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Abstract
The bonemicroenvironment (BME) is the main hub of all skeletal related pathological events in osteosarcoma leading
to tumor induced bone destruction, and decreasing overall bone quality and bone strength. The role of extra-cellular
membrane vesicles (EMVs) as mediators of intercellular communication in modulating osteosarcoma-BME is
unknown, and needs to be investigated. It is our hypothesis that osteosarcoma-EMVs contain pro-osteoclastogenic
cargo which increases osteoclastic activity, and dysregulated bone remodeling in the osteosarcoma-BME. In this
study, EMVs were isolated from the conditioned media of 143B and HOS human osteosarcoma cell cultures using
differential ultracentrifugation. Nano-particle tracking analysis determined EMVs in the size range of 50-200 nm in
diameter. The EMV yield from 143B cells was relatively higher compared to HOS cells. Transmission electron
microscopy confirmed the ultrastructure of 143B-EMVs and detected multivesicular bodies. Biochemical
characterization of 143B-EMVs detected the expression of bioactive pro-osteoclastic cargo including matrix
metalloproteinases-1 and -13 (MMP-1, -13), transforming growth factor-β (TGF-β), CD-9, and receptor activator of
nuclear factor kappa-β ligand (RANKL). Detection of a protein signature that is uniquely pro-osteoclastic in 143B-EMVs
is a novel finding, and is significant as EMVs represent an interesting mechanism for potentially mediating bone
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destruction in the osteosarcoma-BME. This study further demonstrates that 143B cells activelymobilize calcium in the
presence of ionomycin, and forskolin, and induce cytoskeleton rearrangements leading to vesicular biogenesis. In
conclusion, this study demonstrates that 143B osteosarcoma cells generate EMVs mainly by mechanisms involving
increased intracellular calcium or cAMP levels, and contain pro-osteoclastic cargo.

Translational Oncology (2014) 7, 331–340
Introduction
Osteosarcoma is an aggressive malignancy of bone, mainly affecting
adolescents and young adults. Interactions between osteosarcoma and
bone microenvironment (BME) promote tumor growth and
osteoclastic bone destruction. The main goal of this study is to
understand the role of extracellular membrane vesicles (EMVs) as
potential modulators of osteosarcoma BME and to identify the key
biochemical components of EMVs mediating cellular dynamics and
dysregulated pathologic remodeling of the matrix and bone. EMVs
are membrane-invested structures that are derived from a number of
cells including osteosarcoma cells [1,2]. In recent years, EMVs have
received much attention for their role in various diseases and as
biomarkers of therapy and disease burden [3]. Recent studies report
that tumor cell–derived EMVs support cancer cell growth, survival,
metastasis, and angiogenesis, evade host immune surveillance,
modulate tumor microenvironment (TMN), and initiate the
formation of premetastatic sites [4–12]. Tumor-derived EMVs, in
general, originate through the fusion of multivesicular bodies (MVBs)
with the plasma membrane (exosomes) or by budding (shed vesicles
or microvesicles), followed by exocytotic release [13–16]. Detection of
EMVs and osteoblastic and osteoclastic lesions in the bioluminescent
osteosarcoma orthotopic mouse (BOOM) model provides a strong
rationale to investigate the role of EMVs in modulating osteosar-
coma BME [2]. Biochemical analyses of EMV cargo will be
informative as it will identify the key EMV mediators underlying
osteosarcoma pathobiology.

Biomechanical stress in the bone TMN leads to increased
intracellular calcium levels that, in turn, may promote EMV
biogenesis, increase the expression of extracellular remodeling
enzymes such as matrix metalloproteinases (MMPs), and stimulate
exocytotic delivery of bioactive cargo. These biochemical events may
result through the activation of G protein–coupled receptors
(GPCRs) or calcium-dependent signaling pathways. A study by
Ancha et al. showed the role of H2 receptor, a GPCR, in the
regulation of MMP-1 expression and secretion in cultured gastric cells
[17]. Savina et al. demonstrated that increased intracellular calcium
concentrations in K562 leukemia cells trigger Rab11-mediated fusion
of MVBs with the plasma membrane and release exosomes [18].
Another study suggested the role of cAMP/protein kinase A pathway
in the release of tumor necrosis factor receptor 1–associated exosomes
[19]. In the osteosarcoma BME, neither the role of cAMP/protein
kinase A pathway nor of calcium-dependent pathway and their
downstream effects on cytoskeleton rearrangements leading to vesicle
biogenesis are known and are subjects of the current study.

Functional implications of EMVs depend on the cargo composi-
tion that, in turn, is governed by the metabolic status of the donor cell
from which they originate. For instance, EMVs containing MMPs
and proteases such as plasminogen activator promote tumor invasion
and metastases, whereas those enriched in cytokines such as
transforming growth factor β (TGF-β) evade host immune response.
Little is known about the mechanisms underlying EMV-mediated
intercellular dynamics in the TMN. Peinado et al. reported a role for
melanoma exosomes in establishing premetastatic niches by repro-
gramming bone marrow–derived cells [20]. Exosomes derived from
prostate, breast, and lung cancer cells activate fibroblasts or
mesenchymal stem cells by increasing their motility and rendering
them resistant to apoptosis [21,22] or by stimulating myofibroblastic
differentiation [23,24].

Extracellular matrix remodeling is an important process mainly
mediated by metalloproteinases, such as MMPs in the tumor BME,
which enable the tumor cells to grow, invade, and metastasize.
Another important role of MMPs besides extra cellular matrix (ECM)
degradation is in the activation of membrane-associated proteins and
regulation of cell signaling pathways. Increased expression of MMP-1,
MMP-2, and MMP-9 and down-regulation of micro RNA (miRNA)
143, which targets MMP-13, correlates to poor prognostic outcomes
in patients with osteosarcoma [25–28]. A recent study by Husmann
et al. clearly outlines the importance of MMP-1 in osteosarcoma
pathobiology where in short hairpin RNA (shRNA)-mediated down
regulation of MMP-1 expression in 143B cells generated smaller
primary tumors and fewer micrometastases and macrometastases in
the lungs, and overexpression of MMP-1 in nonmetastatic HOS cells
resulted in osteolytic primary tumors and lung metastasis [29].

It is our hypothesis that osteosarcoma EMVs contain pro-
osteoclastogenic cargo that increases osteoclastic activity and
dysregulated bone remodeling in the osteosarcoma BME. In this
study, we demonstrate that 143B osteosarcoma cells generate EMVs
by mechanisms involving cAMP/calcium-dependent signaling path-
ways and contain pro-osteoclastic cargo.

Materials and Methods

Detection of Tumor-Induced Histopathologic Changes in the
Osteosarcoma BME

For evaluating tumor-induced histopathologic changes in the
osteosarcoma BME, excised tibias (tumor bearing) from the BOOM
model [2] were fixed in 4% paraformaldehyde (pH 7.4). The in vivo
studies using the BOOM model were done with the assistance of the
Proof of Concept Laboratory at The University of Kansas Cancer
Center, with the approval of the University of Kansas Institutional
Animal Care and Use Committee. For histopathologic evaluation,
tibias were decalcified in 10% EDTA (pH 7.5) for 2 weeks before
sectioning and paraffin embedding. The sections were processed for
hematoxylin and eosin staining and immunohistochemistry (IHC).
To detect osteoblastic-mediated mineralization in the tumor tissue,
von Kossa staining was done using non-decalcified tumor tissue
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sections. To detect the immunoexpression of MMPs in the tumor
tissue of the BOOM model, MMP-1 and MMP-13 IHC was done
using primary antibodies (MMP-1, RB-1536; MMP-13, MS-825)
purchased from Lab Vision Thermo Scientific (Kalamazoo, MI),
followed by detection. The detection reagents were purchased from
Biocare Medical (Concord, CA) and Dako (Carpinteria, CA). For
negative control, primary antibody was excluded, and human
placenta tissue sections were used as positive control in MMP IHC.

Preparation of Conditioned Media from 143B
Cell Cultures
Human osteosarcoma cell lines 143B (highly aggressive and

metastatic; k-ras activated) and HOS (nonaggressive and nonmeta-
static; k-ras wild type) were purchased from American Type Culture
Collection (Manassas, VA). The 143B cells were genetically
engineered to express luciferase gene (FUW-Luc-mCherry-puro), and
cultured in Dulbecco's modified Eagle's medium according to the
previously described method [2]. The 143B-luc-mCherry cell line
was authenticated for its ability to grow in the presence of puromycin
in vitro and to proliferate in the tibia of Nu/Nu mice and metastasize
to the lungs, as described in the BOOMmodel [2]. At subconfluence,
conditioned media (CM) were prepared by culturing 143B or HOS
cells in serum-free media for 24 hours and subjected to differential
ultracentrifugation for isolation of EMVs.
Isolation, Quantitation, and Characterization of EMVs
Derived from the CM of 143B and HOS Cell Cultures

Differential ultracentrifugation. We used differential ultracentri-
fugation (low speed followed by ultracentrifugation at 110,000g for 2
hours) to isolate EMVs from the CM prepared from osteosarcoma
cells according to the scheme shown in Figure 1.

Nanoparticle tracking analysis. To determine the EMV concen-
tration and size distribution profile of EMVs isolated from CM of
osteosarcoma cell cultures, vesicles were analyzed using the NanoSight
(Amesbury, UK) NTA 2.3: Nanoparticle Tracking and Analysis
instrument and software (release version build 11 RC1, 2012,
hardware: LM14). The samples were injected in the sample chamber
according to the manufacturer's recommendations. EMVs were
analyzed in phosphate-buffered saline solution under Brownian motion
Figure 1. Schematic shows the isolation of EMVs from CM of
serum-starved human OS 143B and HOS cells.
at 22°C to 24°C with laser wavelength at 638 nm. Multiple video
frames were captured for 60 seconds per reading. Screen gain remained
at 1.0, and detection threshold ranged from 13 to 14. The number of
readings for EMVs, at dilutions 1:5000, 1:2000, 1:1000, and 1:100,
ranged from 5 to 20 measurements. Analysis displayed plots describing
particle diameter (size) distribution cumulative of each reading, 2-
dimensional (2-D) and 3-dimensional (3-D) particle light intensity
against particle concentration per milliliter, as well as a video snapshot.

Alkaline phosphatase assay. The alkaline phosphatase (ALP)
activity of EMVs was assayed using ALP colorimetric kit (AnaSpec,
Fremont, CA). Briefly, 50-μg vesicles were incubated with a
colorimetric substrate, para-nitrophenyl phosphate, and the conver-
sion of para-nitrophenyl phosphate to p-nitrophenol on release of
phosphate ions was monitored at 405 nm. The protein concentration
of the EMV samples was measured by Bradford assay (Bio-Rad
Laboratories, Hercules, CA).

Flow cytometry and fluorescence microscopy. For detection of
mCherry fluorescence on EMVs derived from mCherry-labeled, 143B
luciferase–expressing, puromycin-resistant cells, EMV suspensions were
examinedmicroscopically using theOlympus (Center Valley, PA) IX71
inverted fluorescent microscope equipped with a xenon arc lamp and
monochromatic complementary metal oxide semiconductor camera. In
addition, flow cytometric data were acquired on EMV suspensions
using the BD LSR II flow cytometer integrated with FACSDiva
software (BD Biosciences, San Jose, CA, USA).

Transmission electron microscopy (TEM) analyses. For TEM,
143B EMV pellets were fixed in 2.5% glutaraldehyde, postfixed in
1% osmium tetraoxide (OsO4), dehydrated, embedded in epon resin,
and cut into ultrathin sections. The sections were stained with uranyl
acetate and lead acetate before mounting on EM grids. The sections
were examined and photographed using a JEM 1400 electron
microscope (JEOL USA, Inc., Peabody, MA, USA) (80 kV).

Western blot analyses. To determine the biochemical composition
of the 143B EMV cargo, Western blot analyses were performed
according to the previously described method [30]. 143B EMVs were
homogenized in Tris lysis buffer (20 mM Tris, 137 mM NaCl, 1%
Triton X-100, 10% glycerol, 1 mM PMSF, and 1 mM DTT). Crude
lysates of 143B cells (12.5-25 μg) and EMVs (25-40 μg) were
denatured in sodium dodecyl sulfate sample buffer, electrophoresed on
12% denaturing polyacrylamide gels, and visualized by Ponceau stain.
For immunoblot analysis, the proteins from the gel were transferred on
to a polyvinylidene fluoride (PVDF)membrane and incubated with the
following primary antibodies: anti–MMP-1 and anti–MMP-13 (Santa
Cruz Biotechnology, Inc. (Santa Cruz, CA, USA); 200 μg/ml each) at
1:200, anti-CD-9 (SBI: System Biosciences (Mountain View, CA,
USA); 0.25 mg/ml) at 1:1000, and anti-RANKL and anti–TGF-β
(GeneTex (Irvine, CA, USA); 1 mg/ml) at 1:1000 dilution. Detection
of the immunostained bands was done by ECL chemiluminescence
detection system (Thermo Scientific, Rockford, IL). Image acquisition
was done using LabWorks Image Acquisition and Analysis Software
4.6.00.0 (UVP Bioimaging Systems, Upland, CA) and Image Lab
software for the ChemiDoc MP system (Bio-Rad Laboratories) at
incremental exposure time frame of 15, 30, 60, 180, and 300 seconds.

Calcium sensitization and 143B EMV biogenesis. To measure the
effect of intracellular rise in calcium concentrations on EMV
biogenesis, mCherry-labeled 143B cells were cultured on 35-mm
dishes to subconfluence and prepared for calcium imaging. Briefly,
143B cells were loaded with 1 μM Fura-2 AM, a fluorescent dye
which binds to free intracellular calcium by incubating at 37οC for 30
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Figure 2. Osteosarcoma-induced osteolytic and osteoblastic changes in the BME of the BOOM model. A and B are hematoxylin and
eosin–stained tumor-bearing tibial sections showing the presence of rapidly expanding tumor within the marrow cavity. The cortical bone
is abnormal, thickened, and has uneven or ruffled borders due to active osteoclastic bone resorption. The black arrows indicate resorption
pits, and the green arrow indicates a capillary infiltrating into the cortical bone. The tumor-bearing bone also shows several osteocytes
(OCY). C shows multinucleate osteoclasts actively remodeling the bone in the osteosarcoma BME. D shows mineralizing osteoblasts as
detected by von Kossa staining. E and F show electron micrographs of an active osteoclast in the vicinity of a resorption pit filled with
hydrolytic acidic vesicles (E) and extracellular matrix containing numerous EMVs interspersed among collagen fibrils (F).
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minutes according to previously described methods [31]. The ratio of
Fura-2 excitations at 340 to 350 nm and 375 to 380 nm of light
corresponds to the intracellular calcium concentration [Ca++].
Specifically, we evaluated the effects of two agents that modulate
intracellular [Ca++]: ionomycin, an ionophore, which increases
intracellular calcium levels through store-dependent mechanisms
and forskolin, an activator of cAMP generating adenylate cyclase on
EMV biogenesis. Osteosarcoma cells were either stimulated with
ionomycin (alone) at three different concentrations, i.e., 1, 3, and 10
μM, or pretreated with forksolin at 10 μM before the addition of
ionomycin. Measurements of increase in calcium concentrations in
143B osteosarcoma cells were recorded using a Photon Technology
International (PTI Technologies Inc, Birmingham, NJ) automated
spectroflurometer connected to an inverted microscope (Leica DMI-
4000B; LeicaMicrosystems,Wetzlar, Germany) equippedwith a 14-bit
CoolSNAP charge-coupled device camera (Photometrics, Tucson, AZ).
Data acquisition, calibration, and analysis were done using the EasyPro
(PTI) software. Changes in the cellular morphology and induced EMV
biogenesis on forskolin and/or ionomycin stimulation were observed in
high power (×40) by fluorescence microscopy. Forskolin pretreatment
was done using 10 μM concentrations at 37οC for 5 minutes.
Ionomycin stimulation was done at 1, 3, and 10 μM. Intracellular
calcium concentration was estimated from the Fura ratio by using
Grynkiewicz equation [32].

Statistical analysis. Data presented represent means (+SD) from
three or more independent experiments. Statistical analysis was
performed using Prism 5 (GraphPad Software, La Jolla, CA). All
experimental data are presented as means ± SD. Student's t test and
one-way analysis of variance were used for determining statistical
significance between resting cells (before stimulation) versus ionomy-
cin or forskolin + ionomycin–treated cells. A P value of b0.05 was
considered statistically significant.
Results

Rapidly Growing Tumor Induces Histopathologic Changes in
the Osteosarcoma BME

Histopathologic studies on the tumor tissue obtained from the
BOOM model detected remarkable tumor-induced morphologic
changes as evidenced by varying cortical bone thickness and
destruction of tibia of tumor-bearing mice (Figure 2, A and B).
Detection of resorptive pits and multinucleate osteoclasts in the tibial
sections of the BOOM model demonstrates high osteoclastic activity
(Figure 2C). Intense von Kossa staining of tumor-bearing bones
suggests tumor-induced prolific osteoblastic activity (Figure 2D).
Light microscopy revealed the presence of numerous osteocytes in the
tumor-bearing bone (Figure 2, A and B). Whether those osteocytes
are transformed by 143B EMVs is unknown at present and is a
subject for future investigation. Furthermore, detection of numerous
vesicles in the vicinity of the resorption pit suggests an active
procatabolic role for osteoclasts in osteosarcoma pathobiology
(Figure 2E). Ultrastructural examination of the extracellular matrix
of the tumor tissue from the BOOM model revealed the presence of
EMVs interspersed among collagen fibrils (Figure 2F). Immunohis-
tochemical studies detected the expression of MMP-1 and MMP-13
in the tumor and nontumor cells such as osteocytes, osteoclasts, and
osteoblasts of the osteosarcoma BME (Figure 3).
Isolation and Characterization of 143B EMVs Includes a
Multimodality Approach Using Differential Centrifugation,
Nanoparticle Tracking Analysis, and TEM

Osteosarcoma EMVs were isolated from the CM of mCherry + ve,
143B-luc, andHOS cells by differential ultracentrifugation (Figure 1).
The size distribution profile of isolated EMVs as determined by
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Figure 3. Immunodetection and localization of MMP-1 andMMP-13 in the tibial sections of the BOOMmodel. Brown peroxidase staining
indicates MMP expression in the tumor and nontumor cells (osteoblasts (OBL); osteoclasts (OCL); and osteocytes (OCY). Primary
antibodies (MMP-1, RB-1536; MMP-13, MS-825) were used at 1:100 dilutions.
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nanoparticle tracking analysis (NTA) was in the range of 50 to 200
nm (Figures 4, A and B, and W1). The EMV yield generated from
143B cells was higher as reflected by their mean EMV number per
milliliter (711 × 108 bEMVs per milliliter) and protein concentration
(1.2 mg/ml) compared to HOS cells (mean EMV number per
milliliter = 7.3 × 108 hEMVs per milliliter) and protein concentration
(0.33 mg/ml) (Figure W2). Because 143B EMV output was greater
(100×) than HOS EMVs, and for the sake of focus of the current
study, further characterization was done on 143B EMVs. Ultrastruc-
tural characterization of EMVs derived from 143B cells revealed the
presence of numerous vesicles in the size range of 50 to 200 nm
(Figure 4, C and D). TEM revealed the presence of MVBs and
perivesicular mineral clusters in the osteosarcoma BME (Figure 4, C
and D). Presence of ALP enzyme activity in 143B-derived EMVs
confirmed their mineralization competence as observed by TEM
(Figure 5A). Flow cytometry and fluorescence microscopy detected
the retention of mCherry fluorescence in EMVs derived from
mCherry + ve, 143B luciferase–expressing cells (Figure 5, B and C).

143B EMVs Contain Pro-Osteoclastogenic Cargo
Biochemical characterization of cargo proteins of 143B-derived

EMVs by Western blot analysis demonstrates the expression of a pro-
osteoclastogenic cargo, which includesMMPs (MMP-1 andMMP-13),
CD-9, RANKL, and TGF-β (Figure 6). Detection of a clear band at 52
kDa in 143B EMV lysates corresponds to the predicted band size for
Figure 4. NTA and TEM of 143B EMVs. A shows NTA measuremen
B shows a screenshot of video from NanoSight LM14 showing light s
143B EMV pellet. C shows the presence of an MVB containing intralu
D shows several mineralizing EMVs and the presence of polarized m
MMP-1 as previously reported by Husmann et al., in the 143B cell
lysates [29] (Figure 6A). This band is likely to be a proenzyme as
reported previously [33]. Immunodetection for MMP-13 expression
revealed the presence of amajor band at 68 to 70 kDa that was selectively
enriched in 143B EMVs (Figure 6A). This band is very likely to be the
proenzyme form of MMP-13 as previous studies report the detection of
the proenzyme or the latent form at 60 to 65 kDa, whereas the active
form is detected at 30 to 48 kDa [34,35].

Further characterization revealed that 143B EMVs contain pro-
osteoclastogenic cargo, i.e., CD-9,RANKL, andTGF-β (Figure 6C). All
the three proteins are potent stimulators of osteoclastogenesis [36–40],
but their presence in EMVs derived from osteosarcoma has never been
previously reported. Immunoblot analysis of 143B EMVs with CD-9
antibody detected a band at 48 to 50 kDa, which is very likely the
trimeric form. Recent studies have reported the presence of multimeric
forms of CD-9 detected at 24 kDa (monomeric), 38 kDa (homodimer),
52 to 54 kDa (trimer), and 70 to 72 kDa (tetramer), which most likely
form due to spontaneous intermolecular disulfide bonding of
membrane-proximal cysteine residues [41,42]. Immunoblot analysis
of 143B EMVs with anti-RANKL antibody revealed the presence of
multimeric form of RANKL at 48 kDa. Previous studies report the
existence of the following three different RANKL isoforms: RANKL1,
which is similar to the original RANKL, contains both the intracellular
and transmembrane spanning domain; RANKL2, which has a shorter
intracellular domain than RANKL; and RANKL3, which lacks the
ts of size and concentration of EMVs in three different samples.
catter caused by 143 EMVs. C and D show electron micrographs of
minal vesicles and several EMVs in the size range of 50 to 200 nm.
embrane-associated deposition of hydroxyapatitelike crystals.
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Figure 5.Determination of ALP activity and detection of mCherry fluorescence in 143B EMVs. A shows bar graphs comparing ALP activity
(U/ml) in143B EMVs versus 143B cell lysates (n≥ 3). B shows detection of mCherry fluorescence in EMVs derived from 143B-luc-mCherry
OS cells (×20). C shows mCherry-positive 143B EMV forward scatter (FSC) and side scatter (SSC) by flow cytometry.
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transmembrane domain, constitutes the soluble form of RANKL and
inhibits osteoclastogenesis [43]. Immunoblot analysis of 143B EMVs
with anti–TGF-β antibody revealed the presence of latent form of
TGF-β at 52 kDa, which was also detected in exosomes derived from
brain tumors [44].
Ionomycin and Forskolin Stimulate Calcium Mobilization
within 143B Cells Leading to Vesicle Biogenesis

Calcium imaging studies revealed that 143B cells actively mobilize
calcium in the presence of ionomycin, a calcium ionophore, and cause
cytoskeleton rearrangements leading to vesiculation. Confocal
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Figure 6. Detection of pro-osteoclastogenic cargo in 143B EMVs by Western blot analysis. Crude lysates of 143B cells (12.5-25 μg) and
EMVs (25-40 μg) were analyzed for MMP-1, MMP-13 (A and B), TGF-β, RANKL, and CD-9 (C) expression by Western blot analysis. All
samples were analyzed in triplicate.
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microscopy showed that ionomycin induced morphologic changes
within 143B cells such as loss of cell-cell contact, distortion of cellular
margins, changes in the cytoskeleton architecture, formation of
membrane blebs, and accumulation of intracellular, perinuclear
vesicles (Figure 7, A1, and B1). Addition of 1, 3, and 10 μM
ionomycin to 143B cells induced a significant increase (P b 0.0001)
in intracellular [Ca++] within 300,000 milliseconds (Figures 7C1, and
W3). Pretreatment with 10 μM forskolin, an adenylate cyclase
activator, increased calcium mobilization in both naïve and
ionomycin-sensitized 143B OS cells and resulted in increased
A) Calcium oscillations in 143B human OS cells (lo

B) Effect of Forskolin on calcium oscillations in 143

A1 A2 C1

B1 B2 D1

Figure 7. Calcium mobilization and induction of EMV biogenesis in 14
showmorphologic changes within ionomycin-sensitized 143B cells le
B2, show intracellular vesiculation in forskolin-pretreated and ionom
C1 and D1, show kinetic changes in the Fura-2 ratio in ionomycin (C1
C2 and D2, compare Fura 350/375 between resting versus ionomyci
forskolin-pretreated and ionomycin-sensitized (forskolin + ionomycin
intracellular [Ca++] within 100,000 milliseconds (Figures 7D2, and
W3). The above events stimulated cytoskeleton rearrangements
within 143B cells leading to vesicular biogenesis (Figure 7, A2, B2,
and C2).

Discussion
Emerging evidence suggests the role of EMVs in supporting tumor
microenvironment niches and as potential mediators of intercellular
communication mainly through horizontal transfer of oncogenic
cargo [45,46]. Although EMVs were previously detected in the
nomycin treatment)

B OS cells (Forskolin + lonomycin)

C2

D2

3B OS cells in the presence of forskolin and ionomycin. A1 and A2,
ading to the accumulation of intracellular, vesicles, whereas B1 and
ycin-sensitized 143B cells as observed by confocal microscopy.
) and in forskolin-pretreated, ionomycin-sensitized (D1) 143B cells.
n (alone)–treated 143B osteosarcoma cells (C2) and resting versus
combination) 143B osteosarcoma cells (D2).
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BOOM model [2], their role as potential drivers of cancer-induced
bone destruction and as key mediators of osteolytic activity in the
osteosarcoma BME needs further investigation. This study for the first
time reports isolation and characterization of EMVs derived from 143B
human osteosarcoma cells and its potential implications on the TMN.
It clearly demonstrates that majority of the EMVs derived from 143B
cells are in the size range of 50 to 200 nm in diameter. The use of NTA
allows quantitative and rapid determination of EMV sample size, size
range, and concentration. It is highly reliable for accurately determining
the size distribution of cell-derived EMVs as it is based on Brownian
motion, does not consider the refractive index of the nanoparticle, and is
free from sample shrinkage artifacts commonly encountered during
fixation for microscopy [47]. Vesicles obtained from 143B CM were
devoid of contaminating vesicles from FBS [48]. Detection ofMVBs by
TEM in 143B EMV samples suggests that the mode of biogenesis and
release of EMVs is most likely through endocytic invagination followed
by the formation of early endosomes that mature to form MVBs. Size
range of 143B EMVs as determined by NTA (50-200 nm), evidence of
MVBs by TEM, and the presence of CD-9, an exosome-specific
biomarker as listed in ExoCarta database (Bundoora, Victoria,
Australia), suggest that 143B EMVs contain exosomes.

To our best knowledge, this is the first study to report the presence
of a pro-osteoclastogenic cargo in EMVs isolated from 143B cells.
Detection of MMPs (MMP-1 and MMP-13) in 143B EMVs is an
important and novel finding because MMP-1– and MMP-13
(MMP)–expressing EMVs could be used as disease biomarkers for
evaluating osteosarcoma prognosis. Detection of RANKL in osteosarco-
ma EMVs is novel and significant as it plays an important role in the
activation of MMPs and for stimulating osteoclastogenesis. Targeting
MMP-1 expression and activity through RANKL inhibition is promising
as recent studies by Casimiro et al. demonstrates a role of RANKL in the
activation of MMP-1 expression and activity in breast cancer metastasis
[49]. Whether selective inhibition of EMV-derived RANKL and/or
MMP-1 andMMP-13 inhibits osteosarcoma pathobiology remains to be
investigated. Targeting RANK/RANKL/osteoprotegrin (OPG) signaling
in osteosarcoma is currently under intense investigation, and studies with
OPG and RANK-Fc demonstrate inhibition of osteolytic lesions in
mouse models and improved survival rates [50,51].

Detection of TGF-β in 143B EMVs is an important finding
especially in the context of regulating the bone TMN. In the BME,
TGF-β is generated mainly from the mineralized bone matrix by
osteoclastic resorption and further stimulates the production of
osteolytic and proneoplastic factors [52,53]. It can stimulate
migration of osteoblast progenitors and osteosarcoma cells
either directly [54] or indirectly through osteoclast-mediated
chemokine (C-X-C motif) ligand 16 (CXCL16) chemokine secretion
[55]. It plays an important role in the osteoclastogenic differentiation
of uncommitted monocytes by stimulating RANKL and/or tumor
necrosis factor α (TNF-α)-induced nuclear factor of activated T-cells
cytoplasmic, calcineurin dependent 1 (NFATc1) expression [38].
Tumor exosomes and microvesicles secrete TGF-β that blocks
the differentiation of monocytes and increase the accumulation of
immature myeloid cells including myeloid-derived suppressor cells
(MDSCs) [56] Recently, the role of MDSCs in the osteolytic bone
tumor microenvironment in promoting osteoclastic bone resorption
was demonstrated [57,58]. Whether EMV-derived TGF-β increases
MDSC-mediated osteoclastic resorption in the OS BME is currently
unknown and is the subject of our future studies. Blocking exosome-
derived TGF-β is an attractive therapeutic strategy to reduce
osteoclastic activity from MDSCs in the tumor microenvironment
and increase the efficacy of antitumor immune therapies.

Detection of CD-9, a tetraspanin protein in the EMVs derived from
143B cells, is a novel finding. To our best knowledge, the role of this
protein in osteosarcoma pathobiology has never been investigated.
Besides being a designated exosome-specific marker, CD-9 is also a pro-
osteoclastogenic fusogenic protein as it regulates osteoclast differentiation
and the formation of mature polykaryons [36,59]. It is overexpressed in
osteotropic cancers and not only promotes the homing of cancer cells in
the bone marrow but also induces osteoclastic bone resorption [37].
Studies report that inhibition of CD-9 by KMC8, a widely used
antibody against CD-9, suppresses osteoclastogenesis [60], whereas
RANKL-stimulated expression of CD-9 and other fusogenic genes such
as CD-47 in osteoclast precursors promotes mature polykaryotic,
tartarate-resistant acid phosphatase and osteoclast-specific transmem-
brane protein expressing osteoclast phenotype [61]. A recent study
demonstrated the role of CD-9 in mediating MMP-9–induced
migration and invasion in fibrosarcoma cells [62].

Elevation of intracellular calcium concentration on forskolin
pretreatment and ionomycin sensitization of 143B cells leads to
changes in the cytoskeleton architecture and vesicle biogenesis. This
finding is important especially in the context of osteosarcoma BME
where actively metabolizing cancer cells maintain energy homeostasis
by regulating cytosolic calcium through induction of oscillatory
events that eventually trigger cytoskeleton rearrangements and vesicle
biogenesis. Previous studies have reported that elevated intracellular
calcium concentration [Ca++]i, cAMP levels, and P2X7 receptor
(purinergic receptor ion channels mediating calcium and influx across
the plasma membrane) activation modulate the pool of EMV output
and sorting of cargo by regulating docking, priming, and exocytosis of
vesicles [19,63,64]. Identification of targets associated with EMV
biogenesis in response to elevated calcium or adenylate cyclase
remains to be elucidated. Therapies targeting the osteosarcoma BME
could be designed to either inhibit EMV biogenesis directly or
inactivate their bone-destructive, proneoplastic cargo.

In conclusion, this study suggests a novel role of EMVs in driving
osteoclastic bone resorption by virtue of their pro-osteoclastogenic
cargo and disrupting bone remodeling homeostasis in the
osteosarcoma BME.
Appendix A. Supplementary data
Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.tranon.2014.04.011.
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