Skip to main content
. 2013 Sep 6;4(4):411–424. doi: 10.1007/s13205-013-0169-6

Table 3.

Results of statistical (CCD) analysis for optimization of fermentation parameters

Model term Coefficient estimate Computed t value p value Confidence level (%)
(a) Model coefficient estimated by regressions
 Intercept 0.637714 184.607 0* 100
 Temperature (X1) 0.008208 4.4 0* 100
 Medium pH (X2) −0.021208 −11.368 0* 100
 Shaking (X3) −0.006125 −3.283 0.005* 99.5
 Inoculum size (X4) 0.004958 2.658 0.017* 98.3
 Temperature × temperature Inline graphic −0.028564 −16.713 0* 100
 pH × pH Inline graphic −0.007314 −4.279 0.001* 99.9
 Shaking × shaking Inline graphic 0.008811 5.155 0* 100
 Inoculum size × inoculum size Inline graphic −0.002689 −1.573 0.135 86.5
 Temperature × medium pH (X1 × X2) 0.003563 1.559 0.139 86.1
 Temperature × shaking (X1 × X3) −0.007438 −3.255 0.005* 99.5
 Temperature × inoculum size (X1 × X4) 0.005938 2.599 0.019* 98.1
 Medium pH × shaking (X2 × X3) 0.001187 0.520 0.610 39
 Medium × inoculum size pH (X2 × X4) 0.000313 0.137 0.893 10.7
 Shaking × inoculum size (X3 × X4) 0.000063 0.027 0.979 2.1
Source DF SS MS F value p value
prob > F
(b) ANOVA for quadratic model
 Regression 14 0.043830 0.003131 37.48 0
 Linear 4 0.013903 0.003476 41.61 0
 Square 4 0.028251 0.007063 84.55 0
 Interaction 6 0.001676 0.000279 3.34 0.025
 Residual (error) 16 0.001337 0.000084
 Lack of fit 10 0.001133 0.000113 3.34 0.077
 Pure error 6 0.000203 0.000034
 Total 30 0.045167

DF degrees of freedom, SS sum of squares, MS mean square

* Significant p values, p ≤ 0.05; R2 = 0.9701; predicted R2 = 0.9422; adjusted R2 = 0.8473