whether similar to inflammatory

dendritic cells they disappear once the inflammation resolves (4).

Macrophages in Homeostasis and Disease

Macrophages play a key role in organ integrity through their contribution to tissue

development, homeostasis, and repair. Macrophages also take on specialized roles integral

to the organ in which they reside, and their unique functions are reflected in the diversity of

the tissue macrophage transcriptome.

Homeostasis

Tissue-resident macrophages play a key role in tissue formation and remodeling during

development. Macrophages are especially important in ductal formation and bone structure,

and mice with a mutation in Csf1 or Csf1 receptor have developmental deformities (46–48).

Macrophages remove the wave of apoptotic cells during the formation of digits (49). They

assist in angiogenesis and regulate blood vessel formation (50, 51).

In the adult, resident macrophages continue to play a critical role for many homeostatic

functions that differ between tissues, which may explain why tissue macrophage expression

profile varies between tissues (3, 52). Osteoclasts maintain bone development by constant

bone resorption, and the predominant phenotype in mice that lack Csf1 or its receptor is

osteopetrosis (53). Lung macrophages clear surfactant proteins in the lung, and in the

absence of Csf2, which is required for macrophage maintenance and function, both mice and

humans develop alveolar proteinosis (29, 54, 55). In the spleen, phagocytosis of red blood

cells by red pulp macrophages controls iron levels and erythrocyte turnover (56). Microglia

are important for neuronal development, and during the first few weeks of life they are

involved in synaptic pruning (57, 58). In the mature brain, microglia constantly survey the

surrounding area, making transient synaptic connections with their long processes so that

they are able to respond rapidly to injury and ischemia (59, 60). Intestinal macrophages

constantly sense commensal microbes and sample luminal antigens by projecting their

dendrites through intestinal epithelial cells (61, 62). They produce anti-inflammatory

Lavin and Merad Page 5

Cancer Immunol Res. Author manuscript; available in PMC 2014 August 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



cytokines (63–65) critical for the local expansion of T-regulatory cells (66). Macrophages

also clear bacteria that penetrate the epithelial barrier (67) and help contain pathogens

locally by preventing their systemic dissemination (68).

Developmental niches rely on macrophages for maintenance. In the bone marrow, CD169+

macrophages maintain functional erythroblasts and contribute to the maintenance of late

erythroid development (69). Bone marrow macrophages expressing VCAM1 are critical for

effective recovery from irradiation and bone marrow transplantation as well as acute blood

loss or hemolytic anemia. Their depletion conversely helps reduce hyperactive erythron

production in a polycythemia vera mouse model (69, 70). Bone marrow macrophages also

maintain hematopoietic stem progenitor cell (HSPC) niches. Upon macrophage depletion,

Nestin+ stromal cells that surround HSPC showed loss of many genes, such as CXCL12 and

VCAM1, which are critical for HSPC maintenance and retention in the bone marrow leading

to HSPC egress to the blood circulation (71). An important role may exist for macrophages

in signaling and maintenance of other local stem cells niches such as in intestinal crypts (72,

73), although this has yet to be shown.

Macrophages express a wide range of cell surface and cytosolic receptors that allow them to

detect tissue damage or infection (74). In the steady state, macrophages phagocytose and

clear dying cells, and expression of oxidized phosphati-dylserine on the surface of apoptotic

cells constitutes a major signal for phagocyte engulfment. Macrophages produce opsonins

such as milk fat globule EGF 8 (MFG-E8), Del-1, and growth arrest–specific gene 6 (Gas6)

that bind to phosphati-dylserine and promote engulfment through engagement of integrins or

the Tyro3-Axl-Mer receptor tyrosine kinases (75–77). MFG-E8 release and the engagement

of the Tyro3-Axl-Mer family receptor tyrosine kinases inhibit the induction of an innate

immune response against self-antigens. Conversely, mice deficient in these pathways

develop autoimmunity and persistent inflammation (77, 78). Another mechanism of

regulation of macrophage phagocytosis is through CD47, the ligand of the inhibitory Sirp1a

receptor on macrophages. Macrophages phagocytose red blood cells and foreign bodies that

lack or downregulate this ligand (79).

Macrophages in the steady state maintain homeostasis by a wide array of housekeeping

functions that clear unwanted debris and maintain the critical balance of inflammatory and

tolerant signals.

Disease

Macrophages play a key role in acute inflammation following infection or tissue injury, as

the classic signs of acute inflammation (rubor, calor, dolor, and tumor) can be attributed to

processes they initiate (80). Macrophages recognize foreign antigens through a range of

pathogen sensors that lead to the production of inflammatory cytokines and antimicrobial

mediators (81). Inflammatory cytokines such as TNF-α, IL-6, and IL-1β lead to increased

endothelium permeability and promote early recruitment of innate immune cells such as

neutrophils and monocytes that differentiate locally into inflammatory macrophages. In

parallel, resident dendritic cells leave the tissue and migrate in large numbers to the draining

lymph node to initiate adaptive immune responses (4). Macrophages can also load

extracellular antigen on MHC class II compartments and contribute to the differentiation of
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regulatory and effector CD4+ T cells. In addition to their contribution to effector immunity,

macrophages are also essential in resolving inflammation by undergoing apoptosis, inducing

an anti-inflammatory response, and facilitating wound-healing and repair mechanisms (16,

82).

Macrophages in cancer—As an emerging hallmark of cancer, inflammation paves the

way for tumor growth, and chronic inflammation can give rise to tumors (83, 84). Solid

tumors are infiltrated by a large number of immune cells among which macrophages

represent the predominant population. Initially thought to play a role in antitumor immunity,

studies in mice and humans have revealed the major protumorigenic role played by tumor-

associated macrophages (TAM; refs. 85, 86). The protumorigenic roles of TAM result from

macrophages attempting to restore tissue integrity by the promotion of an angiogenic

program for tissue remodeling that also favors tumor growth, progression, and metastasis,

and for the induction of immunosuppressive microenvironments that inhibit antitumor

cytotoxic T-cell responses (2, 86, 87).

Macrophage phagocytosis is also important in regulating tumor progression. Despite their

protumorigenic roles, deletion of macrophages before tumor induction leads to unchecked

primary tumor growth and decreased survival (88, 89). Tumors upregulate CD47, the "don't

eat me" signal, to inhibit phagocytosis of macrophages expressing SIRPα (90, 91), and

inhibiting CD47 can increase phagocytosis of tumor cells (92). Macrophages are thus

critically involved in both tumor regression and tumor spread.

Macrophage heterogeneity in tumors—The use of nonspecific cell markers as

surrogates of macrophage function likely contributed to some of the confusion in our

understanding of macrophage contribution to tumor outcome. Thus, it is important to avoid

using single cell surface markers to identify macrophage populations and to interpret with

caution those studies using suboptimal macrophage markers. In the tumor environment, in

particular, precise identification of macrophage populations is necessary as many immune

cells accumulate at the tumor site and in the tumor, and they can express heterogeneous

markers. Identifying macrophages by CD68 alone has led to mixed assessment of the

accumulation and the role of macrophage in tumors. Many studies show CD68 as correlating

with tumor growth and decreased survival (85, 93). Other studies of human tumors, such as

non–small cell lung carcinoma and colorectal cancer, show CD68+ cell accumulation as a

good prognostic sign and correlated with increased survival (94, 95).

In addition to the heterogeneity of the population identified by using a single cell marker,

the identification of a mix of pro-and anti-inflammatory signatures within the tumor

microenvironment (96, 97) may reflect a spectrum of macrophage activation and responses

by different macrophage populations that accumulate within the tumor. Macrophages at

different stages in tumor development may act differently; the resident macrophages and

monocyte-derived inflammatory macrophages may play diverse functional roles, and the

nature of the tumor tissue likely drives different types of macrophage effector function

locally. Better identification of macrophages at the tumor site through the use of multiple

surface markers and differentiating subpopulations based on ontogeny will help clarify the

roles of macrophages in cancer.
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Macrophages and cancer therapy—The increased understanding of the key role

played by Csf1 and its receptor in the promotion of macrophage survival and function has

led to the development of novel drug targets that inhibit Csf1 receptor or its signaling in

vivo. Both a small-molecule inhibitor of Csf1r phosphorylation and monoclonal antibodies

to Csf1r inhibit accumulation of infiltrating macrophages in the tumor (98, 99) and in

combination with VEGF receptor-2 (VEGFR-2) blockade (100), chemotherapy (101), or

radiotherapy (102) help reduce tumor growth in mice (103). Studies of macrophage

phagocytic receptors have led to the development of high-affinity SIRPα variant monomers

that inhibit CD47 and together with tumor-specific monoclonal antibodies showed an

increase in survival and tumor regression (104). Similarly, blockade of the MFG-E8

cooperates with antitumor therapy to increase apoptosis and decrease tumor size (105). The

effects of blocking recruitment of infiltrating monocytes to the tumor has also been explored

as a therapeutic option by many mechanisms including Ccl2 blockade in breast cancer cell

lines (87), VCAM1 inhibition (106), the use of GM-CSF antagonists in a genetic model of

pancreatic tumors (107, 108), and a small-molecule inhibitor in neurofibroma (109). These

results suggest that modulation of the macrophage and monocyte compartment can become

an important component of an antitumor therapeutic regimen.

Regulation of macrophage function

The tumor model, alongside other inflammatory processes, drives macrophage action to both

tolerance and activation. Macrophages can display a spectrum of phenotypes (110), and the

transcriptional response to activation is controlled by different transcription factors and

epigenetics (111). During macrophage development, master transcription factors such as Pu.

1 bind to many regions throughout the genome along with the more specific CAAT/

enhancer binding protein α (C/EBPα). These transcription factors open the chromatin,

acting as master transcription factors that determine lineage specificity and remain stable in

the presence of stimuli (112– 114). These factors are important for cell type–specific

differentiation; recently, Trib1 was shown to be important for the differentiation of splenic

red pulp and inflammatory adipose tissue macrophages, likely mediated through altering the

expression of CEBPα (115). A second level of transcription factors responds to the

environment and further shapes the chromatin state. Although many genes are marked by

master transcription factors as poised for activation, not all of them are transcribed.

Inflammatory genes are kept in check in the steady state by binding of the transcriptional

repressor Bcl-6 (116), the repressors NCoR and SMRT (117), and are associated with

repressive histone marks such as H4K20me3 (118). Toll-like receptor activation induces the

transcription factor NF-κB to bind to these regions and activates an inflammatory profile.

However, the response to the stimuli is set during development and is cell type specific

(119); for example, in fibroblasts exposed to the same stimuli as macrophages, the IL-12

locus instead of being activated remains inhibited and repressive methylation increases

(120). A complex process of regulation controls the heterogeneous action of macrophages in

development, inflammation, and tumor. Understanding the epigenetic level of regulation

will provide further insights into how ontogeny and the environment shape the macrophage

response.
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Conclusions

Innate immunity comprises immune cells that are able to recognize a wide variety of stimuli

and respond only after the triggering of robust inflammatory signals. Macrophages

exemplify the balance that is required between tolerance and inflammation. In tumors, the

dichotomy is particularly evident as self-tissue gone awry. Macrophages at these locations

exhibit a combination of inflammatory and tolerance-inducing phenotypes. Abetter

understanding of cellular ontogeny, tissue regulation, and epigenetics can clarify the

function and response of different cell types. Ideally, this will lead to the development of

more specific and effective therapeutics.
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Figure 1.
Macrophage heterogeneity. Macrophages are a heterogeneous population of tissue-resident

hematopoietic cells. This figure illustrates key cell surface markers of mouse macrophage

and monocyte populations. Macrophages can be identified by a combination of cell surface

markers, including the hematopoietic lineage marker CD45, the integrin CD11b, and the

GPCR F4/80, among other markers. However, macrophages in different organs have

different compositions and expression levels of these cell surface proteins, reflecting their

inherent diversity. CD169, sialoadhesin, is an important marker in certain macrophage

populations such as the bone marrow, spleen, and lung. CX3CR1 helps to identify

macrophages in the intestine and differentiate the blood monocyte subsets.
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Figure 2.
Regulation of macrophage development and homeostasis in mice. This figure summarizes

the current model of the pathways to the development of nonlymphoid tissue-resident

macrophages. Most tissue-resident macrophages in the steady state arise from embryonic

precursors that are recruited to tissues before birth with the exception of intestinal and

spleen marginal zone macrophages that derive from circulating monocytes. Embryonic

precursor-derived macrophages receive trophic signals that depend upon their particular

locations. Microglia and Langerhans cells require interleukin (IL)-34, alveolar macrophages

depend on CSF2, and splenic red pulp macrophages use CSF1 for tissue maintenance. The

successive steps that give rise to circulating monocytes in the adult bone marrow have been

characterized. Adult bone marrow hematopoietic stem cells (HSC) give rise to the common

myeloid precursors (CMP), which subsequently give rise to the MDP. MDP produce both

the cMoP and the CDP. CDP differentiate in response to Flt3 ligand into pre-dendritic cells

(pre-DC), which migrate through the blood to peripheral tissues and differentiate locally into

dendritic cells. cMoP give rise to circulating monocytes that survey the blood for the

presence of foreign pathogens and damaged cells. Ly6Chi monocytes differentiate into

Ly6Clo cells, which have been shown to control vessel integrity and to give rise to splenic

marginal zone (MZ) macrophages. Ly6Chi monocytes also give rise to intestinal
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macrophages in the steady state and differentiate into inflammatory macrophages in most

injured tissues.
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