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ABSTRACT
Background Spinocerebellar ataxias (SCAs) are a
group of clinically and genetically diverse and
autosomal-dominant disorders characterised by
neurological deficits in the cerebellum. At present, there
is no cure for SCAs. Of the different distinct subtypes of
autosomal-dominant SCAs identified to date, causative
genes for only a fraction of them are currently known.
In this study, we investigated the cause of an
autosomal-dominant SCA phenotype in a family that
exhibits cerebellar ataxia and pontocerebellar atrophy
along with a global reduction in brain volume.
Methods and results Whole-exome analysis revealed
a missense mutation c.G1391A (p.R464H) in the coding
region of the coiled-coil domain containing 88C
(CCDC88C) gene in all affected individuals. Functional
studies showed that the mutant form of CCDC88C
activates the c-Jun N-terminal kinase ( JNK) pathway,
induces caspase 3 cleavage and triggers apoptosis.
Conclusions This study expands our understanding of
the cause of autosomal-dominant SCAs, a group of
heterogeneous congenital neurological conditions in
humans, and unveils a link between the JNK stress
pathway and cerebellar atrophy.

We identified a spinocerebellar ataxia (SCA) family
in Hong Kong, China (figure 1A). The proband
(II:4) is a 65-year-old woman with disease onset at
43 years of age and was presented with insidious
onset of unsteady gait and dysarthria. After 10 years
of disease onset, she required to walk with a cane.
After 18 years of disease onset, she became wheel-
chair user due to severe ataxia. Neurological exam-
ination showed ocular dysmetria, scanning speech,
intentional tremor, dysdiadokokinesia, brisk reflexes
(3+) with ankle clonus and wide-based gait. Her
latest Scale for the Assessment and Rating of Ataxia
(SARA) score was 24/40 (table 1). MRI of the pro-
band’s brain showed pontocerebellar atrophy and
normal corpus callosum (figure 1B; table 2).
Individual II:5 (a younger brother of the proband) is
a 62-year-old male with disease onset at 42 years of
age and was presented with ataxic gait and dysarth-
ria. After 10 years of disease onset, he required to
walk with a cane; and after 17 years of disease
onset, he became wheelchair user. Neurological
examination showed ocular dysmetria, impaired

vertical gaze, scanning speech, ataxic gait and
spastic paraparesis. His latest SARA score was 22/40
(table 1), and MRI of the brain showed moderate
pontocerebellar atrophy (table 2). Both patients had
no history of alcohol abuse, parkinsonism features
nor peripheral neuropathy.
The proband was screened negative for SCAs 1,

2, 3, 6, 7, 8 and 12. Six individuals of this family,
including four affected and two unaffected (figure
1A), were recruited for a whole-exome sequencing
analysis. Sequencing libraries were prepared using
standard Illumina paired-end DNA preparation
protocols, followed by exome enrichment using the
Illumina TruSeq Exome Enrichment method.
Paired-end sequencing was performed on an
Illumina HiSeq2000 system, generating 100 bp
paired-end reads with an average coverage of 102×
in the targeted exonic regions (62 Mb) (see online
supplementary table S1). The filtered exome
sequencing reads were mapped to the human
genome (GRCh37/hg19) with Novoalign 2.08
(Novocraft Technologies Sdn Bhd, Malaysia), fol-
lowed by alignment postprocessing steps including
PCR duplicates removal, sample-level indels
realignment and base quality recalibration using
Picard and Genome Analysis Toolkit (GATK) 2.5.1

A union set of 328 328 raw variants was identified
among all samples using GATK UnifiedGenotyper
2.5 (see online supplementary table S2). Snpeff2

was used to annotate the predicted functional con-
sequences of the variants. The raw variants were fil-
tered according to the V.4 of GATK best practice
for variant detection,3 while variants outside of the
targeted enrichment regions were removed (see
online supplementary methods). Recent develop-
ments in bioinformatics algorithms allow reliable
genotyping of short tandem repeats (STRs) using
high-throughput sequencing data.4–8 We have ana-
lysed STRs variations in the coding, intronic and
untranslated regions of genes known to be asso-
ciated with SCA using LobSTR7 and RepeatSeq,8

and none of the identified STR variation matched
with the observed co-segregation pattern.
Coupling exome sequencing with family-based

genetic linkage analysis can largely reduce the
search space for loci that are putatively responsible
for Mendelian diseases.9 By adopting such strategy,
7 443 filtered heterozygous single nucleotide
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polymorphism (SNP) markers with an average heterozygosity of
0.45 were selected for genetic linkage analysis. Finally,
MERLIN10 was used for multipoint parametric linkage analysis,
where a rare dominant disease model with disease allele fre-
quency of 0.00001 was specified. Four peak regions with log of
odds (LOD) scores >2 were identified on chromosomes 11, 14,
18 and 20 (see online supplementary figure S1 and methods).
Upon annotation of the variants in these four LOD peak
regions, it was found that none of the variants in promoter,
UTR, microRNA or other non-coding RNA regions fit the
observed autosomal-dominant inheritance pattern. Accordingly,
synonymous mutations and non-coding mutations were dis-
carded, leaving 13 mutations in the coding region that matched
the observed inheritance pattern. Variant calling of these four
LOD peak regions on chromosomes 11, 14, 18 and 20 was
repeated using GATK haplotypecaller V.2.5 and FreeBayes
V.0.9.9,11 both returning an identical list of the 13 candidate
variants after the aforementioned filtering steps.

To further exclude common variants, which are unlikely to be
causative, we excluded variants with a minor allele frequency

greater than 0.005 and not reported as pathogenic according to
online databases, including dbSNP (V.138),12 1000 Genomes
Project (phase I release V.3),13 HapMap release 2814 and
NHLBI Exome Sequencing Project (ESP6500SI-V2).15 Only
three heterozygous candidate variants remained after this filter-
ing step (see online supplementary tables S3 and S4). We next
assessed the gene expression profile of the candidates using
NCBI UniGene build 236 (UniGene)16 EST profile and found
that the coiled-coil domain containing 88C (CCDC88C)
gene,17 18 also known as Dvl-associating protein with a high fre-
quency of leucine residues (DAPLE),19 is the only candidate that
expresses in brain (see online supplementary table S4). Gene
expression data from Allen Brain Atlas20 and Human Brain
Transcriptome Project21 also showed that CCDC88C has the
highest average expression level in cerebellum (see online sup-
plementary table S4). Next, the pathogenicity of the three
remaining candidate mutations was evaluated using five func-
tional predictors (see online supplementary methods). Only the
NM_001080414:c.G1391A candidate mutation in CCDC88C,
which causes a missense p.R464H mutation in the protein, was

Figure 1 A family with an autosomal-dominant missense p.R464H mutation in coiled-coil domain containing 88C (CCDC88C) at a location with
high conservation. (A) The pedigree under study. Six members of the family, which are marked with asterisk, were recruited for whole-exome
sequencing analysis. (B) Axial T2-weighted MRI of the brain of proband (II:4) showed mild atrophy of the pons and cerebellar hemispheres. (C) The
arginine464 location in CCDC88C is highly conserved among different vertebrate species. (D) The c.G1391A mutation in CCDC88C was validated by
Sanger sequencing, which revealed perfect segregation with the ataxia of the pedigree.
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unanimously predicted to be disease-causing by all predictors
(see online supplementary table S4). It is also of note that the
arginine464 residue is situated in an evolutionarily conserved
region of the protein, which further highlights the functional
implication of the p.R464H variation in CCDC88C protein
activity (figure 1C and online supplementary figure S5). We
next Sanger sequenced all generation II individuals of this
pedigree and found that the CCDC88C c.G1391A candidate
mutation segregated perfectly with the SCA manifestation
(figure 1A,D). To check whether c.G1391A could be a common
variant among the local population, 199 local healthy subjects
were screened by Sanger sequencing and none of these control
subject harbours such variation. Taking into account all evidence
presented above, we postulated that the CCDC88C c.G1391A
variant is the most probable SCA-causing mutation for the
family. Since CCDC88C had not been previously reported to be

associated with SCA,22 this locus was assigned as SCA40 by
the HUGO Gene Nomenclature Committee (http://www.
genenames.org/).

The c-Jun N-terminal kinase ( JNK) pathway has been
reported in cerebellar neuronal cell death,23 24 and the hyper-
phosphorylation of JNK triggers apoptosis.25 The role of JNK
activation and c-Jun phosphorylation has also been described in
the cerebellar granule cell death.26 27 Further, alteration of JNK
and caspase signalling cascades has been reported in different
SCA conditions.22 It was previously reported that when the
mRNA that encodes the Xenopus CCDC88C orthologue,
Xenopus Daple-like (XDal), was co-injected with c-Jun mRNA
into two-cell Xenopus embryos, XDal was capable of inducing
c-Jun phosphorylation.28 All of the above observations
prompted us to investigate the involvement of the JNK pathway
in the pathogenesis of SCA40. We first examined the JNK phos-
phorylation status in primary fibroblasts isolated from a patient
(II:5) and observed JNK hyperphosphorylation in the patient
cells (figure 2A). When compared with II:5, JNK hyperpho-
sphorylation was not detected in fibroblasts isolated from the
unaffected sibling II:7 (figure 2A). Further, we showed that
knockdown of CCDC88C expression in patient fibroblasts
reduced JNK hyperphosphorylation (figure 2A). This clearly
indicates an association between the CCDC88C p.R464H muta-
tion and JNK hyperphosphorylation.

To further confirm the pathogenic effect of the CCDC88C p.
R464H mutation, we overexpressed mutant (MT) CCDC88C
protein in human HEK293 cells and determined whether it
would modulate the JNK pathway. Our data showed that both
wild type (WT) and MT CCDC88C proteins were capable of
inducing JNK hyperphosphorylation, and the MT protein was
found to be more prominent in promoting it compared with the
wild type (WT) (see online supplementary figures S2 and S3).
Further, the total JNK protein level in CCDC88C-expressing cells
was comparable to the untransfected control. This clearly indicates
that CCDC88C only modulates the phosphorylation status but
not the cellular expression of JNK (see online supplementary
figures S2 and S3). Taken together, our data are in line with a pre-
vious report that showed that the Xenopus orthologue of
CCDC88C, XDal, plays a modulatory role in the JNK pathway28

(see online supplementary figure S3). We also examined whether
overexpression of the other two candidates, CHRDL2 and
KCNK13 (see online supplementary table S4), would induce JNK
hyperphosphorylation. In contrast to CCDC88C, neither
CHRDL2 nor KCNK13 was found to promote phosphorylation
of JNK (see online supplementary figure S2).

As the transfection of 0.2 mg of CCDC88C p.R464H mutant
expression construct was already capable of inducing JNK
hyperphosphorylation (see online supplementary figure S3),
0.5 mg of the mutant construct was thus used in our subsequent
biochemical experiments with the aim to minimise any potential
non-specific cellular effect (figure 2B and online supplementary
figure S4A). In contrast to MT CCDC88C overexpression,
knockdown of endogenous CCDC88C expression did not result
in any alteration of JNK phosphorylation (figure 2B and online
supplementary figure S4B). This argues that p.R464H confers a
gain-of-function property to CCDC88C. Furthermore, we
detected prominent c-Jun phosphorylation in HEK293 cells
overexpressed with MT CCDC88C protein, and such effect was
abolished when cells were treated with the JNK-specific inhibi-
tor SP600125 (figure 2C). This indicates that the MT
CCDC88C-mediated c-Jun phosphorylation is JNK dependent.

We next determined whether MT CCDC88C would induce
apoptosis. Proteolytic cleavage of caspase 3 is a commonly used

Table 1 Clinical assessments of the affected members of the
pedigree

II:4 II:5

Gait (0–8) 7 7
Stance (0–6) 6 6
Sitting (0–4) 1 0
Speech disturbance (0–6) 3 2
Finger chase (R+L)/2 (0-4) 1 2
Nose-finger test (R+L)/2 (0-4) 1 0
Fast alternating hand movements (R+L)/2 (0–4) 3 3
Heel-shin slide (R+L)/2 (0–4) 2 2
Total SARA score (0–40) 24 22

To determine the severity of the patients, neurological examinations were performed
based on the Scale for the Assessment and Rating of Ataxia (SARA). In brief, the
SARA instrument consists of eight test components: (1) gait; (2) stance; (3) sitting; (4)
speech disturbance; (5) finger chase; (6) nose-finger test; (7) fast alternating hand
movement and (8) heel-shin slide. A good correlation between SARA results and
spinocerebellar ataxia (SCA) disease stages has been validated in a large-scale study
by EUROSCA. SARA is now widely accepted as a clinical assessment scale for SCAs
and has also been used as a reliable measurement instrument for the severity of SCAs
in the Asian population, including in China. The higher the SARA score, the more
severe the ataxia symptoms the patient presents.

Table 2 A summary of neuroimaging findings of affected
members of the pedigree

Patient II:4 II:5

Age at imaging
(years)

61 64

MRI sequence Axial and sagittal T1 SE, T2
TSE
Coronal FLAIR

Axial and sagittal T1 SE, T2
TSE
Coronal FLAIR

Cerebrospinal fluid
spaces

Prominent 4th ventricle and
posterior fossa
subarachnoid space

Prominent 4th ventricle and
posterior fossa
subarachnoid space

Vermis and
cerebellar atrophy

Mild Mild to moderate

Pons atrophy Mild Mild
Posterior cranial
fossa size

Normal Normal

Retrocerebellar
cyst

None None

White matter
changes

Linear and punctate
subcortical T2W
hyperintensities (++)

Linear and punctate
subcortical T2W
hyperintensities (+)

FLAIR, fluid attenuated inversion recovery; TSE, turbo spin echo, SE, spin echo.
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Figure 2 Coiled-coil domain containing 88C (CCDC88C) protein carrying the R464H mutation activated c-Jun N-terminal kinase (JNK) and caspase
3 apoptotic pathways. (A) Increased level of phosphorylated JNK was detected in patient primary fibroblasts (II:5) but not in that isolated from the
unaffected sibling (II:7). Skin fibroblasts were isolated and cultured as described.31 Fibroblasts were treated with 5 pmol of ON-TARGETplus
(Dharmacon) CCDC88C siRNA L-033364-00-0005 (+) or control (ctrl) siRNA (−). Total and phospho-JNK proteins were detected using anti-JNK 3708
(1:1 000, Cell Signaling Technology) and anti-p-JNK 5136 (1:1 000; Cell Signaling Technology) antibodies, respectively. Cleaved caspase 3 was
detected by an antiactivated caspase 3 antibody Asp175 (1:5 00; Cell Signaling Technology). Endogenous CCDC88C was detected by anti-CCDC88C
antibody A302-951A (1:1 000; Bethyl Laboratories). The experiment was repeated for at least three times. Only representative blots are shown.
(B) Overexpression of mutant (MT) CCDC88C protein led to hyperphosphorylation of JNK in HEK293 cells. Both WT and MT CCDC88C expression
constructs (0.5 mg) were used to transfect HEK293 cells. Cells were harvested 24 h after transfection. To knockdown CCDC88C expression, cells were
treated with 5 pmol of ON-TARGETplus CCDC88C siRNA L-033364-00-0005 (Dharmacon) or control (ctrl) siRNA (Dharmacon). Cell lysates were
analysed by western blotting with anti-JNK 3708 (1:1 000, Cell Signaling Technology) and anti-p-JNK 5136 (1:1 000; Cell Signaling Technology)
antibodies. Neither the knockdown of CCDC88C WT expression nor its overexpression altered the level of JNK phosphorylation. The experiment was
repeated for at least three times. Only representative blots are shown. (C) Phosphorylation of c-Jun was detected in HEK293 cells transiently
expressing the CCDC88C MT protein. For JNK inhibitor treatment, cells were treated with 25 mM of SP600125 (Sigma) for 24 h. ‘+’ and ‘−’ denote
cells with and without SP600125 treatment, respectively. Cell lysates were analysed by western blotting with anti-c-Jun 2315 (1:1 000, Cell
Signaling Technology) and anti-p-c-Jun 9164 (1:1 000; Cell Signaling Technology) antibodies. The experiment was repeated for at least three times.
Only representative blots are shown. (D) Overexpression of MT CCDC88C protein-induced caspase 3 activation in HEK293 cells. Cell lysates were
analysed by western blotting and detected using an antiactivated caspase 3 antibody Asp175 (1:500; Cell Signaling Technology). The experiment
was repeated for at least three times. Only representative blots are shown. (E) Overexpression of MT CCDC88C protein-induced apoptosis in HEK293
cells. Apoptosis was detected using the APO-BrdU TUNEL Assay Kit, with Alexa Fluor 488 Anti-BrdU (Life Technologies). The data represent means
±SD from four independent experiments. At least 100 cells were counted in each experiment. **denotes p<0.005. (F) Caspase 3 activation induced
by MT CCDC88C protein expression can be blocked by JNK inhibitor. ‘+’ and ‘−’ denote cells with and without SP600125 treatment, respectively.
The experiment was repeated for at least three times. Only representative blots are shown. Tubulin was used as loading control in all experiments
and was detected using anti-β tubulin antibody E7 (1:10 000; Developmental Studies Hybridoma Bank).
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readout for apoptotic cell death, and we detected caspase 3
cleavage in patient primary fibroblasts, and caspase 3 activation
was reduced when CCDC88C expression was knocked down
(figure 2A). Similar to the patient primary fibroblasts, we also
detected apoptotic events in HEK293 cells overexpressing MT
CCDC88C protein using caspase 3 cleavage (figure 2D) and
TUNEL (figure 2E) assays. To investigate whether the caspase 3
activation we observed in MT CCDC88C-expressing cells
(figure 2D) is mediated through the JNK pathway, we treated
cells overexpressing the MT protein with the JNK-specific
inhibitor SP600125. As expected, caspase 3 activation was
reduced in SP600125-treated cells (figure 2F). Taken together,
our results demonstrate that the JNK pathway is one mechanism
that the MT CCDC88C protein exploits to induce apoptosis in
SCA40.

The p.R464H mutation is located within a predicted HOOK
domain (a.a. 9-597; Pfam: PF0562229) of CCDC88C (see
online supplementary figure S5). In general, the HOOK family
proteins function as adaptors to mediate various cellular func-
tions, including protein trafficking and cilium formation.30 We
performed confocal microscopy to determine whether the p.
R464H mutation would alter subcellular distribution of the MT
CCDC88C protein. The WT protein was found to localise to
the cytosol and around the perinuclear region (see online sup-
plementary figure S6). We did not observe any change of the
subcellular localisation pattern of the MT CCDC88C protein
compared with that of the WT (see online supplementary figure
S6). Our data suggest that the CCDC88C dominant missense
mutation might alter the cellular properties of the mutant
protein, for instance the HOOK domain function, which conse-
quently leads to activation of the JNK and apoptotic pathways.
In summary, we used whole-exome sequencing to identify the
missense mutation c.G1391A (p.R464H) in CCDC88C from a
SCA family. Our functional study demonstrated that this mis-
sense mutation confers a gain-of-function property to the MT
CCDC88C protein and provides experimental evidence that
link the JNK and caspase-mediated apoptotic pathways to the
pathogenesis of SCA40.
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