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Abstract

Purpose—To investigate whether lung function in patients with chronic obstructive pulmonary

disease (COPD) can be directly predicted using CT densitometric measures and assess the

underlying prediction errors as compared with the traditional spirometry-based measures.

Materials and Methods—A total of 600 CT examinations were collected from a COPD study.

In addition to the entire lung volume, the extent of emphysema depicted in each CT examination

was quantified using density mask analysis (densitometry). The partial least square regression

(PLS regression) was used for constructing the prediction model, where a repeated random split-

sample validation was employed. For each split, we randomly selected 400 CT exams for training

(regression) purpose and the remaining 200 exams for assessing performance in prediction of lung

function (e.g., FEV1 and FEV1/FVC) and disease severity. The absolute and percentage errors as

well as their standard deviations were computed.

Results—The averaged percentage errors in prediction of FEV1, FEV1/FVC%, TLC, RV/TLC%

and DLco% predicted were 33%, 17%, 9%, 18% and 23%, respectively. When classifying the

exams in terms of disease severity grades using the CT measures, 37% of the subjects were

correctly classified with no error and 83% of the exams were either correctly classified or

classified into immediate neighboring categories. The linear weighted kappa and quadratic

weighted kappa were 0.54 (moderate agreement) and 0.72 (substantial agreement), respectively.

Conclusion—Despite the existence of certain prediction errors in quantitative assessment of

lung function, the CT densitometric measures could be used to relatively reliably classify disease

severity grade of COPD patients in terms of GOLD.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality

worldwide [1-3]. As an airflow abnormality, pulmonary function testing (PFT) is routinely

performed in clinical practice when diagnosing COPD by measuring how well the lungs

function globally in exchanging air. Pulmonary function assessment is a mandatory

procedure in many clinical situations for therapeutic decision-making (e.g., lung volume

reduction for COPD patients), because pulmonary dysfunction may potentially increase

postoperative morbidity and mortality [4-5]. In routine clinical practices, spirometry is

widely used to efficiently and non-invasively measure lung functions. The most widely used

criterion is the ratio between the forced expiratory volume in one second (FEV1) and the

forced vital capacity (FVC), which reflects a patient's ability to take a deep breath. However,

despite its global characteristic, the accuracy of the spirometry-based lung function test

depends on patient cooperation and usually needs repetition of at least three times to ensure

reproducibility. In particular, the traditional PFT test can not capture the inherent

heterogeneity of the disorder and is not feasible for patients who cannot follow instructions,

such as infant, preschool children, or unconscious patients [6].

In clinical practices, COPD is widely classified into two major phenotypes: emphysema and

chronic bronchitis. The first one is characterized by permanent destruction of air sacs

(alveoli) of the lungs and appears on CT images as regions with extremely low density. The

second one is chronic bronchitis characterized by airway inflammation. The inflammation

may limit the air flow and thus cause both air trapping and/or hyperinflation, ultimately

leading to reduced lung density. Due to its relatively low intensity depicted on computed

tomography (CT) images, the extent of emphysema or other abnormalities such as air

trapping can be easily quantified using low attenuation areas (LAA). A large number of

investigations [7-13] have consistently demonstrated that the density-based measure,

typically the lung volume below a specific threshold (e.g., a cut-off of -950 Hounsfield Unit

(HU)), correlates significantly with lung function and acts as a severity index of emphysema

[14]. After finding a strong association between FEV1 the mean lung density, Moloney et al.

[15] even concluded that CT densitometry could be a predictor of pulmonary function in

lung cancer patients. Although a strong correlation typically implies a high accuracy in

prediction, the capability of the densitometric measures in predicting lung function or

disease severity as well as the associated errors remains unknown. If the lung function could

be predicted accurately using CT densitometric measures, it may lead to the future

development of a tool that allows non-invasive quantification of pulmonary function directly

from high resolution chest CT examinations. In this tool, many other factors that are

potentially associated with lung functions, such as gender, obesity, age, disease status, and

even the spatial distribution patterns of low-density regions, could be combined in a

plausible way using a sophiscated regression model for better prediction performance. This

Gu et al. Page 2

Physiol Meas. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



would be particularly beneficial to COPD-related clinical practices. In this study, our

primary objective is to specifically investigate whether lung function can be directly

predicted using the CT densitometric measures and meanwhile assess the underlying errors

by comparing with the traditional spirometry-based measures. A relatively large chest CT

dataset (i.e., 600 exams) was used for the experiments. A description of the methods and the

experimental results follows.

MATERIALS AND METHODS

A. Study population

A dataset consisting of 600 CT examinations was collected from a COPD study. These

examinations were acquired on different subjects, whose ages were larger 40 years and had

at least a 10 pack year history of tobacco use. The subjects underwent pre- and post-

bronchodilator spirometry and body plethysmography, measurement of lung diffusion

capacity by single breath carbon monoxide (DLCO), impulse oscillometry, a chest CT

examination, demographic as well as medical history questionnaires. When performing

these lung function tests, the standard methodology [16-17] and the standard reference

equations [18-19] were used. The quality assurance includes the examination of test values

and the evaluation of both volume-time and flow-volume curves for possible technical

errors. Additional maneuvers would have been taken if any erroneous curves were detected.

At least three maneuvers with repeatable results for both FVC and FEV1 were recorded.

According to the global initiative for chronic obstructive lung disease (GOLD) criteria [20],

these subjects (examinations) were classified into five different subgroups, namely non-

COPD (223 subjects), GOLD-I (84 subjects), GOLD-II (144 subjects), GOLD-III (71

subjects), and GOLD-IV (78 subjects). The demographics of the collected cases are

summarized in Table 1. All procedures were performed under a University of Pittsburgh

Institutional Review Board approved protocol (#0612016) and written informed consent was

obtained for each subject.

B. Acquisition of thin-section CT examinations

The CT exams were acquired on a LightSpeed VCT 64-detector scanner (GE Healthcare,

Waukesha, WI) with subjects holding their breath at end inspiration without contrast at the

following parameters: 64×0.625 mm detector configuration, 0.969 pitch,120 kVp tube

energy, 250 mA tube current, and 0.4 sec gantry rotation (or 100 mAs). Images were

reconstructed to encompass the entire lung field in 512×512 pixel matrix using the GE

“bone” kernel at 0.625 mm section thickness and 0.625 mm interval. Pixel dimensions

ranged from 0.549 to 0.738 mm, depending on participant body size. The “bone” kernel was

used because of its ability to analyze both the parenchyma and airways [21]. The subjects

were instructed in breathing to reach TLC prior to scanning; however, no real-time measures

were employed to ensure breathing compliance such spirometry-gated CT acquisition. The

CT exams were reviewed to ensure compliance with the above mentioned chest CT scanning

protocol, and these exams were also visually reviewed for artifacts that would contribute to

poor image quality (e.g., subject motion and/or metal artifacts). Exams that did not meet

these requirements were not analyzed.
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C. CT Densitometric Measures

To obtain CT densitometric measures, we firstly used an available computerized scheme

[22] to segment the lung parenchyma depicted in CT examinations. Thereafter, the entire

lung volume and the low attenuation areas (LAA) within the lung regions were computed

after the application of a threshold. In this study, we used the cut-off thresholds of both -950

HU and -910 HU. The resulting measures were denoted as LAA-910 and LAA-950,

respectively. In addition to the LAA, the percentage of LAA with respect to the entire lung

volume (LAA%) was computed as well and denoted separately as LAA%-910 and LAA

%-950. Hence, totally, five measures were computed from the collected CT examinations:

lung volume (LVOL), LAA-910, LAA-950, LAA%-910, and LAA%-950. The measure of

lung volume was intended as a normalization factor to account for the variations among

individuals in lung size. In this study, the capabilities of individual CT measures as well as

their combinations in predicting lung function were investigated.

D. Prediction of Lung Function

When constructing the prediction model, the partial least squares regression (PLS

regression) was used because of its strength in predicting the responses when the factors are

many or highly collinear (correlated). The PLS regression combines merits of principal

components analysis and multiple regression. In this study, the densitometric measures were

used as the observable variables (Xi) and the spirometry measures were used as the predicted

variables (Yi). The objective is to identifying the underlying linear regression model (i.e.,

Y=AX+B) between Xi and Yi. Detailed description of PLS regression can be found in [23]. In

implementation, a repeated random split-sample validation was employed. For each split, we

randomly selected 400 CT exams for training (regression) purpose and the remaining 200

exams for validation. Totally, the split-sample validation was performed three times.

According the GOLD guideline [24], the post-bronchodilator PFT measures are used to

confirm the presence of irreversible airflow limitation and distinguish asthma from COPD.

Hence, the post-bronchodilator PFT measures were used in the PLS regression and included:

1) FEV1, 2) FEV1% predicted, 3) FEV1/FVC ratio (%), 4) TLC, 5) RV, 6) RV/TLC ratio

(%) and 7) DLco% predicted. The GOLD indices were determined based on the predicted

values of FEV1 % predicted and FEV1/FVC%. The MATLAB Statistics Toolbox was used

to perform the PLS regression.

E. Assessment of Prediction Performance

For each split, given 200 validation (testing) exams, we computed their densitometric

measures as described above and used them to predict the above mentioned six lung

function measures. The prediction errors were computed by comparing with the spirometry

measures using two indices. The first one is the absolute error of the predicted measures, and

the second one is the percentage error of the predicated measures, which was defined as:

(1)
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When assessing the prediction errors, their standard deviations were computed. p values

were computed from a Student's t-test and an value less than 0.01 was considered

statistically significant.

In addition, we studied the capability of the CT densitometric measures in classifying the

examinations in terms of GOLD-based diseases severity. Considering that GOLD II

category is relatively wide (50-80% predicted FEV1 and covers a large category of severity,

we subdivided the GOLD II category by half into two sub-categories, namely GOLD II-A

(FEV1% predicted below 65%) and GOLD II-B (FEV1% predicted above 65%), and

presented the analysis results. Totally, the subjects were classified into six categories,

namely, NONE, GOLD I, GOLD II-A, GOLD II-B, GOLD III and GOLD IV. The

contingency table and the weighted kappa statistics [25] were computed to assess the

agreement between the true GOLD category and the estimated GOLD category.

RESULTS

Table 2 summarized the mean absolute errors (MAE) when predicting lung functions using

different CT densitometric measures, while the percentage errors in lung function prediction

were shown in Table 3-Table 8. The averaged errors in prediction FEV1 and TLC for the

involved CT measures ranged from 0.51 - 0.79 liter, and from 0.57 - 0.99 liter, respectively.

When predicting FEV1/FVC%, the errors associated with these CT measures ranged from

8.24 to 14.23; while for RV/TLC%, the prediction errors ranged from 7.57 to 10.27. The

best averaged percentage errors in predicting FEV1, FEV1/FVC%, TLC, RV/TLC% and

DLco% predicted were 33%, 17%, 9%, 18% and 23%, respectively. When the same CT

densitometric measures were used to classify the exams into different disease severity

categories in terms of GOLD, the distribution of the classification was summarized in Table

9 and Figure 2. The linear weighted kappa and quadratic weighed kappa were 0.54

(Moderate agreement) and 0.72 (Substantial agreement), respectively. On average, 37% of

the subjects were correctly classified with no error and 83% of the exams were either

correctly classified or classified into immediate neighboring categories.

DISCUSSION

In the past, the underlying association between the extent of emphysema based on

densitometric measures and pulmonary function measures had been extensively investigated

[26-28]. As an index of the extent of emphysema, CT densitometric measures, such as

%LAA, correlates significantly with RV/TLC, FEV1, FEV1% predicted, FEV1/FVC ratio,

and DLco% predicted, and have been verified as an index of lung function decline [29] and

as a risk factor of lung cancer [30]. Given the close relationship between the extent of

emphysema and pulmonary function, it may be interesting to know whether the quantitative

CT densitometry is capable of evaluating pulmonary functions and the associated errors.

Unfortunately, no investigation has been performed in this regard to date. Under the help of

a relative large diverse cohort of chest CT examinations from an available COPD study, we

investigated the capability of different densitometric measures in predicting lung function by

assessing the prediction errors. It is notable that lung densities could be reduced by disorders

(e.g., air trapping) or other factors (e.g., obesity). Prediction of lung functions on the basis of

Gu et al. Page 5

Physiol Meas. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



lung densitometric measures might reflect the impact of these disorders or other unknown

factors on lung function without explicitly incorporating them into a regression model. In

other words, the actual impact of the factors that may cause the change of lung density and

lung functions are implied in the lung density measures. Also, our primary objective is to

specifically investigate whether the lung function measures and/or disease severity could be

reliably and directly predicted from CT densitometric measures, but not to build and test a

sophiscated prediction model that may need to incorporate patient demographic information,

such as age, weight, and height, as well as disorders that potentially affect lung functions.

This simple and specific strategy could aid in a clear understanding of the predictability (or

the role) of the CT densitometric measures in lung function and disease severity.

First, our experiments showed that different CT densitometric measures as well as their

combinations varied somewhat in their capabilities in prediction lung function. For example,

the combination, namely “LVOL+LAA910+LAA950”, has a significant stronger capability

in predicting FEV1 (p<0.01). The combination, namely “LAA910%+LAA950%”, has a

stronger capability in predicting FEV1% and FEV1/FVC% as compared with measures,

such as LVOL and LAA910 (p<0.01). The lung volume measure (LVOL) has the poorest

capability in prediction lung functions (p<0.01) except TLC (p>0.01). Here, we have to

mention that it is very difficult to identify an optimal cut-off threshold for each single CT

examinations when performing densitometric analysis. Previously, Müller et al. [40]

suggested a threshold of -910 HU, while Gevenois et al. [41] recommended a threshold of

-950 HU. Recently, Madani et al. [42] mentioned that a cut-off of -960 HU or -970 HU

might lead to more accurate assessment. Hence, we tested separately the densitometric

measures obtained at both -910 HU and -950 HU as observable variables and found that they

had no significant difference in prediction of PFT measures (p>0.1).

Second, when studying the prediction capability of the densitometric measures for

subpopulations with different disease severity (Table 3-Table 8), we found that the

percentage prediction errors for FEV1, FEV1% Predicted, and FEV1/FVC% were

consistently smaller for the subpopulations with less severe diseases. For example, the best

percentage prediction errors for FEV1/FVC% were less than 13% for the subpopulations

rated as non-COPD, GOLD-I, and GOLD-II, but the percentage errors increased to 25% and

55% for the GOLD-III and GOLD-IV subpopulations. In contrast, for lung capability

measures (i.e., TLC, RV), the combination “LVOL+LAA910+LAA950” achieved the best

performance in prediction and there was no obvious difference across the categories in terms

of disease severity. For TLC, the percentage prediction error ranged from 8% to 10% with

an average of 9%; for RV, the percentage prediction error ranged from 19% to 23% with an

average of 21%. If we defined the percentage error less than 15% as being clinical

meaningful, lung function measures such as FEV1/FVC% and FEV1_Predicted for less

severe disease could be predicted in a relatively reliable way using “LAA910%

+LAA950%”. Similarly, lung capacity measures such as TLC could be predicted more

reliably using “LVOL+LAA910+LAA950.” This is straightforward because CT-based lung

volume is somewhat equivalent to plethysmographic TLC. In contrast, predicting TLC using

LAA% does not make sense. Hence, when assessing lung functions and lung capabilities,

different CT measures should be used to achieve an optimal prediction performance.
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Third, when studying the capability of the CT measures in classifying the disease severity

grades (Figure 1), we found that the CT densitometric measures demonstrated a relatively

high reliability. For example, the CT measure “LAA910%+LAA950%” could classify 37%

of the involved subjects correctly without any error in disease severity grade. When the

classification error was no more than one grade, around 83% of the subjects could be

classified accurately. In particular, the linear weighted kappa and quadratic weighed kappa

were 0.54 (moderate agreement) and 0.72(substantial agreement), respectively.Therefore,

despite the relative large percentage error in prediction, the CT densitometric measure could

be used in practice to assess the disease severity by classifying CT examinations into

corresponding GOLD categories. In general, the percentage errors for more severe GOLD

stages were smaller for predicting plethysmographic values than spirometric values.

We observed that there existed somewhat errors in predicting lung functions when only

densitometric measures were used. For example, some examinations rated as GOLD-II or

GOLD-III were incorrectly predicted as non-COPD, and some examination rated as non-

COPD were incorrectly predicted as GOLD-II. This demonstrated that lung function could

be affected by a wide range of factors (e.g., age/height [31], sex [32], pulmonary blood flow

[33-35], arterial stiffness [36-37], rib muscles [38-39], and airway morphology [43]). In

particular, it is notable that the existence of image noise or artifacts may also contribute to

this incorrect prediction; however, it may not be an easy task to accurately define image

noises/artefacts and filter out them. Nevertheless, it is beyond any doubt that combining all

these factors together may significantly enhance regression model for accurately assessing

pulmonary function and/or GOLD stages. However, we did not perform the investigation in

this way because our primary goal of this study is to understand whether the traditional

pulmonary function test measures could be predicted directly from CT-based density

measures, but not to constructive a sophiscated prediction model that may need to

incorporate a number of factors. Given this simplified strategy, we only used a linear model

instead of using any other nonlinear regression model, which is a nonlinear combination of

the model parameters and depends on multiple variables. Hence, given our specific issues

with relatively simple variables, we believe that the linear model is sufficient for the

mentioned purpose. In fact, a direct assessment of lung function using CT densitometric

could be potentially used to identify the cases that are not significantly affected by the LAA,

thereby aiding in a further investigation of the factors that affect lung functions. In the

future, we will investigate how to combine additional factors (e.g., the distribution patterns

of low-density regions) using other nonlinear regression models (e.g., nonlinear support

vector machine (SVM) [44]) to achieve a better prediction performance.

Finally, we are aware that there are other limitations with this study. For example, we did

not take the CT acquisition protocols into account when computing the densitometric

measures. Actually, the studies from other investigators [14, 39] demonstrated that different

reconstruction kernels had limited impact on densitometric measures. Boedeker et al. [39]

concluded in their study that the “bone” kernel might shift the obtained density mask

volume by 2.4% as compared to the “standard” kernel, which could be ignored in practice.

In addition, the diversity of the involved CT exams may not be sufficient and large enough

in terms of factors affecting lung function, such as age, obesity, and disease severity. The

unequal/biased distributions may affect the performance of the prediction. For an accurate
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prediction of the lung functions, a more diverse database is desirable. Despite these

limitations, we investigation showed that the CT densitometric measures play a critical role

in predicting pulmonary functions from a different perspective and they should be

considered in any prediction model.

CONCLUSION

In this study, we investigated the capability of lung CT densitometric measures in predicting

lung function. The traditional spirometry-based measures were used as “ground truth”.

Totally, 600 CT examinations collected from a COPD study at our medical center were

used. The PLS regression was used for prediction modeling and a repeated random split-

sample validation was employed for performance assessment. Our experiments showed that

lung function measures, such as FEV1/FVC%, could be more accurately predicted when the

diseases were less severe (<GOLD-III), and lung capability measures, such as TLC, could

be reliably predicted across all disease severities. In particular, the CT measure

combinations, such as “LVOL+LAA910+LAA910” and “LAA910%+LAA950%”, have

better prediction capabilities in assessing lung function as compared to other single or

combined measures. Although there exist certain errors in directly predicting lung function,

our experimental results demonstrate that the densitometric measures could be used to

classify the severity grade of COPD patients in terms of GOLD.
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Figure 1.
Percentage distribution of the cases in predicting disease severity in terms of GOLD (Unit:

%).
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Table 1

Subject Demographics (n = 600)

Parameter Mean (± std) or count (%)

Sex male 323 (53.9%)

Age 63.8 (± 5.4)

Pack years 57.8 (± 33.0)

Height(cm) 169.3 (± 9.3)

Weight(kg) 80.0 (±16.1)

BMI 27.7 (±4.5)

TLC(litre) 6.27 (± 1.29)

RV/TLC % 45.0 (± 13.2)

RV (litre) 2.85 (± 1.17)

FEV1 % predicted 73.1 (± 29.3)

FEV1 2.10(±0.96)

FEV1/FVC % 59.7 (± 18.3)

DLco % predicted 65.8(±23.4)

Five-category classification

NONE-COPD 223 (37.2%)

GOLD I 84 (14.0%)

GOLD II A 81 (13.5%)

GOLD II B 63(10.5%)

GOLD III 71 (11.8%)

GOLD IV 78 (13.0%)

Abbreviations: TLC – total lung capacity, RV – residual volume, FVC – functional vital capacity, FEV1 – forced expiratory volume in one second.

GOLD II-A: FEV1 % predicted < 65%, GOLD II-B: FEV1 % predicted ≥ 65%.
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Table 2

Mean Errors(±std) in lung function prediction using different CT densitometric measures

CT Densitometry
Pulmonary Function Measures

FEV1(Liter) FEV1%PRED FEV1/FVC% TLC(Liter) RV(Liter) RV/TLC % DLco %Pred

LVOL 0.79±0.54 23.69±15.71 14.23±9.44 0.58±0.51 0.74±0.68 10.27±8.19 19.4±13.0

LAA910 0.67±0.49 17.29±13.33 9.27±7.30 0.87±0.62 0.61±0.55 8.50±7.09 15.2±10.9

LAA950 0.63±0.45 16.64±12.41 9.47±7.09 0.95±0.68 0.61±0.56 7.92±6.80 13.6±10.1

LAA910+LAA 950 0.63±0.45 16.57±12.41 9.08±6.97 0.85±0.60 0.60±0.54 7.93±6.81 13.5±10.1

LVOL+LAA910+LAA950 0.51±0.39 15.94±12.01 8.90±6.66 0.57±0.50 0.57±0.55 7.81±6.43 12.6±9.6

LAA910% 0.60±0.45 15.88±12.29 8.35±6.61 0.97±0.69 0.65±0.56 7.99±6.62 13.7±10.1

LAA950% 0.60±0.42 15.71±11.87 8.92±6.88 0.99±0.71 0.64±0.57 7.59±6.49 12.6±9.4

LAA910%+LAA950% 0.59±0.43 15.37±11.79 8.24±6.49 0.97±0.68 0.64±0.56 7.57±6.48 12.7±9.5
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Table 3

Percentage errors (%) in predicting FEV1 when using different CT densitometric measures

CT Densitometry
Disease Severity

NO COPD GOLD I GOLD II GOLD III GOLD IV ALL

LVOL 25±14 22±12 25±23 95±47 255±93 63±88

LAA910 22±15 25±15 35±30 63±52 147±94 47±59

LAA950 20±13 22±13 35±31 69±49 128±84 44±53

LAA910+LAA 950 20±13 21±12 35±30 73±48 131±83 44±54

LVOL+LAA910+LAA950 17±11 17±13 29±23 53±37 89±64 33±39

LAA910% 22±16 23±15 34±29 49±45 102±68 39±44

LAA950% 20±13 21±12 35±30 66±46 102±69 40±44

LAA910%+LAA950% 20±14 21±13 34±30 62±45 97±67 39±43
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Table 4

Percentage errors (%) in predicting FEV1% predicted when using CT densitometric measures

CT Densitometry
Disease Severity

NO COPD GOLD I GOLD II GOLD III GOLD IV ALL

LVOL 22±11 22±11 16±15 83±29 232±74 55±78

LAA910 15±11 17±13 24±18 51±38 124±74 36±48

LAA950 13±9 12±10 23±18 64±36 119±72 35±47

LAA910+LAA 950 13±9 13±10 23±18 61±36 117±71 35±47

LVOL+LAA910+LAA950 14±10 13±10 23±18 55±36 102±69 32±43

LAA910% 14±11 17±12 24±18 44±36 97±63 31±40

LAA950% 13±9 12±10 23±16 63±39 100±70 32±43

LAA910%+LAA950% 13±10 13±10 23±17 56±37 93±66 31±40
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Table 5

Percentage errors (%) in predicting TLC when using different CT densitometric measures

CT Densitometry
Disease Severity

NO COPD GOLD I GOLD II GOLD III GOLD IV ALL

LVOL 10±8 9±8 10±10 8±6 9±8 10±8

LAA910 15±11 15±8 16±15 14±9 13±13 15±12

LAA950 17±13 16±9 17±17 15±10 14±14 16±14

LAA910+LAA 950 15±11 15±9 15±14 12±9 12±12 14±11

LVOL+LAA910+LAA950 10±7 9±7 10±11 8±7 9±8 9±8

LAA910% 16±13 16±9 17±16 15±10 16±15 16±14

LAA950% 17±14 16±9 18±17 16±10 16±15 17±14

LAA910%+LAA950% 16±13 16±9 18±16 15±10 15±15 16±13
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Table 6

Percentage errors (%) in predicting RV when using different CT densitometric measures

CT Densitometry
Disease Severity

NO COPD GOLD I GOLD II GOLD III GOLD IV ALL

LVOL 29±24 30±28 18±17 20±12 34±11 26±21

LAA910 23±22 26±27 24±19 20±14 20±15 23±20

LAA950 23±22 23±22 23±20 24±18 20±15 23±20

LAA910+LAA 950 22±21 24±25 23±19 22±16 19±15 22±20

LVOL+LAA910+LAA950 20±19 23±25 21±19 23±16 19±14 21±19

LAA910% 25±23 27±27 26±21 21±15 22±17 25±22

LAA950% 24±22 24±23 24±20 25±19 22±17 24±21

LAA910%+LAA950% 23±22 25±25 25±21 24±17 21±17 24±21
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Table 7

Percentage errors (%) in predicting RV/TLC% when using different CT densitometric measures

CT Densitometry
Disease Severity

NO COPD GOLD I GOLD II GOLD III GOLD IV ALL

LVOL 26±21 28±23 15±14 19±10 32±10 24±18

LAA910 19±18 25±25 19±17 17±12 21±9 20±18

LAA950 17±16 21±21 18±18 19±15 19±10 18±17

LAA910+LAA 950 17±16 21±21 18±18 20±15 19±10 18±17

LVOL+LAA910+LAA950 18±16 20±20 19±17 18±14 17±10 18±16

LAA910% 18±17 24±24 19±17 15±12 17±9 19±17

LAA950% 16±16 21±21 18±17 19±14 16±10 18±16

LAA910%+LAA950% 16±15 21±21 18±17 19±14 16±10 18±16
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Table 8

Percentage errors (%) in predicting DLco%Pred when using different CT densitometric measures

CT Densitometry
Disease Severity

NO COPD GOLD I GOLD II GOLD III GOLD IV ALL

LVOL 20±11 22±17 27±25 78±70 121±75 41±52

LAA910 18±13 22±16 26±23 46±47 65±48 29±32

LAA950 15±11 18±15 25±22 39±35 55±42 26±27

LAA910+LAA 950 15±11 18±15 25±22 40±36 57±43 26±27

LVOL+LAA910+LAA950 15±11 18±15 23±21 35±31 46±36 23±24

LAA910% 18±13 20±15 24±22 37±34 45±35 25±24

LAA950% 15±11 17±13 23±21 38±35 42±35 23±24

LAA910%+LAA950% 15±11 18±13 23±21 37±33 42±35 23±23
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Table 9

Distribution of the cases in predicting disease severity in terms of GOLD classification distribution in terms of

GOLD. The linear weighted kappa is 0.54 (moderate agreement) and the quadratic weighed kappa is 0.72

(substantial agreement).

None GOLD I Est GOLD II-A Est GOLD II-B Est GOLD III Est GOLD IV Est SUM

NONE 48 14 11 1 0 0 74

GOLD I 6 10 10 2 0 0 28

GOLD II-A 9 6 7 4 0 1 27

GOLD II-B 2 4 7 6 2 0 21

GOLD III 2 0 5 6 8 3 24

GOLD IV 0 1 1 8 11 5 26

SUM 67 35 41 27 21 9 200
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