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Transcriptional regulation plays an important role in establishing gene expression profiles during development or in response
to (a)biotic stimuli. Transcription factor binding sites (TFBSs) are the functional elements that determine transcriptional
activity, and the identification of individual TFBS in genome sequences is a major goal to inferring regulatory networks. We
have developed a phylogenetic footprinting approach for the identification of conserved noncoding sequences (CNSs) across
12 dicot plants. Whereas both alignment and non-alignment-based techniques were applied to identify functional motifs in
a multispecies context, our method accounts for incomplete motif conservation as well as high sequence divergence
between related species. We identified 69,361 footprints associated with 17,895 genes. Through the integration of known
TFBS obtained from the literature and experimental studies, we used the CNSs to compile a gene regulatory network in
Arabidopsis thaliana containing 40,758 interactions, of which two-thirds act through binding events located in DNase I
hypersensitive sites. This network shows significant enrichment toward in vivo targets of known regulators, and its overall
quality was confirmed using five different biological validation metrics. Finally, through the integration of detailed expression
and function information, we demonstrate how static CNSs can be converted into condition-dependent regulatory networks,
offering opportunities for regulatory gene annotation.

INTRODUCTION

Transcriptional regulation is a complex and dynamic process in
which transcription factors (TFs) play a fundamental role. Al-
though being subject to many potentially overlapping regulatory
mechanisms, such as microRNA (miRNA) regulation and chro-
matin accessibility coordinated by histone modifications and
DNA methylation, the binding of TFs on specific genomic loca-
tions modulating gene expression levels is pivotal for the proper
regulation of different biological processes. TF binding events
can have a direct or indirect effect on the activation or repres-
sion of gene transcription. More complex regulation of gene ex-
pression is achieved through cooperative binding of different TFs,
adding an extra combinatorial level of regulation (Riechmann
and Ratcliffe, 2000). These regulatory mechanisms allow or-
ganisms to process different endogenous signals related to
growth and development and to respond to changing environ-
mental conditions including different types of (a)biotic stresses.

Despite the functional importance of transcriptional regulation
and the fact that 1500 to 1700 TFs have been identified in

Arabidopsis thaliana (Riechmann et al., 2000; Jin et al., 2014),
knowledge about the genes regulated by different TFs is still
very limited. AtRegNet, which is a part of the AGRIS database
(Yilmaz et al., 2011), summarizes regulatory interactions col-
lected from small- and large-scale experiments and contains
728 interactions when filtering on direct and confirmed targets.
This paucity of experimentally validated regulatory interactions
can be partially explained by the fact that previously used
methods like electrophoretic mobility shift assay (Garner and
Revzin, 1981), systematic evolution of ligands by exponential
enrichment (Roulet et al., 2002), and yeast one-hybrid analysis
(Meng et al., 2005) are labor-intensive and only yield a small
number of interactions (Mejia-Guerra et al., 2012). More recent
techniques such as protein binding microarrays, chromatin
immunoprecipitation (ChIP) with readout through microarray
(ChIP-chip), or next-generation sequencing (ChIP-Seq) allow TF
protein-DNA binding to be analyzed in a high-throughput man-
ner. However, published binding results using these methods
have revealed a weak correlation between the binding of a TF
and transcriptional regulation of the potential target genes
(Ferrier et al., 2011).
Dozens of software tools have been developed to delineate

regulatory regions based on experimental features, such as
coregulation, or using advanced computational methods
(MacIsaac and Fraenkel, 2006). Although the naïve mapping of
known DNA sequence motifs to promoter regions is frequently
used to explore cis-regulatory elements, this approach yields
many false positives because TF binding sites are often short
and typically contain some level of degeneracy in the binding
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motif (Tompa et al., 2005). Although experimentally character-
ized open chromatin regions, profiled through DNase I hyper-
sensitive (DH) sites, offer a global picture of accessible regions
throughout the genome and can aid in reducing the motif search
space (Zhang et al., 2012), determining individual TF binding
events remains a major challenge. A promising solution for the
computational detection of functional elements is phylogenetic
footprinting, which identifies conservation in orthologous ge-
nomic sequences (Tagle et al., 1988; Håndstad et al., 2011).
Orthologs are homologous genes derived from a speciation
event in the last common ancestor of the compared species.
Regions of noncoding DNA in the genome that are conserved
across related species are likely to be under purifying selection
and this signature can be seen as evidence for functionality
(Blanchette and Tompa, 2002; Kaplinsky et al., 2002; Guo and
Moose, 2003; Inada et al., 2003; Vandepoele et al., 2006, 2009;
Thomas et al., 2007; Baxter et al., 2012). Overall, it is not trivial to
make the distinction between conserved noncoding sequences
(CNSs) that have arisen due to neutral sequence carryover and
functionally constrained CNSs in closely related species. With
the advent of methods such as PhastCons (Siepel et al., 2005),
which make use of aligned genomes and statistical models of
sequence evolution, it has become possible to determine CNSs
in closely related species. These methods have shown greater
power in the detection of functional elements and lineage-specific
conservation than detection methods based on comparing
more distantly related genomes in vertebrates, insects, worms,
and yeast (Siepel et al., 2005). However, these approaches re-
quire aligned genomes and the fraction of the genome that can
be aligned drops drastically (<40%) when comparing species
from different genera in flowering plants (Hupalo and Kern,
2013). This is due to large-scale genome rearrangements and
high sequence divergence. Furthermore, taxon sampling is still
limited for flowering plants with the exception of the Brassica-
ceae lineage. These factors make global alignment strategies for
the detection of CNSs impractical for many of the currently
available plant genomes (Reineke et al., 2011). An additional
difficulty for phylogenetic footprinting in plants lays in the fact
that it is not trivial to identify one-to-one orthology in plants, due
to a wealth of paralogs (homologous genes created through
a duplication event) in almost all plant lineages (Van Bel et al.,
2012). Besides continuous duplication events, for instance, via
tandem duplication, many plant paralogs are remnants of
whole-genome duplications. In flowering plants, the frequent
whole-genome duplications in several lineages result in the es-
tablishment of one-to-many and many-to-many orthologs (or
co-orthologs). As a consequence, methods for identifying CNSs
that were successfully applied in yeast or vertebrates don’t work
well in plants, as these methods cannot cope with complex
orthology relationships (De Bodt et al., 2006; Vandepoele et al.,
2006).

Recently, three approaches to identify genome-wide CNSs
using multiple plant genomes have been published. Baxter and
coworkers used a local pairwise alignment approach, im-
plemented in the Seaweeds alignment plot tool (Picot et al.,
2010), to search for CNSs in the 2 kb upstream of the tran-
scription start site in Arabidopsis (Baxter et al., 2012). Pairwise
alignments were generated between orthologous genes of

Arabidopsis and three highly diverged dicots: papaya (Carica
papaya), poplar (Populus trichocarpa), and grapevine (Vitis vi-
nifera). The conservation scores associated with each pairwise
alignment were aggregated, while orthologs were delineated
using a combination of synteny and reciprocal best BLAST hits.
Haudry et al. (2013) generated a whole-genome alignment ap-
proach using a combination of the LASTZ (Harris, 2007) and
MULTIZ (Blanchette et al., 2004) tools across nine closely re-
lated Brassicaceae species. In this study, a genomic region was
aligned with one or multiple regions in another species as
a means to cope with polyploidy. Conservation in the aligned
regions was determined using PhyloP (Pollard et al., 2010),
yielding a set of 95,142 Arabidopsis CNSs. Similarly, Hupalo and
Kern (2013) created a whole-genome alignment between 20
closely and distantly related angiosperm genomes by making
use of the LASTZ tool and used PhastCons (Siepel et al., 2005)
to identify sequence constraint.
To generate a comprehensive overview of cis-regulatory ele-

ments in the Arabidopsis genome, we developed a phylogenetic
footprinting framework that identifies CNSs between 12 dis-
tantly related genomes. Through the integration of information
about known transcription factor binding sites (TFBSs), gene
expression profiles, open chromatin states, and different gene
function annotations, the static CNSs were annotated and
translated into a gene regulatory network capturing known and
condition-specific regulatory interactions. In addition, we con-
firm the quality of the inferred network using different experi-
mental data sets and biological validation metrics.

RESULTS

Detection of CNSs Using a Multispecies
Footprinting Approach

We used a comparative genomics approach across 12 dicot
plants to discover CNSs in Arabidopsis. A computational frame-
work was developed that uses the mapping of known mo-
tifs as well as de novo local alignments to identify regulatory
motifs conserved in multiple species. A local alignment-based
approach between orthologous regions was applied because
global alignment strategies are impractical for many of the cur-
rently available plant genomes due to massive loss of synteny
conservation (Supplemental Figure 1). The selected comparator
dicot species used in this study are reported in Supplemental
Figure 1. The first method, called Comparative Motif Mapping
(CMM), requires a candidate motif (e.g., a transcription factor
binding site represented as a consensus sequence or position
count matrix) as input and assesses the motif conservation on,
for example, the 2-kb promoter of an Arabidopsis gene. Con-
servation is scored based on the occurrence of the motif in the
promoter regions of the orthologs from the query gene in 11
other species, allowing for incomplete motif conservation. The
statistical significance of a motif conserved in a set of ortholo-
gous genes is determined by comparing the observed con-
servation score to a background model that is built from
conservation scores generated by processing the same motif on
a large number of randomly assembled nonorthologous families,
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containing the same species composition and having the same
sequence length distribution as in the real set of orthologs (see
Methods). Based on the phylogenetic footprinting principle, the
assumption behind this statistical model is that conservation of
functional motifs will be higher between orthologous genes than
between randomly chosen nonorthologous genes. As ortholo-
gous genes between Arabidopsis and all other comparator
species show saturated substitution patterns (the fraction of
synonymous substitutions per synonymous site, Ks > 1; see
Methods), the identified CNSs show selective constraint, in-
dicating biological functionality.

The second method is alignment based and uses a multispe-
cies scoring approach to detect CNSs, without requiring prior
motif information. All footprints extracted from pairwise local
alignments between the query gene and its orthologs are col-
lapsed onto the corresponding region of the query gene. As
such, the number of species that supports each nucleotide
through a pairwise alignment is determined. In the next step,
conserved footprints are extracted and scored based on the
number of species in which they are conserved. Significant
footprints are determined using a precomputed background
model built with scores of footprints derived from nonorthologous
families to which each real footprint is compared. The same
assumption regarding higher functional sequence conservation
between orthologous genes than between randomly chosen
genes is made. For the alignment-based approach, four align-
ment tools were implemented in the framework and their
performance was compared. These tools were DIALIGN-TX
(Subramanian et al., 2008), Sigma (Siddharthan, 2006), ACANA
(Huang et al., 2006), and the Seaweeds alignment plot tool
(Picot et al., 2010). The proposed methods are able to cope
with high sequence divergence when aligning noncoding se-
quences between related species. As many motif and alignment
comparisons are being made for thousands of genes, the false
discovery rate (FDR) was estimated by comparing the significant
results of the real runs with those of control runs. The FDR is
defined as the ratio between the number of false positives es-
timated by the control run and the number of rejected null hy-
potheses in the real run and provides a better measure for
controlling false positives compared with the false positive rate,
as the latter does not correct for the multiple tests performed per
query gene. Control runs are identical to real runs with the ex-
ception that the orthologous families are randomly generated,
maintaining the species constitution and gene size as observed
in the real families (see Methods). Unless mentioned otherwise,
all presented results have an FDR below 10%.

After updating the TAIR10 genome annotation with 791 new
miRNA loci obtained from the plant microRNA database (Zhang
et al., 2010), three different genomic sequence types were de-
fined to identify CNSs (2 kb upstream, 1 kb downstream, and
intron). In this analysis, upstream and downstream are used
relative to the translation start site and translation stop site,
respectively, because it has been shown, both through promoter
deletion experiments as well as using genome-wide ChIP
analyses, that regulatory elements can be found in 59 and 39
untranslated region (UTR) (Chabouté et al., 2002; Liu et al., 2010;
Wang and Xu, 2010). Another reason to include UTRs is that not
all genes have information about their UTR available. In total, the

different genomic sequences cover 83% of the noncoding
Arabidopsis genome and 84% of all complete intergenics. Gene
orthology information was retrieved from the PLAZA 2.5 in-
tegrative orthology method (Van Bel et al., 2012), which uses
a combination of different detection methods to infer consensus
orthology predictions, both for simple one-to-one as well as for
more complex many-to-many gene relationships. Here, two
different orthology definitions were used to delineate ortho-
logs. The first definition uses a simple best BLAST hit-derived
method that includes inparalogs, called best-hit and in-paralogous
families (BHIF), while the second definition, called consensus
orthology, requires that at least two PLAZA detection methods
confirm an orthologous gene relationship (see Methods). Or-
thologs could be obtained for 24,241 Arabidopsis genes using
BHIF and for 21,300 genes using the consensus definition. For
Arabidopsis genes with orthology information, 70 and 90% have
orthologs in at least 10 species for the consensus and BHIF
definition, respectively (Supplemental Figure 2).
Combining phylogenetic footprinting experiments from the

alignment-based and CMM runs, we identified 69,361 significant
CNSs associated with 17,895 genes. These conserved regions
cover 1070 kb of the Arabidopsis genome, and all CNSs are
available through a genome browser (see Methods). The median
length of a CNS was 11bp, while the largest and smallest CNS
were 514 and 5 bp, respectively (Figure 1A). All of the significant
CNSs were conserved in at least two comparator species, while
the median number of supporting species was six (Figure 1B).
This result illustrates the strong multispecies nature and po-
tential functionality of the identified CNSs. Analyzing the con-
tribution of comparator species to footprints conserved in only
two species showed no bias toward the most closely related
comparator species. Half of the CNSs are located in the 1-kb
promoter region of annotated genes and a large number of
conserved regions were associated with introns (10,872) and
downstream sequences (6953) (Figure 1C). The alignment-
based and CMM detection methods detect 30 and 60% of all
CNSs uniquely, respectively, while 10% is shared by both
methods. CMM covers 473 kb and the alignment-based ap-
proach covers 686 kb. The complementarity of the two different
orthology definitions was evaluated by determining the uniquely
detected CNSs and revealed that 70% of detected CNSs were
found using both definitions. The consensus and BHIF definition
detected 19 and 11% unique CNSs, respectively.
Besides regulatory elements, other structural features such as

incorrectly annotated exons or missing genes may show sig-
nificant conservation across related genomes. To determine
whether any of the identified footprints represent coding fea-
tures, we performed a sequence similarity search of all CNSs
against a large set of known plant proteins (see Methods). Only
499 CNSs (0.01% of all footprints) showed a significant hit against
the plant protein database and were discarded for downstream
analysis.

Evaluation of Different Phylogenetic Footprinting
Approaches Using an Experimental Gold Standard

In order to evaluate whether our footprints correspond with
known regulatory sequences, we compared our CNSs against
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the AtProbe data set, which contains 144 experimentally de-
termined cis-regulatory elements (see Methods; Supplemental
Data Set 1). Overall, our CNSs recovered 26% of the experi-
mental binding sites. This global true positive rate (TPR) was
analyzed in more detail per detection method (Supplemental
Figures 3A and 3B). Sigma, the best performing alignment tool,
scores equally well compared with CMM as both methods have
a TPR of 19%. This result indicates that Sigma, which finds
conserved regions without any prior information, has sensitivity
comparable to CMM, for which prior motif information is re-
quired. Additionally, these methods are complementary as they
uniquely detected 22 and 16% of the recovered AtProbe ele-
ments, respectively. Whereas ACANA and Seaweeds-60 re-
covered experimental instances (TPR of 5 and 3%, respectively),
DIALIGN-TX and Seaweeds-30 did not, which is due to the
generation of spurious alignments yielding many false positives
in the control runs.

To further validate our set of CNSs, we compared our re-
sults with three other CNS data sets from published genome-
wide phylogenetic footprinting approaches (Figure 2) (Baxter
et al., 2012; Haudry et al., 2013; Hupalo and Kern, 2013).
Apart from evaluating the sensitivity of the different studies,
which relates to finding true positive AtProbe results, we also
assessed the specificity, which relates to identifying negative
results. The latter is important, as a method that would as-
sign each noncoding nucleotide to a CNS would yield a high
sensitivity but a low specificity, due to many false positives.
Although it is not trivial to assemble a negative data set of
genomic regions free from any regulatory sequence, we es-
timated false positives by reshuffling the AtProbe genomic
locations 1000 times and determining the overlap with CNSs
detected per footprinting study. The estimated number of
false positives was used to determine enrichment for known
regulatory elements (observed number of elements over ex-
pected number of elements; see Methods). This approach
does not guarantee that the reshuffled data set, which covers
in essence randomly selected noncoding genomic regions

that have no overlap with real AtProbe instances, contains
only true negatives. However, the reshuffled data set can be
used as a proxy to estimate the specificity of different foot-
printing studies, as the same biases are present in the neg-
ative data set for all methods.
Comparing the CNSs from the different studies showed that

Haudry et al. (2013) has the highest recovery of experimental
binding sites (35% TPR), followed by our results (26% TPR) and
Baxter et al. (2012) (4% TPR). An overview of retrieved CNSs for
the AtProbe genes for this study and Haudry et al. (2013) can
be found in Supplemental Figure 4. However, comparing the
specificity using the shuffled AtProbe data sets reveals that
Haudry et al. (2013) has a lower enrichment toward exper-
imentally determined elements (8.5-fold enriched) than our
approach (37-fold enriched) (Figure 2). Determining the genome-
wide coverage for the different CNS data sets revealed that
Haudry et al. (2013) identified constraint for 4834 kb of non-
coding DNA. This coverage is substantially larger than our data
set (1070 kb) and those of Baxter et al. (2012) and Hupalo and
Kern (2013), which cover 137 and 658 kb, respectively (Figure 2).
Overall, our method, which we have shown to be accurate
based on the analysis of known regulatory sites, identifies 64%
of the nucleotides covered by our CNSs as evolutionary con-
strained that were not identified by the other methods, indicating
that our phylogenetic footprinting approach covers a large fraction
of unique CNSs.

Conserved Motif Instances Identify in Vivo
Functional Regions

To evaluate the functionality of the identified CNSs and to verify
whether these conserved footprints can provide a template to
computationally map TF-target interactions, detailed compar-
isons of the CNSs were made against different experimentally
determined data sets. DH sites are associated with regions of
open chromatin where the DNA is accessible and as such pro-
vide a global perspective on possible protein binding to the

Figure 1. Overview of CNS Properties.

(A) Length distribution of significantly conserved footprints. All footprints are grouped in bins of size 10 bp.
(B) Overview of significantly conserved footprints in relation to the number of species in which the footprint was conserved. For all conservation scores,
the relative percentage of significant footprints is shown (gray boxes) as well as a cumulative distribution (black line).
(C) Breakdown of CNS over different genomic regions.
[See online article for color version of this figure.]
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genome. Overall, 48 and 47% of our CNSs overlapped with
a recently published set of DH sites in flower and leaf tissue,
respectively (Zhang et al., 2012). This overlap is significant
(P value < 0.001) and shows high fold enrichment (4.0 for both
DH sets; see Methods), revealing that a large part of the CNSs can
be accessed by TFs and as such can act as a functional TFBS.
Our set of CNSs also exhibited a significant overlap with
H3K4me3, H3K9ac, and H3K4me2 marks (2.6-, 2.2-, and 1.7-

fold enriched, respectively; Supplemental Figure 5). These his-
tone modifications are indicative of active promoters and
enhancer elements (Roudier et al., 2009; He et al., 2011). In-
terestingly, our regions showed an even higher enrichment for
regions where DH sites, H3K4me3, H3K9ac, and H3K4me2
coincide (6.3-fold enriched, P value < 0.001), corroborating that
several of the conserved regions are associated with actively
transcribed genes.

Figure 2. Recovery of AtProbe Elements and Comparison of CNSs from Different Phylogenetic Footprinting Studies.

(A) Overview of the recovery of experimental AtProbe elements in four different CNS studies. Black boxes show the percentage of recovered elements,
and white boxes shows the percentage of uniquely recovered elements. Diamonds depict fold enrichments, which are defined as the ratio of the
observed overlap over the expected overlap by chance.
(B) Genome-wide coverage of CNSs. Black boxes show the total number of nucleotides assigned to CNSs per study, while white boxes show the
number of nucleotides in CNSs that are unique to a single study.
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Whereas the experimental data sets profiling different chro-
matin states act as a proxy for functionality, more detailed
regulatory information can be obtained by comparing the CNSs
with experimental data sets comprising functional TFBS. To
delineate a high-quality data set of in vivo functional TF targets
covering directly regulated genes, publicly available ChIP-Seq
data were combined with enriched motifs in ChIP-Seq peaks
and TF perturbation expression profiles (see Methods). This was
done for 15 TFs (AGAMOUS-LIKE15 [AGL15], APETALA1 [AP1],
AP2, AP3, SUPPRESSOR OF OVEREXPRESSION OF CO1 [SOC1],
PISTILLATA [PI], LEAFY [LFY], FLOWERING LOCUS C [FLC],
PSEUDO RESPONSE REGULATOR5 [PRR5], PHYTOCHROME
INTERACTING FACTOR3 [PIF3], PIF4, PIF5, FAR-RED ELON-
GATED HYPOCOTYLS3 [FHY3], BRI1-EMS-SUPPRESSOR1
[BES1], and FUSCA3 [FUS3]), yielding a data set of 2807 reg-
ulatory interactions (Supplemental Data Set 2). Importantly,
these in vivo functional targets were determined independently
of any comparative information and thus provide an independent
data set to evaluate our footprints. Overlap analysis revealed that
in total 787 functional binding sites (28%) were successfully
recovered by our CNSs. Although the recovery rate for individual
TF varies from 8% for AP3 to 57% for PRR5 (median recovery
36%), the number of recovered genes for all 15 TFs was sig-
nificantly higher compared with the number of recovered target
genes expected by chance (P < 0.001; Supplemental Data Set 2
and Supplemental Figure 3).

To compare the specificity by which our CNSs identified
functional TFBS with other computational methods, two other

protocols were evaluated. Whereas the first approach is based
on the simple mapping of all positional count matrices of all 15
TFs on the noncoding genomic DNA, the second approach
comprises motif mapping in open noncoding chromatin regions
that were identified through DH sites (Zhang et al., 2012). En-
richment analysis using shuffled data sets of the in vivo func-
tional regions (see Methods) revealed that our CNSs yielded
higher specificity for functional regulatory elements than either
of these alternative protocols (median fold enrichment of 41.2 for
CNSs versus 2.6- and 12.8-fold enrichment for the simple
and DH site-based mapping methods, respectively) (Figure 3;
Supplemental Data Set 3 and Supplemental Figure 6).

Construction and Biological Evaluation of an Arabidopsis
Gene Regulatory Network

To get an overview of how transcriptional regulation is orga-
nized on a genome-wide level, motif information was combined
with our CNSs to construct a gene regulatory network (GRN)
containing 40,758 interactions (see Methods). This GRN in-
cludes 157 TFs that, based on conserved binding sites, have
one or more target genes and covers 11,354 genes in total
(Supplemental Data Set 4). On average, a TF in the predicted
network has 259 target genes while each target gene is regu-
lated by four TFs. The number of target genes per TF and their
associated Gene Ontology (GO) enrichment can be seen in
Supplemental Figure 7. For these interactions, 64.6% of the
conserved binding sites are overlapping with a leaf or flower DH

Figure 3. Recovery of in Vivo Functional Targets Using CNS Information.

White and black boxes show fold enrichments for CNSs and naïve motif mapping, respectively. White and black diamonds show the fraction of
recovered elements for CNSs and a simple motif mapping approach, respectively.
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site. To evaluate our network, we used an experimental GRN of
1092 confirmed interactions derived from AtRegNet (Davuluri
et al., 2003) and a collection of regulatory interactions obtained
from small-scale studies concerning secondary cell wall me-
tabolism (Hussey et al., 2013). Overlap analysis between the
predicted network and the experimental network revealed that
edges present in the predicted network are significantly more
likely to also be present in the experimental network than would
be expected by chance (4.65-fold enrichment, P value < 0.001;
see Methods). Apart from comparing the global overlap between
both networks, we also assessed the overlap between the
predicted and experimental TF-target interactions for individual
TFs for which motif information was available. For a subset of
TFs with 10 or more known target genes, a significant overlap
was found for nine out of 13 TFs (P value < 0.001), which covers
99 out of 385 (26%) experimentally determined gene regulatory
interactions.

To evaluate which role intronic regions have in transcriptional
gene regulation through TF binding, an intron-specific GRN was
generated. This network consists of 2821 interactions between
123 TFs and 1552 target genes. Six out of the 99 experimentally
confirmed interactions that were retrieved were unique to this
network (Supplemental Data Set 5). Examples of correctly in-
ferred intron interactions are binding events of AP2 and LFY to
the intron of AGAMOUS (AG) (Hong et al., 2003). Similarly, TF-
miRNA regulation was studied by constructing a small sub-
network containing 24 TF-miRNA targets for 14 TFs and 10
target miRNAs (Supplemental Data Set 6). One of the retrieved
interactions is the known binding of the ABRE BINDING FAC-
TOR1 (ABF1) to the promoter ofmir168a (Li et al., 2012). Another
interesting, however unconfirmed, interaction is that between
AP2 and mir167a, the latter which is known to play a role in
flowering maturation (Rubio-Somoza and Weigel, 2013).

In addition to the recovery of known regulatory interactions,
the biological relevance of the predicted target genes was studied
using five independent biological data sets. GO (Ashburner
et al., 2000), MapMan (Thimm et al., 2004), and functional gene
modules (Heyndrickx and Vandepoele, 2012) describe functional
annotations and were used to assess if target genes of the same
TF participate in similar biological processes or have similar
functions. The functional modules comprise a set of 13,142
genes (1562 modules) annotated with specific functional de-
scriptions based on experimental GO information, protein-
protein interaction data, protein-DNA interactions, or AraNet
gene function predictions. The evaluation of our GRN is made
based on the assumption that a set of true target genes of a TF
will have a higher enrichment for functional annotations than
randomized networks (Marbach et al., 2012). For each TF, the
enriched functional annotations were determined and compared
against that of randomized networks (see Methods). Next to the
three functional data sets, two general gene expression com-
pendia were used, stress and development (De Bodt et al.,
2012), to investigate if genes targeted by the same TFs (called
coregulated targets) are more likely to be expressed at similar
developmental stages or under similar stress conditions. Fol-
lowing Marbach et al. (2012), coregulated gene pairs are defined
as genes having 50% or more shared regulators. The average
level of coexpression was calculated using correlation analysis

for all coregulated gene pairs and compared with that of ran-
domized networks (see Methods). All five biological metrics were
performed on the CNS-based GRN as well as on the experi-
mental GRN, and we observed that both networks were signif-
icantly enriched for all five biological data sets (P value < 0.05;
Figure 4). A detailed comparison revealed that GO fold enrich-
ment was higher in the predicted network. Although the oppo-
site is true for both MapMan and the functional modules, there is
still a significant enrichment in our predicted GRN, illustrating
the functional coherence of the predicted target genes. The
discrepancy between different functional annotation data sets
can largely be explained by the fact that for GO annotations
a filtering step using GO slim terms was performed in order to
have sufficient annotations for all genes in the network. These
terms are very broad and as such enrichment will be lower
compared with the two other functional classification data sets.
Based on the stress and development expression data sets,
a higher level of coexpression was observed for coregulated
genes in the predicted and experimental GRN, compared with
random GRNs (Figure 4). The CNS-based network outperformed
the experimental network, as the fold enrichments were higher
for the predicted GRN in both expression data sets. A similar
evaluation was performed on two subsets of the predicted
network, which were defined based on the number of species in
which a regulatory interaction is conserved. The predicted net-
work was divided into a highly (conservation CNS more than six
species) and a moderately conserved (conservation CNS two to
six species) subnetwork. Both the highly and the moderately
conserved subnetworks showed significant enrichment for co-
expression and functional coherence, indicating that CNSs with
support from a lower number of species are also biologically
meaningful (Supplemental Figure 8).

Combining the CNS-Based Network with Expression
Information to Identify Condition-Specific Gene
Regulatory Interactions

To investigate the biological role of the predicted GRN, the static
gene regulatory interactions were converted into condition-
specific interactions through the integration of expression in-
formation. Coexpression was determined between a TF and
each predicted target gene based on 11 expression compendia
from the CORNET database (De Bodt et al., 2012), comprising
gene expression profiles from microarray experiments per-
formed for different organs (flower, leaf, root, and seed), during
development, under different treatments and stresses (hormone,
biotic, and abiotic stress) (see Methods). Coexpression between
a TF and a predicted target gene can act as a proxy for regu-
lation as both are frequently expressed in the same conditions
(Ma and Wang, 2012). A total of 6957 interactions between a
TF and its predicted target genes showed significant coex-
pression in one or a maximum of three expression compendia
(Supplemental Data Set 7). Examples of specific coexpression
patterns of predicted TF-target interactions that are con-
firmed by experimentally confirmed target genes include
interactions for MYB DOMAIN PROTEIN58 (MYB58) under
biotic stress, MYB83 in leaf and for AP2 and ELONGATED
HYPOCOTYL5 (HY5) under abiotic and biotic stress. MYB63
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shows coexpression of target genes in five different compendia,
including (a)biotic stress and hormone (Supplemental Figure 9).
The following paragraphs highlight examples of condition-
dependent GRNs.

Five secondary wall NAM-ATAF1/2-CUC2 (NAC) TFs were
selected to illustrate how integrating coexpression information
into the predicted GRN can be used for modeling of the tran-
scriptional network in different conditions and plant organs.
SECONDARY WALL-ASSOCIATED NAC DOMAIN1 (SND1) is
a master transcriptional regulator activating the developmental
program of secondary cell wall (SCW) biosynthesis. SND1 and
its functionally related homologs NAC SECONDARY WALL
THICKENING PROMOTING FACTOR1 (NST1), NST2, VASCULAR-
RELATED NAC-DOMAIN6 (VND6), and VND7 regulate the
same downstream targets in different cell types (Zhong et al.,
2008). While SND1 and NST1 activate the SCW biosynthetic
program in fibers, VND6 and VND7 specifically regulate SCW
biosynthesis in vessels, and NST1 and NST2 act together in

regulating SCW biosynthesis in endothecium of anthers
(Mitsuda and Ohme-Takagi, 2008; Zhong et al., 2008). These
five TFs bind to an imperfect palindromic 19-bp consensus
sequence designated as secondary cell wall NAC binding ele-
ment, (T/A)NN(C/T)(T/C/G)TNNNNNNNA(A/C)GN(A/C/T)(A/T), in the
promoters of their direct targets (Zhong et al., 2010). For VND6,
an additional binding site has been described (CTTNAAAGCNA)
(Ohashi-Ito et al., 2010). Based on the predicted targets of these
five TFs, we used the coexpression information to introduce
specificity through condition-dependent regulation. For SND1,
NST1, and NST2, we studied target genes coexpressed in
a flower and a seed expression compendium because of their
role in SCW biosynthesis in flower and reproductive organs
(Mitsuda and Ohme-Takagi, 2008; Zhong et al., 2008) (Figure 5).
Auxin, cytokinin, and brassinosteroids play pivotal roles in xylem
vessel formation (Fukuda, 2004), and VND6 and VND7 show
elevated expression levels in presence of these three hormones
(Kubo et al., 2005). Both TFs reside in the same functional

Figure 4. Evaluation of the Biological Relevance of the Predicted Network Using Different Biological Metrics Assessing Functional and Expression
Coherence.

GO annotations, MapMan annotations, and functional modules together with a stress and developmental expression compendium were used to
evaluate the biological relevance of the predicted GRN. A comparison of fold enrichment is depicted between the predicted network (black bars) and the
experimental network (white bars). All reported fold enrichments are significant (P value < 0.05). Numbers in parentheses report the number of regulatory
interactions in the two networks and the number of genes having functional or expression information, respectively.
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module, which is annotated with the GO term “response to
brassinosteroid stimulus” (Heyndrickx and Vandepoele, 2012).
Therefore, VND6 and VND7 targets coexpressing in a hormone
compendium were selected. For all TFs, predicted target genes
were only selected if they were part of a functional module
grouping two or more predicted target genes. This network
groups five TFs showing 69 condition-specific interactions with
24 target genes (Figure 5). The SCW network contains a large
number of experimentally confirmed interactions (14/69) and
nearly all genes in the network are involved in SCW metabolism
based on GO annotations (21/24). In this network, two TFs,
namely, MYB46 and SND3, which are known direct targets in-
volved in the SCW pathway, are present. Interestingly, these
genes do not have a coexpression link with SND1 in flower or
seed, but a coexpression link is present with NST1, a TF that
cooperates with SND1 in SCW biosynthesis in fibers (Zhong

et al., 2008). Overexpression of MYB46 leads to activation of the
entire SCW biosynthetic program and its coexpressing targets in
seed, flower, and hormone expression compendia show a large
number of shared targets with the five master regulators as well
as a large set of genes involved in SCW biosynthesis (Zhong
et al., 2008).
A similar approach was applied to delineate condition-specific

targets for AP3 and PI, two TFs that have been shown to act as
bifunctional transcription factors in flower development (Wuest
et al., 2012). AP3 and PI are necessary for the proper de-
velopment of the petals and stamens (Jack et al., 1992; Goto
and Meyerowitz, 1994). Plant hormones such as jasmonic acid
have been shown to play a role in both stamen and petal de-
velopment (Brioudes et al., 2009; Song et al., 2013). The ex-
pression data for these two TFs shows induction in jasmonic
acid treatment conditions. Therefore, coexpressed target genes

Figure 5. A Condition-Specific Secondary Cell Wall Gene Regulatory Network.

Nodes and edges depict genes and regulatory interactions, while condition-specific seed, flower, and hormone coexpression edges are shown using
orange, green, and blue lines, respectively. Experimentally confirmed interactions are shown using an arrow line. Red diamonds are the source TFs,
gray diamonds are target genes that are TFs, and rounded rectangles are other target genes. Target genes with a gray border are known to be involved
in secondary cell wall biosynthesis based on GO.
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in the hormone expression compendium were selected. This
approach resulted in a hormone-specific GRN with 223 target
genes and 237 interactions. The network shows a strong en-
richment for genes involved in flower development (53/223)
(Supplemental Figure 10). Additional evidence for the relevance
of this network was generated through integrating ChIP-Seq and
differential gene expression data. The ChIP and differential ex-
pression experiments were performed at the early-intermediate
floral stage (stage 4 to 5 flowers) (Wuest et al., 2012). In this
network, we observe 11 interactions that are confirmed through
binding of the TF in the ChIP-Seq data and six interactions that
are confirmed through differential expression of the gene after
TF perturbation. Interestingly, AG is a predicted coexpressed
target gene of AP3 in the hormone-specific network and AG has
been shown to be involved in stamen development through
regulation of jasmonic acid biosynthesis genes (Ito et al., 2007).

DISCUSSION

In this study, we developed a phylogenetic footprinting ap-
proach to identify conserved noncoding sequences in Arabi-
dopsis through the comparison with 11 dicot genomes. Distantly
related species were used based on the premise that, in com-
parison to one another, all noncoding regions that are not under
functional constrained will have undergone one or more muta-
tions. A set of 69,361 CNSs associated with 17,895 genes was
delineated through the combination of an alignment-based and
a non-alignment-based approach. Twenty-eight percent of the
CNSs were found downstream of genes, in introns or more than
1 kb upstream of a gene, indicating that regulatory elements are
not restricted to the first hundreds of base pairs upstream of
a gene (Reineke et al., 2011; Korkuc et al., 2014).

A previous evaluation study reported that phylogenetic foot-
printing in plants works best by comparing genomes that have
diverged less than 100 million years ago or have nonsaturated
substitution patterns (Reineke et al., 2011). Phylogenetic foot-
printing methods that use genome synteny inferred through ge-
nome alignments as primary source of orthology information
indeed have difficulties integrating distantly related genomes
(Hupalo and Kern, 2013). This is due to the frequent nature
of polyploidy and genome rearrangements in dicot plants
(Supplemental Figure 1) causing problems for global genome
alignment methods. Here, a combination of different gene or-
thology prediction methods was used that do not rely on syn-
teny information. As such, our approach is well suited to
incorporate more distantly related species including many-
to-many gene orthology relationships. Our alignment-based
approach is best summarized as a multiple local alignment
strategy, since first local pairwise alignments are identified
which are subsequently aggregated on the Arabidopsis refer-
ence genome in order to obtain multispecies footprints. We
demonstrated that this approach is very suitable for detecting
CNSs over large phylogenetic distances, as half of our CNS are
conserved in six or more species, spanning >100 million years of
evolution (Figure 1B). Furthermore, approaches based exclusively
on pairwise alignments lack the power to detect a large set of our
CNSs over a similar evolutionary distance (Reineke et al., 2011;
Baxter et al., 2012).

Comparing our CNSs with the experimental AtProbe bench-
mark data set showed that both alignment and non-alignment-
based approaches have a similar performance, recovering 19%
of the experimental regulatory elements. Both approaches are
complementary as they together recovered 26% of the AtProbe
elements. This is largely explained by the fact that the alignment-
based approach identifies large conserved regions, typically
covering clusters of individual TFBS, whereas the non-alignment-
based approach will also identify short conserved motifs.
Based on a comparison of our footprints with three recently
published studies (Baxter et al., 2012; Haudry et al., 2013;
Hupalo and Kern, 2013), 64% of our CNSs represent newly
discovered constrained sequences. This finding is in agreement
with Haudry et al. (2013) who found that their CNSs show limited
conservation outside the Brassicaceae lineage. Compared with
Baxter et al. (2012) and Hupalo and Kern (2013), both the
number of comparator species as well as the different align-
ment strategy contribute to the difference in identified CNSs.
Comparison with the three previously published CNS data
sets revealed that our CNSs have the highest enrichment for
experimentally determined regulatory elements. Haudry et al.
(2013) recovered a larger number of bases covered by CNSs
with a lower enrichment toward the AtProbe elements. Although
these results could indicate that their higher coverage is asso-
ciated with a reduced specificity, additional explanations can
be formulated. As demonstrated by Haudry et al. (2013), their
CNSs also contain other types of functional noncoding se-
quences, such as RNA genes, which are not accounted for in our
benchmark. CNSs could also cover long-range enhancers. Also,
the conservation of functional noncoding sequences is likely
greater within the Brassicaceae lineage due to more specialized
developmental processes and adaptation to environmental
conditions, whereas our set of CNSs covers the regulation of
processes that are highly conserved across a wide range of
dicot plants. A subset of the AtProbe regulatory elements re-
covered was unique to this analysis, corroborating the com-
plementarity of our CNSs with these previous studies.
The biological relevance of our CNSs was further evaluated by

overlap analysis with a number of different chromatin modifi-
cation marks. Enrichment analysis showed that our CNSs are
highly enriched for DH sites as well as for histone marks pro-
moting transcription, indicating that our CNSs are located within
open chromatin regions or nearby actively transcribed regions.
Processing of 15 TF ChIP-chip/seq experiments together with
the corresponding transcriptome profiling studies after TF per-
turbation generated a high-quality data set of 2807 in vivo
functional binding sites. In total, 28% of these regions were
successfully recovered. Mapping the position count matrices for
all 15 TFs genome-wide and retaining only instances over-
lapping with a CNS proved to be more specific for recovering
functional binding sites compared with filtering using DH sites.
In contrast to simple motif mapping approaches that are asso-
ciated with high false positive rates, computationally identified
CNSs as well as experimental DH sites offer two complementary
data sources to start performing systematic regulatory genome
annotation in plants. The largest bottleneck for identifying all
functional regions through conservation analysis is caused by
the highly degenerative nature of certain binding sites, such as
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CArG boxes for AP1 and AP3 [CC(A/T)6GG] (Riechmann et al.,
1996). The algorithm developed in the current study will not
detect these binding sites as significantly conserved because
these sites will have high conservation scores in both the real
and control run. Another explanation for the low recovery of
functional binding sites for some TFs is the fact that the position
count matrices that are used to evaluate conservation in the
orthologous regions of distantly related organisms might be too
specific for Arabidopsis, making it more difficult to identify
conserved instances. Finally, in some cases, a regulatory in-
teraction might be species or clade specific, making compara-
tive methods impractical. Overlap analysis of the recovered in
vivo binding sites elements with CNSs from the three other
studies showed that 52.3% of the 787 recovered functional re-
gions were uniquely discovered by our approach.

Whereas several studies reporting plant CNSs have sug-
gested different lines of evidence to indicate that sequence
conservation implies functional conservation and a role for
CNSs in transcriptional regulation (Kaplinsky et al., 2002; Guo
and Moose, 2003; Inada et al., 2003; Baxter et al., 2012; Haudry
et al., 2013; Hupalo and Kern, 2013), their success in inferring
regulatory networks has been hampered by the difficulty of
converting CNSs into TF-target interactions. Based on different
publicly available databases and ChIP studies, TFs for which
motif information was available were integrated with the CNSs
to generate a gene regulatory network containing 40,758 TF-
target interactions. Overlap analysis with an experimental GRN
containing 1092 confirmed regulatory interactions showed that
the predicted network is highly enriched for experimental edges.
In addition, the functional and expression coherence of the
target genes in the different GRNs was evaluated by integrating
five different biological data sets. Application of these different
validation metrics to the experimental and predicted network
was used to assess the functional and coregulatory properties
of the different TF-target interactions. Whereas both GRNs
showed significant enrichment for all biological data sets, the
predicted network outperformed the experimental network for
the stress and developmental expression compendia and also
for GO functional annotations. Application of the coexpression
metric on two subnetworks with edges supported by CNSs
showing conservation in a different number of species revealed
that regulatory interactions with lower species support are also
biologically relevant. Although the predicted GRN, like the ex-
perimental network, lacks many true regulatory relationships,
comparison with experimentally validated targets as well as
validation through the different biological data sets showed that
the predicted network is of high overall quality. Compared with
the experimental network, where each TF regulates on average
12 target genes, our GRN predicts on average 20 times more
target genes for 157 TFs. As our GRN likely identifies many true
interactions, which have not been detected and validated ex-
perimentally, it provides an important step forward toward the
systematic regulatory annotation of individual genes.

A subnetwork containing unique regulatory interactions based
on intronic CNSs recovered a small subset of experimental in-
teractions, confirming that intronic regions also play an impor-
tant role in transcriptional regulation in plants. The TF-miRNA
network contained only 24 TF-miRNA interactions, for which one

previously described interaction between ABF1 and mir168a
could be confirmed. A major challenge for phylogenetic foot-
printing of miRNA genes and the construction of miRNA GRNs is
the lack of miRNA orthology information across a number of
related species, which is a prerequisite for most phylogenetic
footprinting methods.
Although the predicted GRN offers additional information on

the transcriptional regulators of individual target genes, the static
nature of these CNS-based interactions offers few insights about
the biological context of these regulatory events. We demon-
strated how integrating expression data for different organs and
conditions with the predicted interactions through coexpression
analysis provides an effective approach to obtain condition-
specific networks. Based on 11 compendia containing gene ex-
pression profiles in different biological contexts, we identified
6597 regulatory interactions where a TF specifically coexpressed
with its target gene in one or a few conditions. As shown for the
secondary cell wall and AP3/PI networks, this coexpression in-
formation can be used to filter the set of predicted interactions
and to identify previously unknown target genes as well as new
regulators acting downstream of the TF under investigation.
Furthermore, for different TFs and signaling cascades, it also
becomes possible to investigate how the transcriptional regula-
tion of some direct target genes changes in different conditions
while other targets show constitutive coexpression.
Apart from integrating sequence conservation and expres-

sion information, other approaches combining complementary
functional data sets may improve the power to correctly identify
regulatory interactions. For example, the incorporation of addi-
tional regulatory information such as differentially expressed
genes from TF perturbation experiments or genomic regions
marked with transcription-promoting chromatin modifications
can offer new ways to identify functional target genes. With the
advent of TF binding data from protein binding microarray ex-
periments for an increasing number of TFs (Franco-Zorrilla et al.,
2014; Lindemose et al., 2014) our CMM approach combined
with coexpression analysis offers a practical means to convert in
vitro TF binding information from protein binding microarrays
into functional and condition-specific GRNs.

METHODS

Sequence and Orthology Information

The 12 dicotyledonous genomes used in this study were Arabidopsis
thaliana (TAIR10), Carica papaya (Hawaii Agriculture Research Center),
Glycine max (JGI 1.0), Malus domestica (IASMA), Populus trichocarpa (JGI
2.0), Fragaria vesca (Strawberry Genome 1.0),Medicago truncatula (Mt 3.5),
Lotus japonicus (Kazusa 1.0), Theobroma cacao (CocoaGen v1.0), Ricinus
communis (JCVI 1.0), Manihot esculenta (Cassava4), and Vitis vinifera
(Genoscope_v1) and were obtained from the PLAZA 2.5 database (Van Bel
et al., 2012). The structural annotation of the genomes in PLAZA 2.5 was
updated by adding all known miRNAs obtained from the plant microRNA
database (Zhang et al., 2010). miRNA sequences were downloaded
from plant microRNA database and mapped to the genomes using
BLASTN (Altschul et al., 1990) and GenomeThreader (-mincoverage 0.89
-minalignmentscore 0.95) (Gremme et al., 2005) and only unique mappings
were retained. The overlap with existing RNA gene annotations in PLAZA 2.5
and the databasewas determined by usingBLASTN (e-value < 1e-10) against
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all transcripts, and onlyRNAgenes lacking overlapwith already annotated loci
were added. In total, 791 new miRNA loci were added in Arabidopsis and
20% of all miRNAs have orthologs in one or more related dicot genome.

Three sequence types, upstream, downstream, and intronic, were
used to identify CNSs. Upstream sequences were restricted to the first
1000/2000 bp upstream from the translation start site or to a shorter
region if the adjacent upstream gene is located within a distance smaller
than 1000/2000 bp (n = 33,703). The 1000- and 2000-bp upstream se-
quences were processed as two independent runs. Downstream se-
quences were restricted to the first 1000 bp downstream from the stop
codon or to a shorter region if the adjacent downstream gene was within
1000bp (n = 33,809). The intronic sequence type is defined as the
complete gene locus with exons masked (n = 20,608).

Orthologs for each Arabidopsis gene were determined in 11 com-
parator dicot species using the PLAZA Integrative Orthology method (Van
Bel et al., 2012). The included orthology detection methods are OrthoMCL
(Li et al., 2003), phylogenetic tree-based orthologs, and BHIF. Through Ks
graphs in the PLAZA 2.5 platform, we confirmed that all included dicot
species have saturated substitution patterns (mean Ks > 1) when com-
paring orthologous gene pairs with Arabidopsis (Van Bel et al., 2012).

Synteny Conservation

Orthologs were determined for each Arabidopsis protein-coding gene
using the PLAZA Integrative Orthology method requiring that the or-
thology prediction is supported by at least two detection methods. The
conservation of the orthologous relationship for the flanking gene up-
stream and downstream of each ortholog was determined for each of the
comparator species.

Comparative Motif Mapping

Knownmotifs were mapped on the regions covered for the three sequence
types for all included species using DNA-pattern allowing no mismatches
(Thomas-Chollier et al., 2008). A total of 692 cis-regulatory elements were
obtained from AGRIS (Davuluri et al., 2003), PLACE (Higo et al., 1999), and
Athamap (Steffens et al., 2004). In addition, 44 positional count matrices
were obtained from Athamap and for 15 TFs positional count matrices were
obtained from ChIP-Seq data (see section “ChIP-Seq in Vivo Targets”).
Positional count matrices were mapped genome-wide using MatrixScan
using a P value cutoff <1e-05 (Thomas-Chollier et al., 2008).

For eachArabidopsis gene and per sequence type, a conservation score
SCMM is determined per motif. The SCMM is calculated as the number of
species in which this motif was conserved in an orthologous family context.
The statistical significance of each motif with SCMM was tested through
a comparison with the SCMM derived from 1000 random gene families that
have the same number of orthologs and species but are lacking an or-
thologous relationship to the query gene. Evaluation of the statistical sig-
nificance using larger sets of random families (1000 to 100,000) confirmed
that the P values obtained using 1000 nonorthologous families are robust.

The FDR was calculated through a control experiment in which the
entire analysis, including all Arabidopsis genes, was performed using
nonorthologous genes. For each query gene, a family was randomly
assembled sampling nonorthologous genes, but maintaining the number
of genes and the species composition of the real orthologous family. The
real and control run were compared, and footprints in the real run with a
P value that corresponds to a FDR # 10% were retained.

Alignment-Based Phylogenetic Footprinting

Pairwise alignments were generated between all Arabidopsis query genes
and their orthologous genes for all three sequence types and two orthology
definitions. ACANA and DIALIGN-TX were run with standard parameters.

Seaweedswas run with the step size parameter set to 1 and window size to
60 and 30 bp (referred to as Seaweeds-60 and Seaweeds-30, respectively),
and only alignments with an alignment score higher than 40 and 20, re-
spectively, were retained. Sigma was run with the -x parameter set to 0.5.

All pairwise alignments were aggregated on the query sequence gen-
erating a multispecies conservation plot that shows for each position of the
investigated region how many species support this nucleotide through
pairwise footprints. All footprints for each level of conservation are extracted
from the multispecies conservation plot and each footprint is defined by its
length and amultispecies level conservation score SMSP, which denotes the
number of comparator species supporting that footprint.

For each alignment tool and sequence type, a precomputed pairwise
background library, including >25 million alignments, was used to de-
termine significant conservation of footprints. The backgroundmodel was
created by binning all investigated regions of all species on length,
selecting 150 genes from each bin and making pairwise alignments for all
possible length bin combinations. The reasoning behind this binning
approach is that we wanted to compare the investigated region of the
query gene with a background model consisting of genes that have
regions of similar size. For each Arabidopsis gene, 1000 nonorthologous
(random) gene families with the same species and ortholog composition
as the query gene were generated and their pairwise alignments were
obtained from the background library. Multispecies conservation is cal-
culated for each family and the footprints obtained from all random
families are binned on length. Each bin needs to contain at least 1000
multispecies footprints together with their associated scores; otherwise,
one or more subsequent bins (with greater lengths) were added. Finally,
the statistical significance of each real footprint was then evaluated by
counting the number of footprints in random families that have an equally
good or better SMSP in the associated background length bin. Comparison
of results between using a background library and generating these
random families on-the-fly for each gene has pointed out that the results
are not altered but processing time is greatly improved. Again, the real and
control run were compared and footprints in the real run with a P value that
corresponds to a FDR # 10% were retained.

Browsing Results in GenomeView

The complete set of CNSs, overlapping knownmotifs and DH sites can be
browsed through the link http://bioinformatics.psb.ugent.be/cig_data/
Ath_CNS/Ath_CNS.php. While loading, when asked, the file format needs
to be specified to BED format.

Protein-Coding Potential of CNSs

The coding potential of a CNS was determined using BLASTX (Altschul
et al., 1990) against the PLAZA 2.5 protein database (780,667 proteins
from 25 Viridiplantae species), and all significant hits were removed. To
establish an appropriate e-value cutoff for a significant hit, we randomly
permuted each sequence in our CNS data set and performed the BLASTX
search using this set of sequences to obtain the distribution of e-values
for random sequences with the same length distribution (Baxter et al.,
2012). We then performed the same BLASTX search on the real sequences,
using the minimum e-value from the random set (e-value < 0.001) as the
cutoff for a significant hit.

Overlap of CNSs with Benchmarks

Our CNS data set was compared with different functional data sets. The
first one was the Arabidopsis promoter binding element database
(AtProbe) (http://exon.cshl.org/cgi-bin/atprobe/instance.pl), which contains
172 experimentally determined regulatory sequences in 76 Arabidopsis
genes. This data set was curated by removing results from promoter
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deletion experiments and CREs for which mapping data was not correct
with the coordinates in the data set, resulting in a data set of 144 CREs
present in 63 genes (Supplemental Data Set 1). The benchmark data set
was formatted as a BED file and the overlap (recovery of elements) was
determined using the BEDTools function intersectBed with –u parameter
and the –f parameter on 0.5 (Quinlan and Hall, 2010). This means that an
experimental CRE was considered “correctly identified” if more than half of
the region was overlapping with a CNS. CNS data sets from three recent
studies were obtained through the UCSC genome browser at http://
genome.genetics.rutgers.edu/ (table top10conserved) from Hupalo and
Kern (2013), the authors of the CNS data of Arabidopsis from Haudry et al.
(2013), or were assembled from supplementary data (Baxter et al., 2012).
These fileswere also formatted asBED files and comparedwith theAtProbe
benchmark. False positives were determined by shuffling the AtProbe data
set 1000 times using shuffleBed, excluding coding sequences and the
actual AtProbe instances. The overlap with CNS files was determined for
each shuffled file and the median number of recovered elements over 1000
shuffled files was used as a measure for false positives. This estimation of
false positives was used to calculate the fold enrichment, defined as the
ratio between observed overlap and expected overlap by chance.

A list of 2807 in vivo functional targets was assembled from genes that
were annotated to a TF ChIP-Seq peak in noncoding DNA in which a DNA
motif was significantly enriched and that show regulatory response in the
corresponding TF perturbation experiment (Supplemental Data Set 2).
Overlap and enrichment for in vivo functional targets was determined in
the same way as for the AtProbe benchmark. For DH site and histone
modification data sets, the number of overlapping CNSs was also de-
termined using BEDTools. Enrichment of our CNS data set for these
marked chromatin regions was determined as described above.

Detection of DNase I Hypersensitive Sites and Histone Modifications

The BED files with the flower and leaf DH sites and histone modification
data sets (H3K4me3, H3K4me2, and H3K9ac) were downloaded from the
SRA database (Luo et al., 2012; Zhang et al., 2012). For the histone
modification data sets, the reads were mapped to the unmasked TAIR10
reference genome of Arabidopsis (TAIR10_chr_all.fas; ftp.arabidopsis.
org) using CLC assembly cell 4.2.0 with -c parameter for colorspace reads
and -r to ignore redundant reads. Peak calling was performed using
DFilter 1.0 with -std 2 (Kumar et al., 2013).

ChIP-Seq in Vivo Targets

For the ChIP-Seq data sets (PIF4, PIF5, AP1, AP2, FLC, FHY3, PRR5, AP3,
PI, and PIF3), raw reads were downloaded from the SRA database
(Kaufmann et al., 2010; Yant et al., 2010; Deng et al., 2011; Ouyang et al.,
2011; Hornitschek et al., 2012; Nakamichi et al., 2012;Ohet al., 2012;Wuest
et al., 2012; Zhang et al., 2013)). The quality of the raw data was checked
with FASTQC (v0.10.0; http://www.bioinformatics.bbsrc.ac.uk/projects/
fastqc/). Adaptors and other overrepresented sequences were removed
using the fastx-toolkit (v0.0.13; http://hannonlab.cshl.edu/fastx_toolkit/).
The reads were mapped to the unmasked TAIR10 reference genome of
Arabidopsis (TAIR10_chr_all.fas; ftp.arabidopsis.org) using BWA with de-
fault settings for all parameters (v0.5.9; Li and Durbin, 2009). Reads that
could not be assigned to a unique position in the genome were removed
using samtools (v0.1.18; Li et al., 2009) by setting the mapping quality
threshold (-q) at 1. Redundant reads were removed, retaining only one read
per start position, using Picard tools (v1.56; http://picard.sourceforge.net).
Peak calling was performed using MACS (v2.0.10; Zhang et al., 2008). The
genome size (-g) was set at 1.0e8, and the FDR cutoff was set at 0.05. Other
parameters were set at their default values.

For the ChIP-chip data (BES1, SOC1, AGL15, LFY, and FUS3) (Zheng
et al., 2009; Winter et al., 2011; Yu et al., 2011; Tao et al., 2012; Wang and

Perry, 2013), raw CEL files were downloaded from GEO. The Affymetrix
Tiling array bpmap files were updated to the current TAIR10 annotation
with Starr (Zacher et al., 2010). Peak calling was performed with rMAT
(Droit et al., 2010). The PairBinned method was used to normalize the
arrays. Peaks were called using a FDR cutoff of 0.05 except for the data
sets BES1 and FUS3 in which the P value was set at 1023 (in analogy to
the original study and necessary to obtain peak calling results). The
minimum requirement of consecutive enriched probes was set at of eight.
Other parameters were left at their default setting.

Peak regions were annotated based on the location of their summits as
determined by MACS. A peak was assigned to the closest gene as an-
notated in the TAIR10 release present in the PLAZA2.5 database (Van Bel
et al., 2012). Both upstream, intron, and downstream regions of the peak
were taken into account. The complete (exon-masked) peak regions were
submitted to the Peak-Motifs algorithm using default settings (Thomas-
Chollier et al., 2012). The P value for motif enrichment in the peak set
compared with the genomic background was calculated by mapping the
motifs using matrix-scan (Turatsinze et al., 2008) (using the same default
parameters of Peak-Motifs) in 1000 random sets of peaks of the same size
and length distribution sampled without replacement from the complete
intergenic genome space. Only motifs with significant enrichment
(P value < 0.05) toward peak regions for a specific TF were retained. Lists
of differentially expressed genes following perturbation of the TF were
gathered from their respective publications (for SOC1, the original study
describing the data was Seo et al., 2009).

Construction and Analysis of a CNS-Based Gene
Regulatory Network

Based on the known motifs compiled from the different databases and
literature (see section “ComparativeMotif Mapping”), we retained 157 TFs
for which specific motif information was available. A conserved gene
regulatory network was created with intersectBed (-f parameter was set to
1 demanding complete motif presence in the conserved region, -u pa-
rameter was also used), which determined the overlap between a BED file
containing all CNSs, together with their associated genes, and BED files
with genome-wide occurrences of the motifs of all 157 TFs. Although in
most cases experiments have confirmed the specificity of the association
between a TF and its binding site, we cannot exclude that predicted target
genes identified through a CNS are regulated by amember of the same TF
family. Overlap between the predicted GRN and the experimental network
(n = 1092) was evaluated by counting howmay TF-target interactions from
the experimental network were present in the predicted network and
enrichment between two networks was defined as the number of inter-
actions that are present in both networks divided by the number of inter-
actions expected by chance. The number of common interactions expected
by chance is given by the mean of the hypergeometric distribution: N1*N2/
T, where N1 andN2 are the number of interactions in the two networks, and
T is the total number of possible interactions. Statistical significance of the
observed number of overlapping edges was evaluated using the hyper-
geometric distribution (Marbach et al., 2012). Overlap was also determined
per TF, demanding that a TF had at least 10 target genes.

Functional enrichment was determined for each network by using five
biological data sets, including three functional data sets, Gene Ontologies
(Ashburner et al., 2000), MapMan (Thimm et al., 2004), functional modules
(Heyndrickx and Vandepoele, 2012) as well as two expression data sets,
a stress expression compendia (336 microarray experiments) and a de-
velopmental expression compendia (135 microarray experiments) (De
Bodt et al., 2012).

For the functional annotation data sets, the enrichment of functional
terms was determined within the set of target genes for each TF through the
hypergeometric distribution with Bonferroni correction. A enrichment score
(-log(p-value)*fold enrichment) was created for each significantly enriched
term and the average of all enrichment scores within the network was
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determined. For GO, only GO slim terms were taken into account. For the
expression data sets, a gene pair was considered to be coregulated in the
given network if the two genes had >50% of their regulators in common.
These gene pairs were identified by computing the Jaccard similarity co-
efficient between the set of regulators of the first gene and the second gene.
For each coregulated gene pair, we then measured the similarity of the
expression profile between both genes using the Pearson correlation co-
efficient. Finally, the biological similarity was summarized by taking the
average over all coregulated gene pairs. For both functional annotation and
expression data sets, the same procedure was repeated for 100 ran-
domized versions of the network, and fold enrichmentwas computed as the
ratio of the average functional enrichment score, or average Pearson
correlation coefficient, of the original network to the average of the
randomized networks. Network randomization was done by permuting
the labels of all TFs and permuting the labels of all genes, which pre-
serves the network structure. This assures that the observed enrichment
is not due to potential biases arising from structural properties of the
network. Statistical significance was assessed at a level of 0.05 using
a one-sided Wilcoxon rank-sum test to compare the functional en-
richment scores or Pearson correlation coefficient from the original
network with a random sample from the randomized networks that has
the same size as the real set of scores (Marbach et al., 2012). P values
obtained using 100 randomizations were identical to those from ob-
tained through 1000 randomizations.

Construction and Analysis of Condition-Specific GRNs

Coexpression was determined between all TFs and target genes using the
Pearson correlation coefficient based on 11 CORNET expression com-
pendia: abiotic stress TAIR10 (256 exp), biotic stress TAIR10 (69 exp),
microarray compendium 2 TAIR10 (111 exp), development TAIR10 (135
exp), flower TAIR10 (72 exp), hormone treatment TAIR10 (140 exp), leaf
TAIR10 (212 exp), root TAIR10 (258 exp), seed TAIR10 (83 exp), stress
(abiotic+biotic) TAIR10 (336 exp), and whole plant TAIR10 (85 exp) from
De Bodt et al. (2012). A Z-score transformation of correlation coefficients
was performed in order to determine significant coexpression. A TF-target
interaction was deemed significantly coexpressing if the Z-score was
greater or less than 2. Only TF-target interactions that showed significant
coexpression in less than four compendia were used as an additional filter
to obtain specificity. This threshold was selected due to the presence of
three stress-related compendia.

Accession Numbers

Sequence data from this article can be found in The Arabidopsis In-
formation Resource database under the following accession numbers:
AGL15 (AT5G13790), AP1 (AT1G69120), AP2 (AT4G36920), AP3
(AT3G54340), SOC1 (AT2G45660), PI (AT5G20240), LFY (AT5G61850),
FLC (AT5G10140), PRR5 (AT5G24470), PIF3 (AT1G09530), PIF4
(AT2G43010), PIF5 (AT3G59060), FHY3 (AT3G22170), BES1 (AT1G19350),
FUS3 (AT3G26790), AG (AT4G18960), ABF1 (AT1G49720), mir168a
(AT4G19395), mir167a (AT3G22886), MYB58 (AT1G16490), MYB83
(AT3G08500), HY5 (AT5G11260),MYB63 (AT1G79180), SND1 (AT1G32770),
NST1 (AT2G46770), NST2 (AT3G61910), VND6 (AT5G62380), VND7
(AT1G71930), MYB46 (AT5G12870), and SND3 (AT1G28470). Next-
generation sequence data used in this article can be found in the GenBank
Sequence Read Archive (SRA)/Gene Expression Omnibus (GEO) data-
base under the following accession numbers: DH sites (SRP009678),
H3K4me3, H3K4me2, and H3K9ac (GSE28398), PIF4 (SRP010570), PIF5
(SRP010315), AP1 (SRP002174), AP2 (SRP002328), FLC (SRP005412),
FHY3 (SRP007485), PRR5 (SRP011389), AP3 and PI (SRP013458), PIF3
(SRP014179),BES1 (GSE24684),SOC1 (GSE33297),AGL15 (GSE17717),
LFY (GSE28063), and FUS3 (GSE43291).
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