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Understanding plant gene promoter architecture has long been a challenge due to the lack of relevant large-scale data sets
and analysis methods. Here, we present a publicly available, large-scale transcription start site (TSS) data set in plants using
a high-resolution method for analysis of 59 ends of mRNA transcripts. Our data set is produced using the paired-end analysis
of transcription start sites (PEAT) protocol, providing millions of TSS locations from wild-type Columbia-0 Arabidopsis
thaliana whole root samples. Using this data set, we grouped TSS reads into “TSS tag clusters” and categorized clusters into
three spatial initiation patterns: narrow peak, broad with peak, and weak peak. We then designed a machine learning model
that predicts the presence of TSS tag clusters with outstanding sensitivity and specificity for all three initiation patterns. We
used this model to analyze the transcription factor binding site content of promoters exhibiting these initiation patterns. In
contrast to the canonical notions of TATA-containing and more broad “TATA-less” promoters, the model shows that, in
plants, the vast majority of transcription start sites are TATA free and are defined by a large compendium of known DNA
sequence binding elements. We present results on the usage of these elements and provide our Plant PEAT Peaks (3PEAT)
model that predicts the presence of TSSs directly from sequence.

INTRODUCTION

Transcriptional regulation is an integral process for the control of
cell and organ identity, growth, development, differentiation, and
response in many organisms. Knowledge of transcriptional start
sites (TSSs) and promoter architecture are thus crucial for un-
derstanding the transcriptional regulation underlying these fun-
damental processes. For genes transcribed by RNA polymerase
II (pol-II), the architecture of promoter regions has been exten-
sively studied in many prokaryotes and eukaryotes, such as
bacteria, yeast, and humans (David et al., 2006; Yamashita et al.,
2011; Jorjani and Zavolan, 2014; Park et al., 2014). A major

component of promoter architecture identified in animal species
are DNA sequence elements, which are bound by different com-
ponents of the pol-II transcription initiation machinery (Kadonaga,
2004, 2012; Thomas and Chiang, 2006). With this information,
detailed models of promoter architecture have been developed in
these animal species (Smale and Kadonaga, 2003; Juven-
Gershon and Kadonaga, 2010; Grünberg and Hahn, 2013).
In plants, DNA sequence elements that are known to play an

important role in gene expression include the pol-II binding
elements TATA and Initiator, as well as additional elements that
are thought to play an enhancer role in some settings. These
additional elements include specific transcription factor binding
sites (TFBSs), such as DOF, MYB, and MADS box, as well as
general sequence enrichments including Y-Patch and GA con-
tent. Classical reviews on the subject (Grasser, 2006) follow past
animal-based models for a “core promoter” region consisting of
position-specific DNA sequence binding elements TATA and
Initiator, with common inclusion of a CCAAT box proximal to the
core promoter. However, these models of plant core promoter
structure were postulated without high-resolution genome-scale
TSS information, at a time when less than 100 well-characterized
examples were available in plants. Since this time, there have

1 These authors contributed equally to this work.
2 Address correspondence to megrawm@science.oregonstate.edu.
The author responsible for distribution of materials integral to the findings
presented in this article in accordance with the policy described in the
Instructions for Authors (www.plantcell.org) is: Molly Megraw (megrawm@
science.oregonstate.edu).
C Some figures in this article are displayed in color online but in black and
white in the print edition.
W Online version contains Web-only data.
www.plantcell.org/cgi/doi/10.1105/tpc.114.125617

The Plant Cell, Vol. 26: 2746–2760, July 2014, www.plantcell.org ã 2014 American Society of Plant Biologists. All rights reserved.

mailto:megrawm@science.oregonstate.edu
http://www.plantcell.org
mailto:megrawm@science.oregonstate.edu
mailto:megrawm@science.oregonstate.edu
http://www.plantcell.org/cgi/doi/10.1105/tpc.114.125617
http://www.plantcell.org


been no major changes to views of plant core promoters. More
recently, motif discovery–based analyses utilizing thousands of
available promoter examples (Yamamoto et al., 2009, 2011)
have included a focus on general sequence enrichments such
as Y-Patch, GA, and CA elements, hypothesizing that these
enrichments may play a similar role to CpG islands in mam-
malian promoters. CpG islands are found in the promoters of
many mammalian genes (Saxonov et al., 2006), and their pres-
ence has been used as a key feature in TSS prediction models
(Deaton and Bird, 2011). Yet, to date, little is known about the
specific combinations of elements in pol-II promoters that likely
lead to transcription in plants.

Conventional annotation of plant TSSs rely on low- to mid-
throughput technologies such as EST/cDNA alignment, 59 rapid
amplification of cDNA ends (RACE), and modified versions of
MPSS. Most TAIR10 annotated TSSs are at best based on the
alignment of ESTs. EST/cDNA-based annotations of 59 tran-
script locations are known to be inaccurate, given that they rely
on a reverse transcriptase based assay. The precise identifica-
tion of gene promoter regions allows for the characterization of
pol-II binding elements that have positional constraints: For
example, the TATA-box element is known to be found between
25 and 45 nucleotides upstream of the TSS. Accurate location of
the promoter also assists in the identification of functional TFBSs,
which are short, degenerate sequence motifs found in both in-
tergenic and promoter sequences.

For pol-II transcribed noncoding RNAs, this inference problem
of functional core promoter identification is more extreme, as
little data on the location of the RNA primary transcript may be
present. MicroRNAs (miRNAs)—small RNAs that regulate gene
expression relevant to the development of many eukaryotes—
are a prominent example of this problem because the TSS of
each miRNA primary transcript is located in an unknown region
that is at a variable distance from the mature miRNA sequence.
Individual TSSs identified using 59 RACE have been determined
for ;50 Arabidopsis thaliana miRNAs (Xie et al., 2005), but the
landscape of primary transcript TSSs remains entirely unknown
for the majority of the 337 known Arabidopsis miRNAs (Griffiths-
Jones et al., 2006). Further complicating promoter analysis with
publicly available data, such as annotated TAIR10 transcripts, is
the fact that transcription does not always initiate from a single
location, but for some genes, can initiate at any site within
a short genomic window (Carninci et al., 2006; Ni et al., 2010).
Therefore, for all pol-II genes, a more detailed data set is needed
that accurately describes the TSS locations that are most highly
expressed relative to neighboring locations.

In this study, we employ the paired end analysis of transcrip-
tion start sites (PEAT) protocol to generate a high-throughput
TSS data set because of its accuracy in other organisms, nu-
cleotide resolution, and paired-end mapping capability (Ni et al.,
2010) to analyze a pooled root sample of the first sequenced
plant, the Columbia-0 ecotype of Arabidopsis (Arabidopsis Ge-
nome Initiative, 2000). The high resolution of the PEAT data
set allows us to categorize the TSS tags into distinct tran-
scription initiation patterns, then identify position-specific en-
richments for known TFBS signals in proximity to each initiation
pattern. We use these signals to construct an accurate machine
learning model for each initiation pattern called the Plant PEAT

Peaks or “3PEAT” model. 3PEAT predicts the probability of
a TSS at any given nucleotide in the Arabidopsis genome
solely from the DNA sequence surrounding that nucleotide. It
is trained and tested on separate partitions of each initiation
pattern category. Because the 3PEAT model is able to ach-
ieve a remarkably high combination of sensitivity and spec-
ificity, analysis of its features yields direct insight into the
combinations of plant promoter elements that give rise to
pol-II transcription.

RESULTS

Our data set is composed of short regions representing the 59
ends of pol-II RNA transcripts, obtained using the PEAT pro-
tocol. Cap-trapping protocols such as CAGE (Carninci et al.,
2005) and PEAT (Ni et al., 2010) aim to isolate pol-II mRNA
transcripts and sequence the capped ends (TSS tags) with nu-
cleotide resolution. Recent analyses using genome-scale TSS
data sets produced with PEAT and CAGE in animal tissues (Ni
et al., 2010; Batut et al., 2013; Nepal et al., 2013) have observed
that TSSs are not simply located at one or even a few “alter-
native start site” locations upstream of each pol-II gene. When
these TSSs are mapped back to the genome, they distribute
spatially in a variety of different “TSS tag clusters” or “initiation
patterns.” In animals, these initiation patterns have been asso-
ciated with different core promoter elements, gene functions,
and chromatin structure (Carninci et al., 2006; Rach et al., 2009,
2011). Narrow peak animal promoters are typically significantly
enriched for TFBS motifs and associated with development
and differentiation, while genes with weak peak initiation pat-
terns contain fewer significant TFBS enrichments and are often
housekeeping genes.
In this study, we use the nomenclature of other PEAT studies

(Ni et al., 2010): (1) a narrow peak (NP) pattern represents
a narrow genomic segment containing a very large number of
TSS tags, (2) a broad with peak (BP) pattern is a region where
many tags are spread over a relatively wide genomic segment
with a narrow region containing a majority of the TSS tags, and
(3) a weak peak [WP] pattern is a case where relatively fewer
tags are observed within a segment and shape may be less
definitive, nonetheless a clear tag cluster is present. To be clear
on naming, the WP category is most similar to the “broad”
category in the original CAGE-based analyses in mammalian
genomes (Carninci et al., 2005, 2006). Our PEAT data set yields
;4 million tag pairs mapping with the highest certainty, identi-
fying 24,207 TSS tag clusters associated with 17,619 protein-
coding genes and is comparable in gene expression coverage
with RNA-Seq data in similar root samples (Supplemental Figure
1) (Brady et al., 2007; Li et al., 2013).
The PEAT procedure starts with TAP digestion, which re-

moves the 59 CAP or 59 PPP from transcripts resulting in ones
with a 59 P. Since there are transcripts in vivo (degradation in-
termediates) that have 59 P, these “background” transcripts
could contribute to the observed TSS patterns. To assess this
possibility, we compared the locations of TSS tag cluster peaks
to the TAIR10 annotation of the associated gene. These results
show that all PEAT TSS tag clusters located within the promoter
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region of genes closely agree with TAIR10 annotation. For ex-
ample, for all peaks taken together (regardless of shape or
number of reads), the median distance between peak modes
and TAIR10 annotations was only 35 nucleotides. Individually,
NP clusters were located a median of 50 nucleotides, BP clus-
ters 22 nucleotides, and WP clusters 32 nucleotides from the
TAIR10 annotation. With 100 reads per tag cluster specified (the
minimum required for inclusion in the model), the median dis-
tance across all initiation patterns dropped to 18 nucleotides
(distances within the classes were as follows: NP, 4 nucleotides;
BP, 10 nucleotides; WP, 24 nucleotides) (Supplemental Figure
2). In summary, this analysis shows that all PEAT TSS tag
clusters agree closely with the TAIR10 annotations, even at the
minimum read level. Therefore, we consider it unlikely that any
background transcripts present contribute substantially or in
a biased way toward the observed tag clusters of any type.

Distinct Patterns of Transcription Initiation Exist in Plants

Similar to what has been observed in animal systems, our data
show that distinct patterns of transcription initiation exist in
Arabidopsis (Figure 1, Table 1; Supplemental Table 1). Previous
computational studies of promoter regions upstream of similar
TSS initiation patterns in animals have shown that it is possible
to predict the locations of NP TSSs from DNA sequence (Frith
et al., 2008; Megraw et al., 2009; Rach et al., 2011). A machine
learning model called S-Peaker (Megraw et al., 2009) was con-
structed to use sequence content along with the position
specificity and binding affinity of TFBSs to reveal which factors
are important for achieving a sharp spatial peak of transcription.
The S-Peaker study confirmed the hypothesis that, at least in
the NP TSS case for animals, many elements can play a guiding
role in pol-II transcription initiation, and these elements are most
likely to do so in transcription factor (TF)-specific locations with
respect to a highly transcribed TSS location.

Given that plant promoters have proven to be very difficult
cases for TSS prediction models (Shahmuradov et al., 2003,
2005), we posited that TFBS model-based analysis (Megraw
et al., 2009) would be an appropriate method to solve this
challenging problem. Due to the lack of CpG islands in plants as
compared with mammalian promoters (Kapranov, 2009), many
alternative sequence enrichments must collectively be examined
for efficacy. Specific positional relationships for TFBSs with re-
spect to TSSs are poorly documented in plants beyond TATA-
box. These positional relationships between TFBSs and TSSs
are currently unknown for a majority of TFs and may well be
serving as the key to transcription initiation. In addition, these
relationships are likely not limited to single-TSS locations. A
large data set containing millions of tags that map stringently to
a well-sequenced and well-annotated genome is likely to be
sufficient for an accurate model, at least in the case of NP
promoters. We expected that a tissue sample such as the root,
with its complex regulatory network (Bruex et al., 2012; Lan
et al., 2013), would be enriched for rapidly dividing cells where
tissue-specific patterning is taking place, a setting expected to
give rise to many sharp NP TSSs, in addition to more broadly
distributed gene promoters typically associated with ubiqui-
tously expressed genes.

The Location of Transcription Initiation Can Be Accurately
Modeled by DNA Binding Affinity in Plants

We next investigated whether a plant-specific TSS identification
model based on DNA sequence features and machine learning
can address plant-specific complexity such as the lack of CpG
islands. We examined this question by using the large PEAT TSS
initiation pattern data set to query whether patterns of sequence
enrichments and spatial positioning of elements that lead to pol-
II transcription could be identified. In this model, each PEAT tag
cluster in the data set was collapsed to a single genomic loca-
tion representing the most highly expressed nucleotide relative
to neighboring locations (the TSS tag cluster mode), with an
upstream promoter region that contains computationally iden-
tified TFBS elements at specific locations relative to this TSS
mode (Figure 2). A control group of randomly chosen sequences
was selected from the genome, representing a wide variety of
sequences that are not pol-II transcribed. To identify sequence
elements that show TFBS enrichment, we next searched the
promoters for specific upstream locations where these TFBS
elements could be collectively enriched (see Methods: 3PEAT
TSS Peak Prediction Model). We used a standard log-likelihood
TFBS scanning technique to approximate DNA binding affinity
along with a set of 200 known plant elements characterized in
the literature (Grasser, 2006; Megraw et al., 2006; Bryne et al.,
2008; Wingender, 2008; Civán and Svec, 2009; Yamamoto et al.,
2009).
We identified a subset of at least 150 elements exhibiting

TFBS enrichment on at least one strand within each initiation
pattern category (Supplemental Data Set 1). In accordance with
what has been previously reported, we observed sharp well-
defined enrichment signals for the canonical pol-II elements
TATA and Initiator in the NP class. We also identified novel TFBS
elements that are associated with the core promoter region or
with position-specific locations with respect to a TSS. In total,
we observed at least 20 such novel elements within each initi-
ation pattern category (Supplemental Figures 3 to 5). We also
observed that each initiation pattern had high levels of enrich-
ment for a different set of elements, in some cases also with
minor differences in enrichment location or enrichment region
width, suggesting that different initiation patterns are regulated
by different factors, as has been reported in animals (Carninci
et al., 2006; Rach et al., 2009). We therefore used these different
regions of enrichment separately, training a different version of
our model for each initiation pattern.
With the purpose of designing a highly interpretable model

that effectively selects among many sequence features within
a minimal set for optimal classification performance, we per-
formed model training and 10-fold cross-validation (see Meth-
ods: 3PEAT TSS Peak Prediction Model) using L1-regularized
logistic regression (Koh et al., 2007). As in Megraw et al. (2009),
input features to the model reflect whether each TFBS element
has a binding sequence signal present within that TFBS’s region
of enrichment (ROE) with respect to the specific genomic loca-
tion being examined (e.g., Chr 1:+:34,567). An ROE (see Meth-
ods: 3PEAT TSS Peak Prediction Model) is a segment of
genomic sequence where a specific TF is preferentially located
with respect to many observed TSSs; it represents a location of
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putative biological relevance for TF binding. The model output is
a probability that the genomic location under examination is the
mode of a TSS distribution within the given initiation pattern.
Each model was trained using positive examples from its initi-
ation pattern group, and negative examples selected from the
immediate upstream regions of these TSSs as well as from
annotated coding sequence. Model performance was measured
by the area under the ROC curve (auROC) and area under the
precision recall curve (auPRC) of the model on an independent
subset of PEAT data that was not used to train the model

(Supplemental Figures 6 and 7). After observing strong testing
performance within each shape class (Supplemental Figures 6
and 7), we constructed an ALL model trained on the union of all
initiation patterns.
We observed that the NP model has the strongest perfor-

mance (auROC of 0.98 and auPRC of 0.89). Remarkably, we
were able to train models that performed nearly as well for BP
and WP classes. This outcome suggests that all TSS tag clus-
ters in Arabidopsis are likely associated with position-specific
element combinations and enrichments. Perhaps even more

Figure 1. PEAT Data Set Examples of NP (Top), BP (Middle), and WP (Bottom) Tag Clusters.

The horizontal axis of each plot displays a region of genomic sequence, with TAIR10 cDNAs in the region displayed below the axis. The vertical axis
displays the number of PEAT reads observed at each nucleotide location in the region. Tag cluster shape estimates are overlaid, providing an example
of each peak shape as determined by the PEAT peak shape caller.
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surprising was the excellent performance of the ALL model
(Supplemental Figure 8), where auROC matched the peak shape
models at 0.98 and auPRC of 0.88 fell within 2% of these
specific models. This finding supports the hypothesis that al-
though position-specific TFBS enrichments differ for each initi-
ation pattern, when taken together, TF affinities for specific
regions within the promoter are collectively predictive of a TSS
mode regardless of pattern. Thus, the ALL model appears to
successfully account for different usages of the elements in
different transcriptional landscapes to create a “promoter sig-
nature” based only on TF binding affinity for promoter se-
quences in all three initiation patterns. This finding suggests that
the locations of highly expressed TSSs are accurately distin-
guished using DNA sequence signals alone. We name our model
design for the NP, BP, WP, and ALL TSS initiation pattern
classes the 3PEAT (Plant PEAT Peaks) model.

3PEAT Enables Genomic Scans for pol-II Protein Coding
and miRNA Gene TSSs

Because auROC and auPRC values on a relatively small test set
of locations can be deceiving (Lobo et al., 2008), the ability to
produce a high-resolution signal when scanning a model over
large regions of the genome may still fail even if the model
achieves high auROC and auPRC. This failure in signal detection
occurs because genomic sequence usually contains an over-
whelming number of negative examples, and only a tiny per-
centage of these examples can reasonably be included in the

test sets from which auROC and auPRC values are computed.
Relative to the entirety of the Arabidopsis genome, there are few
genomic locations are TSS peak modes. If the 3PEAT negative
training sets poorly characterize the large variety of locations
that are not TSS peak modes, then when the model is scanned
over genomic regions, an overwhelming number of false positive
calls will be produced. Therefore, we further tested 3PEAT in
genomic scanning to determine if the model design and training
set together translate into a useful performance outcome.
Each 3PEAT initiation pattern model (NP, BP, WP, and ALL)

was scanned over the entire set of genomic sequence locations
within 4 kb of each test set example (Supplemental Figure 9).
Scanning performance was evaluated by an auROC curve es-
timate (Supplemental Figure 9A). Sensitivity was approximated
by the percentage of PEAT peak mode TSS locations “hit” by
the probability output signal at a given threshold, and specificity
was approximated by the number of additional TSS locations hit
per kilobase (see Methods: 3PEAT TSS Peak Prediction Model).
This evaluation of scanning performance is a highly conservative
approximation because some of the additionally predicted TSS
locations may in fact be PEAT TSS mode locations, but we
consider that it provides a fair estimate. Supplemental Figure 9A
mirrors our previous observations (Supplemental Figures 6 to 8).
In conservative auROC estimates, individual initiation pattern
models and the model combining ALL patterns performed ex-
tremely well; individual pattern models and the model for ALL
pattern types also performed similarly to each other. These data
validate our approach by demonstrating that even in genomic
scans, the 3PEAT models do not produce a large number of
false positives. In Supplemental Figure 9B, we plotted a different
estimate of scanning resolution that reflects the ability of each
trained model to center high probability output signals on the
peak modes. Here, we observed clear differences in probability
signal resolution, with the NP shape model producing the
highest scanning resolution and the WP model producing the
lowest. The ALL model was trained from both NP peaks (rela-
tively fewer cases) and WP peaks (relatively many cases com-
pared with NP); therefore, it stands to reason that the ALL

Figure 2. Diagram Displays an Example of a PEAT Peak Promoter, as Considered by the 3PEAT Model.

3PEAT considers the mode of a PEAT peak as the genomic location for the TSS location of the peak. 3PEAT identifies known transcription factor
binding site motifs upstream of TSSs and records the high-scoring locations for these elements. This information from each PEAT peak is then used as
a data example on which to train or test the 3PEAT TSS prediction model.
[See online article for color version of this figure.]

Table 1. Quality-Filtered TSS Initiation Pattern Data Set

Data Set/Initiation
Pattern Total Examples Total PEAT Reads

NP 1,276 (14%) 1,382,237 (19%)
BP 2,050 (22%) 2,665,313 (36%)
WP 6,000 (64%) 3,330,821 (45%)
All protein coding 9,326 (100%) 7,378,371 (100%)
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model’s scanning performance at second-to-lowest is propor-
tionally influenced. For example, at a probability threshold of 0.5,
the centers of the NP model probability peaks are within about
seven nucleotides of 80% of actual NP modes. For the ALL
model at the same probability threshold, probability peaks are
within 20 nucleotides of ;75% of ALL initiation pattern modes.
This resolution is quite remarkable. One would expect that
a model trained on a specific initiation pattern type would more
precisely estimate the location of the mode (most highly tran-
scribed location) of that pattern, with the most precise estimate
for NPs. Figure 3 shows an example of a scan using the WP
model (all scans are provided in Supplemental Data Sets 2 to 4).
For all models, probability signals agree closely with PEAT tag
distributions of each pattern type as well as with the TAIR10
annotation. This agreement supports the conclusion that, when
taken together on appropriate training sets, numerical perfor-
mance measures such as auROC and auPRC accurately reflect
predictive power in genomic scanning.

Although miRNA primary transcripts are degraded after pro-
cessing in the cell nucleus (Rogers and Chen, 2013), we still ob-
served 40 PEAT peaks in our data set that were located in the near
upstream regions of ;30 TAIR10-annotated miRNA precursors
(see Methods: PEAT TSS Peaks Data Set Production). To de-
termine if the TSS tag clusters identified by the PEAT protocol were
consistent with past observations derived using traditional labora-
tory techniques, we compared the miRNA-proximal TSS locations
identified in this study with a set of 66 miRNA primary transcript
TSS locations from a 59 RACE study in Arabidopsis (Xie et al.,

2005). Among this set of miRNAs with 59 RACE–supported loca-
tions, 15 miRNA upstream regions were in common with our pu-
tative miRNA TSS peaks. We compared the precise locations of our
PEAT TSS tag cluster modes with the reported locations of the 59
RACE observations. Strikingly, 12 of 15 had close agreement: eight
had a cluster mode within 1 nucleotide of the 59 RACE location, and
an additional four had a cluster mode within 7 nucleotides of the 59
RACE location. Of the three locations that did not agree closely, all
locations were within 50 nucleotides of a secondary 59 RACE TSS
observation. Most surprising was the strong agreement regardless
of initiation pattern or expression level. Some tag clusters contained
as little as 10 tags at the mode, the minimum number considered
for PEAT tag clusters in our study; yet, mode location was identical
to a reported 59 RACE TSS location.
We then used this small set of 40 miRNA-proximal peaks as

a test set for the 3PEAT ALL and NP models (Supplemental Figure
10). This test set includes many primary transcript clusters with as
few as 10 reads, whereas the protein coding test and training sets
contain at least 100 reads per cluster. As expected, performance
on this data set was reduced compared with that of our large
protein-coding test set. Performance was still better than ex-
pected, given the small number of reads associated with many of
these TSSs. We observed that at reasonable mid-level probability
thresholds (0.4 to 0.6 range), the models are quite specific but not
very sensitive (Supplemental Figure 10). Some miRNA NPs as well
as other types of peaks are missed. While this reduced perfor-
mance is likely in part due to the liberal collection of miRNA pri-
mary transcript clusters, it also suggests that TSSs just upstream

Figure 3. Example Genomic Scan Output from 3PEAT Model, Showing Agreement of Predicted TSSs, PEAT Tag Reads, and TAIR10 Gene Annotations.

The track in red at the top of the figure displays probability output from a representative scan over the region of a WP test set TSS using the 3PEAT WP
model (this particular example shows the PEAT WP tag cluster, center, at Chr2:+: 15830983-15831107). The middle track in gray displays actual PEAT
reads mapped to the genome. The bottom track in blue displays TAIR10 genes and cDNAs. The model successfully calls out highly probable WPs, but
also other types of PEAT tag clusters present in the sequence being scanned. Additionally, the model frequently indicates TSS tag clusters in locations
that are not covered by PEAT reads in our Arabidopsis root sample but agree quite precisely with pol-II gene transcript start sites annotated in TAIR10.
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of mature sequences may not be the only peaks for miRNA pri-
mary transcripts and that additional miRNA proximal peaks may
have a promoter composition that differs somewhat from protein-
coding genes. These observations are consistent with past com-
putational studies on plant miRNAs (Megraw et al., 2006) and may
reflect the fact that miRNAs have multiple distinct heavily used TSS
locations, which seems consistent with findings in mammalian
systems that indicate miRNAs have multiple, complex transcripts
that are related to the occurrence of numerous downstreammiRNA
processing steps (Saini et al., 2007; Bhattacharyya et al., 2012;
Marco et al., 2013). In summary, our study indicates that 3PEAT is
a useful model for the identification of high confidence, highly ex-
pressed TSS locations for miRNA primary transcripts in the ab-
sence of laboratory data in the region of interest.

PEAT Provides Significant Gains in TSS Resolution over the
TAIR10 Annotation

We constructed a 3PEAT model based exclusively on TAIR10
annotation and compared its performance with the PEAT data

set–based model. We observed that the TAIR10 based model
achieved an auROC of 0.95. This was not substantially lower
than that of the 3PEAT ALL model (0.98), but auPRC perfor-
mance suffered considerably—0.69 for TAIR10 as compared
with 0.88 for ALL (Supplemental Figure 11). The regions of en-
richment defined by the TAIR10-based model were considerably
less well defined than the enrichments of the PEAT-based models
(Figure 4). Genomic scanning performance suffered as well,
showing a 50% decrease in positional resolution compared with
the PEAT ALL model (Supplemental Figure 12). To understand
this loss of performance, we evaluated how closely the PEAT data
agrees with TAIR10 annotation overall. PEAT tag clusters located
within 500 nucleotides of an annotated gene are centered on
average 40 nucleotides from the annotated gene start site
(Supplemental Figure 2). Given this difference, enrichment loca-
tions determined using the TAIR10 annotations do not precisely
reveal where pol-II must interact with an element to initiate tran-
scription. The impact of this shift is shown in Figure 4. These
differences in ROE width and location cause the TAIR10-based
model to miss important combinations of elements present within

Figure 4. Comparison of Three ROEs Defined by PEAT NP Data (Top) versus ROEs Defined by TAIR10 Data (Bottom).

Each colored region represents a portion of the region of enrichment and flanking area detected for the transcription factor. The ROEs center on
different locations with respect to observed TSSs: MADSB (236 versus 28), MADSA (237 versus 29), and L1-box (232 versus 23). ROEs are more
pronounced and precise with PEAT data. These differences in data precision are likely to explain the success of the 3PEAT NP, WP, and BP models as
opposed to the poor performance of the TAIR10 model in sequence scanning.
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their biologically relevant location. Overall, these results strongly
indicate that a high-resolution data set is critical for accurately
characterizing Arabidopsis promoter architecture.

3PEAT Model Feature Analysis Yields Shape-Dependent
Promoter Signatures

An important question in the study of gene regulation is the
composition of a functional promoter. The L1-regularized logistic
regression approach used in 3PEAT has a major benefit in that
model features are highly interpretable. The features of the 3PEAT

model measure the presence of individual binding elements
(TATA, Ini, CAAT-box, MADS box, etc.) within their ROEs on each
DNA strand with respect to the location under examination (see
Supplemental Methods: Model Features for Details). Feature
weights used by the model are directly proportional to their im-
portance in the model’s predictive success. The weights of
a successful NP model determine a promoter signature for NPs. A
specific weighting of feature elements is thus produced that ac-
curately determines whether an input sequence location is likely
to be an NP. Figure 5 and Supplemental Figure 13 display de-
tailed promoter signatures for the NP, WP, and BP models.

Figure 5. 3PEAT Model Coefficients for NP and WP Models, Forming Promoter Signatures.

Model coefficients can range from 21.0 to 1.0, only those exceeding 0.1 are displayed as part of the signature. Based on the model, heavily weighted
positive coefficients indicate TFs whose presence is strongly associated with the presence of a TSS tag cluster.

Transcription Start Sites in Arabidopsis 2753

http://www.plantcell.org/cgi/content/full/tpc.114.125617/DC1


Given the unique promoter signatures for NP, WP, and BP
patterns, we were interested in determining whether these dif-
ferent initiation patterns associate with different biological pro-
cesses. For this determination, we selected the set of TAIR10
protein coding genes associated with one or more TSS tag
clusters of each initiation pattern and queried these sets for
statistically overrepresented (P < 0.01) Gene Ontology (GO)
terms (Supplemental Data Set 5). We examined the over-
represented terms unique to each initiation pattern for common
themes. We observed that the unique NP category contains
terms that pertain to oxidative stress (similarly reported in
Yamamoto et al., 2009), biogenesis, and membrane systems.
BP themes included chromatin, biosynthesis, and metabolism,
as well as ATP-related and transport terms. WP themes dealt
with metabolism and catabolism, as well as general protein-
related processes. In general, statistically overrepresented
terms unique to the NP category tended to relate to processes
that must occur at a particular time and place in a developing
tissue or cell. This category contained the smallest number of
unique GO terms. In contrast, the WP category contained ;6
times as many terms (representing about six times as many
peaks) with a clear tendency toward general processes asso-
ciated with housekeeping cellular functions. The BP category
contained an intermediate number of terms that are not typically
associated with housekeeping genes but rather processes ne-
cessitating stronger gene expression routinely at certain times in
the circadian cycle. These general observations suggest that an
organism’s unique use of the different promoter peak shapes is
largely consistent with animal studies (Hoskins et al., 2011). NPs
in our study tend to associate with spatiotemporal processes in
an organism, which are controlled by promoter element com-
binations that come together at a precise, narrow region on the
genome to initiate a strong burst of transcription. WPs tend to
associate with a variety of processes requiring at least a low,
maintenance level of transcription. The BP promoter signature
may reflect a need for both of these capabilities, including
processes that must be induced rapidly at a particular routine
time.

pol-II Gene Expression Depends Largely on the Presence of
Location-Specific TFBS Combinations That Are TATA Free

Previous studies (Yamamoto et al., 2009, 2011) reported that
TATA-box and sequence enrichments, such as GA content,
were associated heavily with TSS peaks of different patterns.
These reports suggest that given a high-resolution data set and
a model that uses location-specific enrichments, these features
alone could be explanatory. We tested whether this data set
would support equally strong performance using TATA-box
along with GA, CA, and GC content. We trained and tested the
3PEAT NP model using only these features. This model ach-
ieved an auROC of 0.95, an auPRC of 0.68, and very poor
scanning performance (Supplemental Figure 14). TATA and se-
quence enrichments, even position-specific versions of these
features, are neither necessary nor sufficient for transcription. To
understand the nature of this observation, we examined the
occurrence of TATA in our data set, partitioned by initiation
pattern (Figure 6; Supplemental Table 2).

While TATA presence or absence is clearly a strong predictive
factor in all of our 3PEAT promoter signatures, Figure 6 shows
that promoters containing a statistically significant TATA signal
within the approximate region necessary for pol-II transcription
(245:225) (TATA+ promoters) are not in the majority for any
peak shape category. The percentage of TATA+ promoters as-
sociated with an NP shape is higher than other shapes, but
clearly no overwhelming association between TATA and NP
promoters was observed in our data when TATA location with
respect to the TSS is accounted for. Plant promoters in general
have been thought to be largely TATA-containing; however, this
observation is confounded by the fact that the Arabidopsis ge-
nome is AT-rich (Megraw et al., 2006). When a log-likelihood
scanning threshold that controls for false positives is used (see
Methods: 3PEAT TSS Peak Prediction Model), and the location
of the TATA-box signal with respect to TSS is accounted for, we
observe that at most ;22% of the 9325 genes expressed in our
data set have a TATA+ promoter. This result is consistent with
our observation that, in fact, many other signals not limited to
TATA, in the right position-specific combinations, are necessary
and sufficient to induce gene expression (Figure 5).

DISCUSSION

High-Throughput TSS Sequencing Is Necessary for Detailed
Promoter Analysis

As pol-II is responsible for the transcription of protein coding
genes and microRNAs, one of the most expedient methods for
identifying transcriptional and posttranscriptional control net-
works is to first identify known TF binding sequences in the
promoter region around a TSS. However, the overall frequency
of functional TF binding events in vivo, the functional combi-
nations with other elements, and the positional preferences
within plant gene promoters remain largely unknown. In a popular
model, the TATA-box and one of several possible plant-specific
forms of the Initiator element may alone form a recognizable core
promoter of pol-II transcribed genes in plants (Grasser, 2006;
Yamamoto et al., 2011). Yet, some well-studied and highly ex-
pressed plant genes do not contain an upstream TATA site
(Nakamura et al., 2002), and this combination of short sequence
elements is abundant in intergenic regions.
Several published works provide TSS analysis for data sets on

the order of thousands of sites in plants (Gowda et al., 2006;
Yamamoto et al., 2007), the largest of these sets uses CT-MPSS
technology in a pooled sample of Arabidopsis tissues (Yamamoto
et al., 2009). The CT-MPSS study suggests that plant promoters
are divided into two groups, associated with TATA and GA,
respectively. In this framework, TATA is the predominant el-
ement necessary for sharp, narrow peaks of TSS tags along
the genome, whereas GA enrichment gives rise to other TSS
landscapes. By contrast, our analysis shows that promoter
shape observations and the conclusions drawn from these
observations can change dramatically as sequencing depth
changes.
The library sample depth and sequencing quality that can be

achieved through PEAT is substantially greater than that of past
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technologies used to generate published plant TSS data sets,
such as CT-MPSS. PEAT has benefits and limitations com-
pared with other high-throughput TSS sequencing methods
such as CAGE (Shiraki et al., 2003). Benefits include the re-
peatability of PEAT measurements verified over many tech-
nical replicates in published studies (Ni et al., 2010). Both
PEAT and CAGE have been shown in animals to yield re-
producible data at the level of promoter distribution shapes
(Carninci et al., 2006; Ni et al., 2010). PEAT in particular has
a reliable cap-trap system, is capable of identifying 59 loca-
tion at nucleotide resolution (Ni et al., 2010), and yields strong
alignment accuracy due to its paired-end strategy. Using

a technique that provides accurate mapping of the 59 cap
locations of pol-II transcripts is the key to our study, and our
analysis of ROEs for TATA, Initiator, and a wide variety of
additional TFBS elements bears out PEAT data quality at this
level. The primary limitation of PEAT is the amount of input
material necessary to create a library, as at least 30 mg of
total RNA is required. When enough material is available,
PEAT provides high-quality data for pol-II TSS regions that
are in excellent agreement with past data sets. An advantage
of PEAT is that it extends resolution to the point where
a carefully designed model can recover TSS peak presence
from sequence alone with high probability.

Figure 6. Comparison of the Percentage of TATA+ versus TATA- Promoters According to PEAT TSS Initiation Pattern.

Here, a TATA+ promoter is a TSS peak upstream region containing a TATA-box signal within TATA’s ROE (approximately 245:225 with respect to the
TSS peak mode). A TATA- promoter does not contain a TATA-box signal in this region. Top: The presence of a TATA-box signal is decided according to
a thresholded log-likelihood score that reflects a strict false positive rate (FPR) of 0.0001. Bottom: The same view is provided using a less stringent FPR
for TATA-box presence.
[See online article for color version of this figure.]
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Arabidopsis TSS Initiation Patterns Have Distinct
Promoter Signatures

A striking aspect of the model promoter signatures is that they
are comprised of many substantially weighted elements, only
a few of which have been reported in the literature to have
a strong influence on promoter type (e.g., TATA-box, Initiator,
and GA content). In fact, for each initiation pattern, most of the
elements in the signatures have not been previously discussed
in the literature as core promoter elements having location-
specific signals. The SQUAMOSA (SQUA) element is just one
among many such examples. SQUA is contained in the pro-
moter signatures for all patterns, is most heavily weighted in NP,
and has a distinct ROE peak at exactly 236 in all three peak
shapes. We provide the ROE tables and enrichment plots for all
factors in Supplemental Data Set 1. Beyond the use of many
position-specific TF elements, we further observed that al-
though TATA and GA are important for determining the presence
of all transcription initiation patterns, the relative importance of
these elements differs across pattern type. In the NP case, the
signature is dominated by the importance of TATA together with
a large block of sequence enrichments including GA content, CA
content, Y-Patch, and GC content, followed by many specific TF
elements. The WP case is proportionally dominated by TATA
and GA. Beyond the TATA and GA elements, a large array of
nearly equally weighted TF-specific elements comprise this
signature. Finally, the BP signature is in some sense a combi-
nation of these qualities; presence of TATA is proportionally
important, followed by a particular GA-rich element BPC1 (also
highly weighted in WP) and a mixture of lesser-weighted se-
quence enrichments and TF-specific elements. Our models thus
show that multiple sequence enrichments are highly important in
plants such as Arabidopsis and perhaps interchangeable in
some cases. GA content can play an important role in plant WP
cases, unlike in mammals where lowly transcribed tag clusters
do not have a clear association with CpG enrichment (Megraw
et al., 2009). However, the presence of a variety of TF-specific
elements can also collectively contribute a high weight to the
likelihood of a WP tag cluster. In this way, GA content in plants is
not a perfect analogy for CpG enrichment in mammal genomes.
Finally, BPs are not distinguished solely by lack of TATA signal
and presence of sequence enrichments; rather, BPs appear
to arise as a result of many possible complex combinations of
TF elements and sequence enrichments together in a genomic
region.

Functional Plant Promoters Do Not Show a Clear Division
into Core and Proximal Regions

Our study demonstrates that similar to animal systems (Megraw
et al., 2009), many TFs potentially involved in the regulation of
genes expressed in the Arabidopsis root have positional con-
straints relative to the TSS. However, our results strongly sug-
gest that Arabidopsis promoters are not divided into a core
promoter region and a proximal promoter region as they are
classically defined in animal organisms. The regions immediately
upstream of Arabidopsis TSS tag clusters may contain many
possible elements, but none of these elements appear to be an
absolute requirement for expression. Common pol-II binding

elements, such as TATA, do have location-specific signals, but
these signals are neither necessary nor sufficient for expression
to occur. In our analysis, we find that many enrichments are not
only location specific, but their locations are further upstream
than the canonical core region. Furthermore, most of these el-
ements were not previously viewed as core elements. We also
find that while many enrichments are location specific, others
are in fact quite general. Whether these enrichments collectively
take the place of CpG Islands is unclear. Our study shows that
no single enrichment, including GA enrichment, has the same
signal strength as CpG islands in mammals (Megraw et al.,
2009). Collectively, all of the position-specific and non-position-
specific enrichments appear to form a unified Arabidopsis pro-
moter region.

Conclusion

We used a high-resolution PEAT data set to accurately model
the probability of a TSS tag cluster mode, using only DNA se-
quences as input and our PEAT TSS tags as training locations. It
remains a challenge to predict the quantity of transcript ex-
pression at any given genomic location, as opposed to the
likelihood of a peak shape mode. Additional data, such as in-
formation about chromatin status, may be important for de-
termining the absolute quantity of expression. We hope that the
data and analysis provided by our study will spur follow-up in-
vestigations into open questions, such as the quantity of tran-
script expression, which our data pose. Our work successfully
identified a large number of location-specific TF binding ele-
ments that were previously thought to be enhancers. By con-
trast, we show the existence of clear enrichments in the
proximal promoter region within ;40 nucleotides from the TSS
mode. Furthermore, we describe different initiation patterns, in
particular NP modes, which allow de novo sequence element
searches to be used much more productively than in the past,
due to accurate locations for highly expressed TSSs. Finally, our
PEAT TSS promoter locations and position-specific TF binding
locations will facilitate more accurate computational network
analyses in plants, such as those aimed at predicting levels of
transcript expression and TF binding to individual promoters.
The nature of our high-resolution data set and knowledge of
promoter architecture from our 3PEAT model will inform future
studies of the control of gene expression that are vital to un-
derstanding cellular and organ identity, growth, development,
differentiation, and response of plants.

METHODS

PEAT TSS Peaks Data Set Production

Sample and Library Preparation

Arabidopsis thaliana Columbia-0 wild-type seeds were sterilized using
50% (v/v) bleach and 0.1%Tween for 5min and then rinsed five times with
sterile water. Nylon mesh was placed on top of the solidified media (1.0%
agar [10 g], 0.5 g of MES [M-2933; Sigma-Aldrich], 1% sucrose [10 g], and
4.33 g of Murashige and Skoog salts [catalog No. 11117-066; Invitrogen],
pH to 5.7 to 5.8 with KOH). Following vernalization 2 d at 4°C, sterilized
seeds were evenly plated in two dense rows with ;500 seeds per row.
Seedlings were grown vertically on plates for 7 d at 22°C in a Percival with
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16 h of constant illumination. Seven days after being placed in the
Percival, roots were cut and harvested from the seedlings just below the
root-hypocotyl junctions. Samples were ground in liquid nitrogen and
total RNA was isolated using the RNeasy kit (Qiagen) according to the
manufacturer’s instructions. Samples were pooled for 144 mg of total
RNA, from which a PEAT library was prepared according to a previously
published protocol (Ni et al., 2010). The library was sequenced on an
Illumina Hi-Sequation 2000 sequencer.

PEAT TSS Data Processing

Paired-end reads were mapped to the TAIR10 transcriptome (Lamesch
et al., 2012) using the same procedure as Ni et al. (2010). TSS tag clusters
were then partitioned into NP, BP, and WP initiation patterns (for details,
see Supplemental Methods: PEAT TSS Data Processing).

PEAT Data Quality Analysis

PEAT Sequencing Depth Analysis

To determine whether the sequencing depth achieved was sufficient to
represent the gene expression state in our pooled Arabidopsis root sam-
ples, we performed a saturation analysis on our tag cluster data set. Starting
with our full set of stringently mapped reads, we randomly sampled 10%,
20%, and so on up to 100% of the reads; for each sample, we reperformed
the same process described above to produce our annotated tag cluster
data set, starting with a requirement of 10 reads per tag cluster. For each
subsampled, reclustered set of reads, we recorded the number of anno-
tated genes associated with the resulting tag clusters (Supplemental Figure
16A). We observed that the amount of annotated gene increase between
subsamples in Supplemental Figure 15A leveled off nearly to zero as the
subsample size grew to 90% and then 100% of the reads, indicating that
the sampling depth we achieved was within a few percent of the maximum
depth that could be achieved. Additional details and analysis are described
in Supplemental Methods: Sequencing Depth Analysis.

PEAT Comparison to Existing Data for Coding and
Noncoding Transcripts

The list of genes expressed in the PEAT data set was comparedwith those
genes found to be expressed in publically available microarray and RNA-
Seq data sets for wild-type Arabidopsis roots (Brady et al., 2007; Li et al.,
2013). The mutually expressed genes in these three data sets show
excellent overlap (Supplemental Figure 1).

To compare the PEAT tag clusters in our data set associated with
annotated miRNAs, we identified 40 peaks whose mode was within 4 kb
upstream of an Arabidopsis miRNA precursor recorded in miRBase
(Griffiths-Jones et al., 2006) and then compared the location of the mode
of each peak with previously reported TSS locations determined using 59
RACE assays (Xie et al., 2005). FifteenmiRNA precursor upstream regions
contained TSSs reported in common to both sets, and we report the
distances between the PEAT peak modes and 59 RACE TSS locations in
each case in Results. The outstanding agreement between 59 RACE
locations and PEAT peak modes suggests that the RACE assays ef-
fectively sampled the most highly expressed TSS locations for these
miRNA-associated regions.

PEAT Peak Distance Comparison with TAIR Annotations

To evaluate how closely our PEAT data agreed with the TAIR10 gene
annotation, we calculated the distance between the tag cluster modes

located in gene promoter regions (within 500 nucleotides of an annotated
TAIR10 gene) and their associated TAIR10 gene start locations. These
distances were computed for each initiation pattern (NP, BP, andWP) and
at varying cutoff requirements for the number of reads per tag cluster
(Supplemental Figure 2).

3PEAT TSS Peak Prediction Model

3PEAT Model Construction

The 3PEAT model was constructed in a similar manner to that described
by Megraw et al. (2009).

Data Sets. PEAT tag clusters (or “peaks”) are groups of contiguously
mapping PEAT TSS tags, where each TSS tag corresponds to the 59 end
of a capped pol-II RNA transcript. We annotated tag clusters by initiation
pattern and TAIR10 association and selected all highly expressed tag
clusters for our analysis (see Supplemental Methods: Tag Cluster An-
notation). Tag clusters were separated into training and testing partitions
prior to model construction (see Supplemental Methods: Model Data
Sets).

Regions of Enrichment and Transcription Factor Selection. To
identify regions where transcription factor binding sequences are
enriched with respect to the TSS, we started with a set of 203 TF po-
sitional weight matrices (PWMs) collected from a variety of sources
(Grasser, 2006; Megraw et al., 2006; Bryne et al., 2008; Wingender, 2008;
Civán and Svec, 2009; Yamamoto et al., 2009). While the PWMs used in
this study were derived using experimentally supported data (rather than
strictly computational approaches), PWMs are rarely a perfect charac-
terization of TF binding domains or their sequence specificity. Due to their
short length, the sequences described by PWMs appear commonly
throughout the genome, but many of these identified sequences are not
involved in gene regulation. Secondly, PWMs cannot directly capture
higher-order relationships between nucleotides. These issues were
mitigated through the use of ROEs and background correction.

PWMs were first processed with pseudocounts as described (Megraw
et al., 2009). Using the Scanner Toolset for TFBSDiscovery (Megraw et al.,
2009, 2013; Morton andMegraw, 2014) to compute log-likelihood scores,
each PWM was scanned over an 8-kb region centered around the tag
cluster mode, identifying the regions where each TF binding site wasmost
likely to occur across all examples in the training data set. ROEs were
defined on both strands by identifying the highest scoring region for each
PWM across all training examples. PWMs with log-likelihood score peaks
(maximum score) up to 4 kb from the TSS were considered. If the scores
computed at nucleotides surrounding the peak dropped below the
background score for more than 5 nucleotides, the PWM was discarded.
Procedural details are previously described (Megraw et al., 2009). We
identified ROEs associated with downstream as well as upstream ele-
ments (for details, see Supplemental Data Set 1 and Supplemental
Methods: Analysis of Downstream Promoter Elements).

Feature Set. Sequence content information and PWMs describing TF
binding sequences and their associated ROEswere used together to build
a set of features describing each positive and negative training example.
The included sequence content features were produced from the GC, CA,
and GA content in the 200-nucleotide windows surrounding the peak
mode (for details, see Supplemental Methods: Model Features).

PEAT Peaks 3PEAT Model Training and Testing

Our model uses L1-regularized logistic regression, a method which
performs automatic feature selection by removing the least significant
features in the model. We use the l1_logreg package, an efficient C
implementation of logistic regression (Koh et al., 2007). All performance
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statistics reported here were computed from an independent test set.
Cross-validation performance statistics are provided in Supplemental
Table 3. See Supplemental Methods (3PEAT Model Training and Testing)
for details on the parameter selection and cross-validation procedure.

Gene Scanning. The final 3PEAT models (NP, BP, WP, and ALL) were
used to classify each nucleotide in the 8-kb region surrounding each
PEAT tag cluster in the model’s test data set, calculating the probability
that this location is the mode of a TSS tag cluster (for details, see
Supplemental Methods: 3PEAT Model Gene Scanning Procedure).

Analyses of PEAT Peak Sets

PEAT GO Analysis by Peak Type

We determined the overrepresented GO terms (P < 0.01) for the genes
associated with each initiation pattern using GOstat (Beissbarth and
Speed, 2004). The TAIR10 gene set was selected as the background set
(Berardini et al., 2004). The genes expressed in the complete data sets
used inmodel construction and evaluation (combined training and testing)
of each initiation pattern (NP, WP, and BP) were considered. Over-
represented GO terms that were unique to each initiation pattern were
extracted and are shown in Supplemental Data Set 5, along with the
genes associated to each term.

3PEAT Model Feature Analysis

The model feature coefficients were extracted from the L1-Logistic Re-
gression models using a modified version of the l1_logreg tool. The
coefficients produced by l1_logreg are on a 21.0 to 1.0 scale. Within
a single TF feature group, the coefficients of all ROE windows with non-
zero coefficients from both strands were averaged. Supplemental Data
Set 6 contains these average coefficient values for all TFBSs that had at
least one non-zero coefficient in themodel. Coefficients with a value of 0.1
or greater are displayed in Figure 5 and Supplemental Figure 13.

3PEAT Model Analysis of TATA-Less Transcription Start Sites

TATA-Only Model. NP promoters classically have been strongly
associated with TATA-box binding sequences. To test the predictive
value of this element for NP promoters, we constructed a model con-
taining only the TATA-box and dinucleotide sequence enrichment (GC,
GA, and CA) features from our NP tag cluster data set. This model was
used to scan for TSS locations in the 8-kb regions surrounding NP tag
clusters. Supplemental Figure 14 compares the performance of the full
model (labeled NP_100_PS) with this model (NP_100_PS_TATA), re-
vealing its poor predictive performance.

TATA-Less Transcription Start Sites. We queried the proportion of
PEAT tag clusters in our TSS data set used in 3PEAT model construction/
evaluation (training and test sets were combined) that could be con-
sidered to contain a TATA binding site within the TATA-box ROE. A TSS
was considered TATA+ if the log-likelihood score at any nucleotide within
the TATA-box ROE exceeded a threshold reflective of a particular false
positive rate with respect to sequences drawn from the background
nucleotide distribution. Each false positive rate for the TATA PWM was
computed as described (Megraw et al., 2013).

Data and Software Availability

The full data set of mapped, annotated PEAT tag clusters is available in
Supplemental Data Set 7 and at http://megraw.cgrb.oregonstate.edu/
suppmats/3PEAT. All 3PEATmodel training and test data sets, along with
the 3PEAT model classifiers and 3PEAT TFBS-Scanner tool set used in

this project for identifying transcription factor binding sites within pro-
moter sequences are publicly available as open source command line
tools at http://megraw.cgrb.oregonstate.edu/software/3PEAT.

Accession Numbers

PEAT read alignments (.bam file) have been deposited in the National
Center for Biotechnology Information Sequence Read Archive repository
under accession number SRR1425301.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. RNA-Seq Gene Expression Comparison.

Supplemental Figure 2. Distance of PEAT Peak Modes to TAIR10
Annotated TSSs.

Supplemental Figure 3. Sharp, Well-Defined Regions of Enrichment
for NP Promoters.

Supplemental Figure 4. Sharp, Well-Defined Regions of Enrichment
for WP Promoters.

Supplemental Figure 5. Sharp, Well-Defined Regions of Enrichment
for BP Promoters.

Supplemental Figure 6. Model Performance on Narrow Peak Modes.

Supplemental Figure 7. Model Performance on Broad with Peak and
Weak Peak Modes.

Supplemental Figure 8. Model Performance on ALL Modes.

Supplemental Figure 9. Model Performance on Genomic Sequence
Scans.

Supplemental Figure 10. Model Performance on miRNA-Proximal
Modes.

Supplemental Figure 11. Model Performance on TAIR10 annotated
TSSs.

Supplemental Figure 12. Model Performance on TAIR10 Genomic
Sequence Scans.

Supplemental Figure 13. 3PEAT Promoter Signatures, Detailed for All
Shape Models.

Supplemental Figure 14. Model Performance with TATA-Box and
Enrichment Features Only.

Supplemental Figure 15. Tag Cluster Shape Definitions.

Supplemental Figure 16. Sampled Read Depth Saturation Analysis.

Supplemental Figure 17. Proportions of TATA+/TATA- Promoters.

Supplemental Table 1. Counts of Tag Clusters in Each Peak Shape
Data Set Used in 3PEAT Model.

Supplemental Table 2. Comparison of the Number of TATA+ versus
TATA- Promoters by PEAT TSS Initiation Pattern.

Supplemental Table 3. Cross-Validation Performance: auROC and
auPRC Statistics for Each Cross-Validation Fold of Each 3PEAT Model
Trained.

Supplemental Methods. Data Set Processing and Partitioning, Model
Construction, and Model Evaluation.

The following materials have been deposited in the DRYAD repository
under accession number http://dx.doi.org/10.5061/dryad.r2342.

Supplemental Data Set 1. Regions of Enrichment for all 3PEAT
Models.
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