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Abstract

A two-stage procedure for estimation and testing of observed measure correlations in the presence

of missing data is discussed. The approach uses maximum likelihood for estimation and the false

discovery rate concept for correlation testing. The method can be utilized in initial exploration

oriented empirical studies with missing data, where it is of interest to estimate manifest variable

interrelationship indexes and test hypotheses about their population values. The procedure is

applicable also with violations of the underlying missing at random assumption, via inclusion of

auxiliary variables. The outlined approach is illustrated with data from an aging research study.
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Examining Measure Correlations with Incomplete Data Sets

Missing data may be unavoidable in most current empirical studies in the behavioral, social,

educational, and biomedical sciences as well as cognate disciplines. Frequently in these

areas, scholars are interested in examining observed measure correlations. For instance, this

may be the case in initial exploration oriented phases of their research, where it could be of

concern to estimate these parameters and possibly test hypotheses about their population

values, in particular for significance. A traditional approach has relied thereby on list-wise

deletion and frequently on unadjusted significance-level multiple testing using the resulting

correlation estimates.

That conventional procedure, which seems to be still often utilized in empirical research in

these sciences, can be criticized on at least two counts. One, via list-wise deletion an

investigator arrives at a subsample from an originally available one, which may not be
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representative of the studied population (unless the missing completely at random

assumption is fulfilled, which one could expect rarely to be the case in applications unless

induced by design; e.g., Allison, 2001; Graham, 2003). Two, subsequent multiple testing of

correlation coefficients with unprotected significance level does not control the family-wise

error rate (FWER), and has therefore attracted a great deal of criticism. Even if the widely

used Bonferroni-procedure is employed then, the resulting testing approach can be overly

conservative and thus miss potentially important findings about variable interrelationships

(e.g., Johnson & Wichern, 2002).

This article discusses an alternative, two-stage procedure for examining observed measure

correlations with incomplete data sets. The outlined method is based on the missing at

random assumption, and its plausibility is enhanced by inclusion of auxiliary variables (e.g.,

Enders, 2010). When testing each measure correlation for significance (or equality to a non-

zero pre-specified value) in the second step, the false discovery rate concept is utilized

within an application of the Benjamini-Hochberg (BH) multiple testing approach. The BH

method controls the FWER and is in general more powerful than conventionally employed

multiple testing procedures (Wasserman, 2004).

The paper is structured as follows. The next section deals with the background, notation and

assumptions underlying the remaining discussion. A factor analytic model is then adopted

that can be straight-forwardly employed to estimate correlations in incomplete data sets. A

following subsection is concerned with an application of the BH method for testing

correlations. The data illustration section demonstrates subsequently the application of the

outlined approach in an empirical study. The conclusion section deals with limitations and

extensions of the outlined procedure.

Background, Notation, and Assumptions

Suppose k continuous measures are collected on a sample of n persons in a study of a

population of interest (k, n > 1). Denote these observed variables by y1, …, yk and assume

that a researcher is interested in evaluating their indexes of (linear) interrelationships. Let y

= (y1, …, yk)′ be the vector of measures (with priming denoting transposition in the rest of

the article), and designate by Σ = Corr(y) = [σij] their population correlation matrix (i, j = 1,

…, k). In behavioral, social, educational and biomedical studies, some values may well be

missing in the resulting data set, that is, the pertinent n × k data matrix, denoted M, can be

incomplete. In this setting, suppose a concern of an investigator is with (i) estimating each of

the k(k-1)/2 elements of the matrix Σ and (ii) examining for each of its entries the hypothesis

that its population counterpart equals 0 (or a given non-zero value; see below). These

concerns can arise in early stages of empirical social and behavioral research, in particular

when initial exploration of patterns of observed variable interrelationships is of interest (e.g.,

Tabachnick & Fidell, 2007).

In the remainder of this article, given the presence of missing data in M, use will be made of

the popular full information maximum likelihood (FIML) method (e.g., Arbuckle, 1996) for

the purpose of measure correlation estimation. This method is based on the assumption of

data missing at random (MAR; e.g., Little & Rubin, 2002). The assumption is fulfilled when
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the probability of missingness is not related to the actually missing values, but may instead

be related to the observed data (e.g., Enders, 2010). Since MAR critically involves data that

are not available, it is not statistically testable, that is, there is no conclusive test (of a

sufficient condition) that if ‘passed’ would imply that the data are MAR (cf. Raykov, 2011).

Given the lack of testability of MAR, and the fact that frequently in empirical research

missingness may well depend on the actually missing values (e.g., in cases of attrition in

longitudinal studies), it is important to enhance the plausibility of this assumption. This is

possible by the inclusion of ‘auxiliary variables’, i.e., variables that are ‘predictive’ of the

missing values (e.g., Little & Rubin, 2002). In practice, based on substantive considerations

these variables may be chosen from among measures that are related to dependent variables

with missing values (cf. Enders, 2010.) The rest of this paper also assumes the availability of

one or more auxiliary variables, but under MAR its method could also be applied without

such variables; similarly, we assume normality of the measures for the first stage of the

following procedure (e.g., Arbuckle, 1996; see also illustration and conclusion section).

Estimation and Testing of Measure Correlations in the Presence of Missing

Data

Estimation of observed variable correlations

In the first step of the discussed method, for the k manifest variables we adopt the formal

factor analysis model in Raykov & Marcoulides (2010; cf. Kühnel, 1988). In the model,

each of k latent variables is defined as identical to a corresponding from the observed

measures. That is, to accomplish observed correlation estimation with missing data, we

make use of the following model:

(1)

where a = (a1, …, ak)′ is a vector of intercepts, Λ is the k × k identity matrix, and f is a k × 1

vector of dummy latent variables, while for the measurement errors e = 0 is posited (and

thus Cov(e) = Ok, where Ok denotes the k × k covariance matrix consisting of zeros only, and

0 is the k × 1 vector of zeros). Model (1) is saturated for any number k of observed variables,

i.e., is associated with perfect fit when fitted to data (viz. with a chi-square value of 0, while

having 0 degrees of freedom). Fitting model (1) to an incomplete data set employing FIML,

with auxiliary variables as indicated earlier, permits estimation of the k(k-1)/2 correlations

between the observed variables. This estimation is possible, for instance, using the popular

latent variable modeling software Mplus (Muthén & Muthén, 2010; see next section for an

empirical illustration and Appendix 1 for the source code needed). Thereby, estimates of

these correlations are provided in the corresponding entries of the correlation matrix of the

latent variables, as are pertinent standard errors and two-tailed p-values.

Testing measure correlations for significance

In the second step of the method in this paper, the set of k(k-1)/2 hypotheses of each

population correlation being 0 (or equal to another pre-specified number; see below) is

tested by employing the BH multiple testing procedure. This procedure is based on the
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concept of false discovery rate (FDR; e.g., Wasserman, 2004). The FDR notion is

particularly attractive in the present setting, and can be seen as a highly useful complement

to the traditionally utilized concept of FWER in multiple testing.

The FDR is defined as the expected ratio of hypothesis rejections that are incorrect relative

to all rejected hypotheses from a given set of tested null hypotheses (e.g., Benjamini &

Hochberg, 1995). In the context of examining measure correlations in an exploration

oriented study - in part concerned with ascertaining which among a set of observed variable

interrelationships exhibit discernible linear relationships - the FDR concept is especially

appealing also for the following reason. When concerned with testing multiple correlations,

one is not only interested in controlling the FWER, but also in limiting the rate of incorrect

rejections of null hypotheses stipulating no linear relationships. As mentioned, the BH

procedure controls the FWER, and in addition limits from above the rate of incorrect

rejections by the used significance level (e.g., .05; Benjamini & Hochberg, 1995). Moreover,

the BH procedure is in general associated with higher power than conventional multiple

testing procedures, and this advantage increases with number of incorrect null hypotheses in

the studied population (Benjamini & Yakutieli, 2001).

For the sake of completeness of this discussion we provide next a brief discussion of the BH

procedure, which is applicable when there are m hypotheses to be tested on a given data set

(m > 1; see Wasserman, 2004). Denote by p1, p2, …, pm the p-values associated with these

m hypotheses, and designate by p(1) ≤ p(2) ≤ … ≤ p(m) their ascending rank-ordering. Given

a pre-specified significance level α (e.g., α = .05), one defines the m ratios

(2)

Denote next by r the largest number j for which the inequality

(3)

holds (j = 1, …, m); if inequality (3) turns out not to be satisfied for any j, set r = 0 and p(r) =

p(0) = 0. This p-value p(r) is called the BH rejection threshold and usually denoted T, that is,

T = p(r) (r ≥ 0). At the decision stage, the BH procedure consists in rejecting all null

hypotheses with p-values that do not exceed p(r), i.e., all null hypotheses with p-values

smaller than or equal to the threshold T; in case r = 0, T = 0 holds as well, and none of the

tested p null hypotheses is rejected (Wasserman, 2004).

In an available incomplete data set with p observed measures, after fitting model (1) using

FIML with auxiliary variables as mentioned earlier, one obtains with the used software the

measure correlation estimates and (two-tailed) p-values associated with each of them. An

application of the BH procedure on these m = k(k-1)/2 correlations allows one to test the m

null hypotheses of them all being 0 in the studied population. If some correlation hypothesis

stipulates equality to a given non-zero value, ρ0 say, the (corrected) difference in chi-square

values can be evaluated for the two corresponding nested models and its associated p-value

used in the BH procedure (-1 < ρ0 < 1; see also conclusion section). Then the ‘full’ model is
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the one defined in (1), and the nested in it model is (1) with the correlation in question being

set equal to ρ0.

We stress that no inflation of Type I error is associated with the outlined application of the

BH procedure while all these m = k(k-1)/2 hypotheses are tested, unlike the case when

testing them at an unprotected alpha level. It is worthwhile also stressing that the BH

procedure has in general higher power than an alternative Bonferroni-adjustment for

correlation testing that is widely used in empirical social and behavioral research. In fact,

this disadvantage of the Bonferroni adjustment method – i.e., loss in power – increases with

the number of non-zero population correlations (when tested are the null hypotheses of them

being 0, or in general with the number of incorrect null hypotheses). This number of positive

or negative true correlations may be expected to be considerable in many empirical

behavioral and social studies. Particularly for these studies (as well as others), an application

of the BH procedure instead of the Bonferroni method for overall significance level

protection, will be associated with marked gains in power relative to the latter method.

We illustrate next the discussed procedure for examining observed measure correlations in

incomplete data sets using data from an empirical investigation.

Illustration on Data

In this section, we employ data from an aging research study. Its aims were in part to

examine the relationships between measures of general health and vascular health, age, three

scales of physical activity (for balance, gait, and chair), and functional independence of n =

130 urban black adults (Schneider, 2011). These variables were drawn from the World

Health Organization's International Classification of Functioning, Health and Disability

(WHO ICF; World Health Organization, 2002), which considers relationships between them

to be bidirectional (i.e., correlational) in nature. General health and vascular health measures

related to number of problematic health conditions. Physical activity was measured by the

Short Physical Performance Battery (SPPB; Guralnik, Simonsick, Ferrucci, Glynn,

Berkman, & Blazer, 1994), an assessment of lower-extremity functioning in which

participants perform three physical tasks (i.e., chair stands, 8-foot gait speed and three

standing-balance poses; see also Guralnik, & Ferucci, 2000). Functional independence was

measured using the Lawton and Brody (1971) IADL scale, a self-report measure of an older

adult's level of independence in performing several daily living tasks (i.e., shopping,

medication management, financial management, etc). For the illustrative purposes of this

section, all measures are considered approximately continuous (see next section).

In the remainder of this section, we will be interested in first estimating the correlations

between all k = 7 measures, i.e., in evaluating their 21 correlation coefficients, and then

testing whether each of them equals 0 in the studied population of elderly. To this end, we

commence with fitting the formal factor analysis model (1) to the data from these 7 variables

(see Appendix 1 for source code needed). To enhance the plausibility of the underlying

MAR assumption, we use thereby gender, education, Beck Anxiety Inventory (BAI; Beck

and Steer, 1993) score, and the Mini Mental State Exam (MMSE) score as auxiliary

variables with the following motivation. The MMSE is a 30-item screening measure of gross
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cognitive functioning (Folstein, Folstein, & McHugh, 1975). The BAI is a self-report

measure, which asks participants to rate the presence of and perceived distress caused by

symptoms of anxiety over the past week. As demonstrated in the aging literature, gender and

education have broad effects on a host of factors in later life. Specifically, individuals with

higher levels of education tend to have more preserved functional status into the later years,

with this relationship frequently being moderated by health. The MMSE is one of the most

widely used measures of gross cognitive functioning, and several studies have demonstrated

its relationship to a multitude of factors including demographic, mood and health variables.

In clinical settings, the MMSE is also frequently used in the decision making process in

determining an older adult's ability to live independently. In addition, presence of clinically

significant anxiety among older adults is related to declines in performance of daily tasks

(Okura et al., 2010), and anxiety and disability share a number of risk factors including high

disease burden and cognitive impairment. With all this in mind, it is plausible that

information contained in these four auxiliary variables - gender, education, BAI and MMSE

scores - is related to the missing values on the above seven measures of main interest.

As indicated earlier, the fitted model (1) is saturated, associated with perfect goodness-of-fit

indexes (viz. chi-square value being 0, like its degrees of freedom), and used here merely as

a means of correlation estimation (cf. Raykov & Marcoulides, 2010). Table 1 presents the

resulting estimates of the 21 measure correlations and their associated p-values.

Taking a look at the entries in Table 1, and in particular the p-values in parentheses beneath

them, we wish to emphasize the lack of stars attached to any of these p-values. This is a

main feature in which the method in this paper differs from traditionally used approaches to

multiple correlation testing (and their widely circulated software implementations). In

particular, as stressed earlier, the present procedure is not based on comparisons of software

reported p-values to a pre-selected significance level, such as say the conventional α = .05.

Further, the procedure does not utilize an adjusted level that is constant across all

correlations, like the Bonferroni-adjusted significance level (which here would be .05/21 = .

0024, but is not used in this section). In contrast to much of past empirical research in the

behavioral, social, educational and biomedical disciplines, the method outlined in the

preceding section involves instead a comparison of each p-value (see Table 1) to a specific

ratio corresponding to that value. This ratio is defined in Equation (2), valid only for the p-

value considered, and compared to the latter before judgment can be made whether that p-

value is to be declared ‘significant’ or not.

Having completed the initial step of an application of the outlined procedure, we move on to

its second step consisting of testing all 21 correlations for significance (equality to 0). To

this end, we need to obtain first the 21 ratios lj in Equation (2) (j = 1, …, 21). They can be

furnished with any of a number of widely available software, or even a hand-held calculator,

and are rendered easily by the freely available software R (Venables, Smith, and the R

Development Core Team, 2007). The resulting l-ratios from Equation (2) are presented in

Table 2 (along with the rank-ordered p-values, accounting for ties).

According to the BH procedure, the highest p-value needs to be found next that does not

exceed its corresponding l-value. By within-row comparison in Table 2, we determine that
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all p-values before the 15th are smaller than their corresponding l-values, and all p-values

starting with the 15th are larger than their pertinent l-values. Hence, r = 14, and thus the BH

threshold is T = p(14) = .007. Therefore, we reject all null hypotheses associated with a p-

value not larger than T = .007, i.e., all null hypotheses of zero population correlation for

pairs of measures whose p-values do not exceed .007. (We note in passing that this threshold

is higher than the Bonferroni-adjusted one of .0024 mentioned above, which is not

unexpected since as indicated earlier the BH procedure is in general associated with higher

power.)

The significant correlations found in this way are indicated in Table 3. The latter is identical

to Table 1 up to the added symbol (‡) indicating a linear interrelationship index declared

significant (not 0 in the studied population) with the procedure of this paper.

From Table 3, we see that the three physical activity scale scores (for balance, gait, and

chair) are significantly interrelated among themselves, and each of them is so with

instrumental activities of daily living as well as with age (negatively). These findings are

expected on substantive grounds and demonstrate a discernible pattern of decrease of

physical activity with age, as well as of decreasing/increasing capability of managing daily

activities with decreasing/increasing physical activity. Further, this capability shows a

discernible decreasing relationship with number of general health problems, while number

of vascular health problems has an inverse discernible relationship with the physical ability

scores and capability of managing instrumental daily activities.

Conclusion

This article addressed a frequent concern in behavioral, social, educational and biomedical

studies, examination of observed measure correlations in incomplete data sets. This

examination is often of interest in initial exploration oriented phases of empirical research,

where one may be willing to evaluate the evidence in favor of discernible interrelationship

patterns, in the presence of missing data that pervade social and behavioral investigations.

Traditionally widely used procedures for these aims are suboptimal and involve list-wise

deletion and unprotected significance level multiple testing, or such after correction

employing the widely used Bonferroni method. Under the assumption of missing at random,

the article discussed a more powerful approach to measure correlation exploration. This

procedure does not have the limitation of analyzing a possibly non-representative subsample

from an originally available one in order to deal with the missing data, as list-wise deletion

will usually tend to yield. Similarly, while the present procedure controls the family-wise

error rate (at α = .05 say), it is in general more powerful than the Bonferroni-protected

multiple testing approach or other conventional multiple testing procedures. This advantage

increases with increasing number of non-zero correlations (incorrect null hypotheses) in a

studied population, as could be expected to be the case in many social and behavioral

studies.

The method in this paper is applicable also with violations of MAR, via use of auxiliary

variables (e.g., illustration section; see also Enders, 2010, on their selection), and similarly

when some null hypotheses stipulate correlation equality to pre-specified non-zero values.
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Further, the method is readily extended to the case of nested (clustered) data that are not

infrequent in the social and behavioral sciences. One possible way of handling that case is to

employ robust methods that allow one to conduct correct inferences in case of clustering

effect. 1

Limitations of the outlined correlation examination procedure in this paper stem from its

requirement for large samples. The reason is the fact that the underlying method of

estimation is maximum likelihood that has optimal statistical properties with large samples.

This requirement will be particularly important with a large number of observed variables.

While no specific guidelines are at present available for determining appropriate sample

size, due to the complexity of the issues involved, it may be conjectured that with more than

say 10 observed variables it would be recommendable to have at least a few hundred

subjects in analyzed incomplete data sets with limited fractions of missing information

(Little & Rubin, 2002). One may also submit that with fairly large fractions of missing

information the results of the method of this paper should be interpreted with a great deal of

caution. We strongly encourage future research for developing guidelines for sample size in

relation to number of observed variables and fractions of missing information. In addition to

this large sample requirement, the presently described procedure is available for

(approximately) continuous observed variables, which is a case of frequent substantial

interest in empirical social and behavioral research. While the normality assumption is also

made in the first stage of the procedure, it may be conjectured that the latter may be

somewhat robust to mild violations of normality if use is made of the robust maximum

likelihood estimation method (Muthén & Muthén, 2010; Savalei, 2010). We also encourage

future research examining its robustness degree as well as related conditions.
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Appendix: Mplus source code for estimation of measure correlations in the

presence of missing data

TITLE: ESTIMATION OF OBSERVED VARIABLE CORRELATIONS IN AN
INCOMPLETE DATA SET.

DATA: FILE = <NAME OF RAW DATA FILE>; ! USE UNIFORM MISSING
VALUE SYMBOL(S)

VARIABLE: NAMES = SPPB_BP SPPB_GP SPPB_CP AGE IADL GEN_HLTH
VAS_HLTH GENDER EDUC BAI_TOT MMSE_IAD;
MISSING = ALL(-999); ! UNIFORM MISSING VALUE SYMBOL -999
AUXILIARY = (M) GENDER EDUC BAI_TOT MMSE_IAD;

ANALYSIS: ESTIMATOR = MLR;

1At the software level, one can employ the same software as in this paper, Mplus, but with robust two-level estimation (e.g., Muthén
& Muthén, 2010). An alternative would be to use the Stata command ‘sem’, requesting robust estimation (StataCorp, 2011).
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MODEL: SPPBP_L BY SPPB_BP@1; SPPB_BP@0;
SPPGP_L BY SPPB_GP@1; SPPB_GP@0;
SPPCP_L BY SPPB_CP@1; SPPB_CP@0;
AGE_L BY AGE@1; AGE@0;
IADL_L BY IADL@1; IADL@0;
GH_L BY GEN_HLTH@1; GEN_HLTH@0;
VH_L BY VAS_HLTH@1; VAS_HLTH@0;

OUTPUT: STANDARDIZED TECH4;

Note. After the title for the analysis and naming the raw data file (with uniform symbol/s for missing values used
throughout), names are assigned in the VARIABLE section, the missing value symbol indicated, auxiliary variables stated,
and robust maximum likelihood (FIML) requested as an estimation method. The MODEL section introduces a latent
variable formally identical to each observed variable (and thus parameterizes the measure correlations in those of the latent
variables). The OUTPUT requests the standardized solution with standard errors and p-values for all measure correlations,
and their correlation matrix (end of output; for an introduction to the syntax of Mplus, see e.g. Raykov & Marcoulides,
2006).
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Table 2
Ascending order of p-values in Table 1 and comparative values lj (j = 1, …, 21; see

Equations (2))

rank p-value comparative l-value

1 .000 0.000653146

2 .000 0.001306293

3 .000 0.001959439

4 .000 0.002612585

5 .000 0.003265731

6 .000 0.003918878

7 .000 0.004572024

8 .000 0.005225170

9 .000 0.005878316

10 .000 0.006531463

11 .001 0.007184609

12 .001 0.007837755

13 .003 0.008490901

14 .007 0.009144048

15 .027 0.009797194

16 .038 0.010450340

17 .041 0.011103490

18 .185 0.011756630

19 .264 0.012409780

20 .452 0.013062930

21 .867 0.013716070

Note. Compare each p-value in the left column with the l-value in the right within the same row, to find out the largest p-value that does not exceed
its pertinent l-value. That p-value is the BH-threshold T (see main text), which here is T = .007.

Struct Equ Modeling. Author manuscript; available in PMC 2015 April 03.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Raykov et al. Page 13

T
ab

le
 3

R
ej

ec
te

d 
nu

ll 
hy

po
th

es
es

 o
f 

ze
ro

 p
op

ul
at

io
n 

co
rr

el
at

io
ns

 a
m

on
g 

k 
= 

7 
ob

se
rv

ed
 v

ar
ia

bl
es

 (
si

gn
if

ic
an

ce
 d

es
ig

na
te

d 
by

 ‡ )
 u

se
d 

in
 t

he
ill

us
tr

at
io

n 
se

ct
io

n 
(s

ee
 T

ab
le

 2
)

M
ea

su
re

1.
2.

3.
4.

5.
6.

7.

1.
 S

PP
B

P
1

2.
 S

PP
G

P
0.

54
8

(.
00

0‡ )
1

3.
 S

PP
C

P
0.

43
2

(.
00

0‡ )
0.

59
8

(.
00

0‡ )
1

4.
 A

G
E

−
0.

33
7

(.
00

0‡ )
−

0.
39

2
(.

00
0‡ )

−
0.

26
9

(.
00

3‡ )
1

5.
 I

A
D

L
0.

53
6

(.
00

0‡ )
0.

48
5

(.
00

0‡ )
0.

48
5

(.
00

0‡ )
−

0.
09

6
(.

26
4)

1

6.
 G

H
−

0.
19

6
(.

03
8)

−
0.

11
7

(.
18

5)
−

0.
20

4
(.

02
7)

−
0.

06
9

(.
45

2)
−

0.
35

4
(.

00
0‡ )

1

7.
 V

H
−

0.
27

5
(.

00
1‡ )

−
0.

23
3

(.
00

7‡ )
−

0.
28

0
(.

00
1‡ )

−
0.

01
7

(.
86

7)
−

0.
27

7
(.

00
0‡ )

0.
17

7
(.

04
1)

1

N
ot

e.
 A

bb
re

vi
at

io
ns

 in
 T

ab
le

 2
 u

se
d.

 (
T

es
te

d 
ar

e 
th

e 
nu

ll 
hy

po
th

es
es

 o
f 

ea
ch

 c
or

re
la

tio
n 

be
in

g 
0 

in
 th

e 
st

ud
ie

d 
ad

ul
t p

op
ul

at
io

n.
)

Struct Equ Modeling. Author manuscript; available in PMC 2015 April 03.


