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Summary

A multi-disciplinary scientific conference focused on diffuse and interstitial lung diseases in

children was held in La Jolla, CA in June 2012. The conference brought together clinicians

(including Pediatric and Adult Pulmonologists, Neonatologists, Pathologists, and Radiologists),

clinical researchers, basic scientists, government agency representatives, patient advocates, as well

as children affected by diffuse lung disease (DLD) and their families, to review recent scientific

developments and emerging concepts in the pathophysiology of childhood DLD. Invited speakers

discussed translational approaches, including genetics and proteomics, epigenetics and

epigenomics, models of DLD, including animal models and induced pluripotent stem cells, and

regenerative medicine approaches. The presentations of the invited speakers are summarized here.
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INTRODUCTION

In June of 2012, a scientific conference on diffuse lung disease (DLD) in Children was

convened in La Jolla, California, supported by the National Heart, Lung and Blood Institute

(NHLBI, see Acknowledgements, for additional supporters). The conference brought

together clinicians (including Pediatric and Adult Pulmonologists, Neonatologists,

Pathologists, and Radiologists), clinical researchers, basic scientists, government agency

representatives, patient advocates, as well as children affected by DLD and their families,

from five continents, to review recent scientific developments and emerging concepts in the

pathophysiology of childhood DLD. This conference had several important antecedents. In

recognition of the unique features of pediatric interstitial lung disease (ILD) and the lack of

knowledge and understanding of these disorders, the NHLBI convened workshops in 1988

and 1989. The participants advocated a multi-disciplinary approach including pediatric

pulmonary clinicians, pathologists, and radiologists, formation of a patient data registry, and

development of standard protocols for diagnosis. Unfortunately, funding was not available

to achieve these goals. In 2004, with support from the NIH Rare Lung Diseases Consortium

(RLDC) an interdisciplinary group of clinicians and investigators from multiple institutions,

subsequently named the ChILD Research Network (ChILDRN), was convened to begin to

codify the clinical spectrum of childhood DLD and to establish a research agenda.

Importantly, families of affected patients were invited to attend the initial conference and

they formed the Children’s Interstitial and Diffuse Lung Disease (chILD) Foundation, which

has held annual meetings in conjunction with members of the ChILDRN. The scientific

conference which is summarized here was scheduled immediately preceding the annual

meeting of the chILD Foundation and the ChILDRN, in order to maximize interaction of

families and clinicians with the speakers and attendees of the conference. Eminent

investigators from fields which represent emerging paradigms in lung biology relevant to

lung development, repair and regeneration were invited to speak, and abstracts of their

presentations comprise the sections of this document (the initials following the section

headings refer to the authors, who are listed as the authors of the overall document). Others

who contributed to the content of each section are listed in the Acknowledgements section.

In addition, selected abstracts submitted for the conference were chosen for oral

presentation, and these will be published in a separate document. Family members presented

brief narratives of their own experiences relevant to the content of the scientific sessions. It

is hoped that the interactions among the attendees will promote novel collaborations which

will move this field forward and offer new hope for children affected by DLD and their

families.

INHERITED DISORDERS OF SURFACTANT METABOLISM (AH)

Mutations in critical molecules in the surfactant metabolic pathway result in acute neonatal

respiratory failure or chronic ILD that presents in early infancy and beyond. In the acute

neonatal presentation, term newborns develop severe respiratory failure shortly after birth

that may be transiently responsive to intensive care interventions, including mechanical

ventilation, surfactant replacement, inhaled nitric oxide, or corticosteroids. This acute form

is typical for infants with recessive mutations in the genes encoding surfactant protein-B

(SFTPB) or the ATP Binding Cassette member A3 (ABCA3), or dominant mutations in the
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thyroid transcription factor gene (NKX2-1), but has also been seen in infants with dominant

mutations in gene encoding surfactant protein-C (SFTPC).1–5 Typically, infants with this

severe neonatal presentation succumb to intractable respiratory failure or are considered for

lung transplantation, although some infants with partial deficiencies can survive beyond

infancy. Later onset, less severe, and more variable disease is associated with mutations in

SFTPC, NKX2-1, and ABCA3. Some children present in the newborn period with mild

respiratory dysfunction, but most present in the first several months with gradual onset of

respiratory insufficiency, failure to gain weight, and ILD on chest radiographs.6–9 Absence

of a consistent history of an associated viral illness at disease onset and the identification of

asymptomatic carriers of dominant mutations in SFTPC suggest that other genetic or

environmental modifiers influence the presentation of disease associated with mutations in

all these genes. This variability in severity and course of the disease is not mutation specific

and precludes definitive prediction of outcome.

SP-B deficiency is a rare recessive disorder with a disease frequency of approximately 1 per

million live births in populations of European descent, though isolated cases have been

identified in other ethnic groups.10,11 The frequency of SP-C associated disease is unknown

but is probably very rare; the population-based frequency of mutations in SFTPC is

significantly less than 0.1%.12 The frequency of mutations and disease associated with

NKX2-1 is unknown. Children with NKX2-1 mutations may present with isolated pulmonary

disease but the majority of the children will present with any combination of neurologic

abnormalities, hypothyroidism, and respiratory disease, the so-called “Brain-Thyroid-Lung

Syndrome.”13 The frequency of ABCA3-associated disease in the population is unknown,

but the frequency of mutations in ABCA3 in the general population may be as high as 3–5%,

suggesting that ABCA3 deficiency is the most common of these disorders of surfactant

homeostasis.14 Several individuals with DLD and only a single recessive mutation in

ABCA3 have also come to clinical attention. Explanations include the possibility that these

individuals are one of the 3–5% of the general population who carry an ABCA3 mutation

and their lung disease is unrelated to ABCA3, or perhaps a mutation in another gene or an

environmental “2nd hit” is interacting with the ABCA3 mutation to elicit disease.15 The

recent identification of an intronic variant 98 nucleotides away from exon 26 (IVS25-98) in

ABCA3 that alters splicing and the structure and function of ABCA3 demonstrates that there

may be variants elsewhere in ABCA3 that are not captured by standard clinical sequencing

techniques.16

Mutations in SFTPC and ABCA3 have also been identified in adults with idiopathic

pulmonary fibrosis (IPF), suggesting that diffuse ILD in children and IPF in adults may be

part of the same spectrum of disease. Mutations in the genes encoding surfactant protein-A2

(SFTPA2) and telomerases (TERT and TERC) have been associated with familial IPF and

lung cancer in adulthood, but whether or not mutations in these genes contribute to

childhood ILD is unknown.17,18

Studies investigating the mechanisms that result in variable expression of disease associated

with mutations in surfactant associated genes are ongoing and will ultimately provide the

basis for development of mechanism-specific interventions.
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BRONCHOALVEOLAR LAVAGE PROTEOMICS AND INSIGHTS INTO LUNG

DISEASE (RD)

The field of Systems Biology, at times referred to as “omics,” often involves the

investigation of the genome (DNA), transcriptome (mRNA), proteome (protein), and

metabolome (metabolites).19 Genomics and more recently transcriptomics have yielded

improved understanding of disease. Though less commonly employed, proteomics, the

large-scale study of the expression, structure or function of proteins in a biological system,

can provide valuable information in concert with genomics. Proteomic analysis has the

advantage of studying: (1) networks of proteins that provide “real-time” status of disease

state, (2) modulation of protein function by diseases and drugs, (3) gene activity, (4)

pathogenesis of disease, and (5) the prediction of new therapeutic approaches.20–22

However, the application of proteomics has been limited by the complexity of studying over

20,000 protein-coding genes that can all undergo post-translational modification and the

lack of inexpensive, timely, high-throughput systems.

Discovery and validation of proteomic signatures holds great promise for children with

interstitial and diffuse lung disease (chILD). Despite successes in recognizing clinical

phenotypes and genetic etiologies in chILD, significant limitations remain in diagnostics,

understanding mechanisms of disease and developing evidence based therapies.23 Initial

work in chILD has been done by Fan and colleagues to show that Krebs von den Lungen-6

(KL-6) and SPD are serum biomarkers that can identify children with ILD and that KL-6

may specifically distinguish surfactant dysfunction mutations from Neuroendocrine Cell

Hyperplasia of Infancy (NEHI).24,25 Though approved and used as a biomarker for adult

ILDs in Japan, KL-6 (a submolecule of human MUC1 mucin protein) is not clinically

available in the U.S. Popler and colleagues from Colorado have investigated cytokine and

chemokine profiles from bronchoalveolar lavage fluid (BAL) from a small cohort of

children with chILD (NEHI and follicular bronchitis [FB]) compared to disease controls.

They report that NEHI had lower levels of IL-1β, MIP-1β, and IL-8 and FB had higher

levels of IL-1ra, G-CSF, IL-6, and VEGF compared to all groups.26 These data reinforce the

idea that NEHI is not a classic inflammatory disease state, which is also supported by the

lack of inflammation seen in lung histology.27 Using new SOMAmer (slow off-rate

modified aptamer) proteomic techniques, we investigated whether specific proteomic

signatures could be defined for 811 proteins and molecular biologic pathways identified in

BAL from subjects with NEHI and Surfactant dysfunction mutations. SOMAmers are

unique chemically synthesized protein binding agents designed by SOMALogic, Inc.

(Boulder, CO) from DNA derivatives.22 Proteins can be quantified to less than pg/ml

concentrations in 25 μl of fluid with SOMAmer technology. BAL from NEHI and Surfactant

Dysfunction Mutation subjects had specific and distinguishing SOMAmer protein signatures

compared to each other and other disease controls.28 Interestingly, distinguishing proteins

for Surfactant Dysfunction Mutations, such as CCL2, CCL18, and CCL22, have also been

reported as predictors of poor outcome in IPF in adults.29,30 Using the PANTHER (Protein

ANalysis THrough Evolutionary Relationships) Classification System,31 a resource that

classifies genes/proteins by their functions, We analyzed proteomic signatures for NEHI and
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Surfactant Dysfunction Mutations to predict pathways involved in molecular and biologic

function.

These preliminary studies provide proof of concept for the power new molecular proteomic

technologies may hold for chILD. Follow-up studies are now underway to increase the

sample size and type of chILD diseases studied to further validate these novel protein

signatures. Expanding SOMAmer technology to define signatures in serum and tissue and

increase the number of proteins evaluated to over 6,000 in the next few years has the

potential to extend our understanding even further. The involvement of the Children’s

Interstitial and Diffuse Lung Disease Research Network (chILDRN) and chILD Foundation

will be critical for the success of this work. In summary, SOMAmer proteomics holds great

promise to improve diagnostic evaluations, better define pathogenesis, and suggest new

therapeutic approaches for chILD.

EMERGING CONCEPTS AND THERAPEUTICS FOR EARLY ONSET LUNG

DISEASE (WEB)

While the genome functions as a storage device that dictates an individual’s unique

hereditary make-up, it is the proteins encoded by the genome that dictate the ability of each

person to respond to the environment on a daily basis.

There is increasing awareness that proteins are highly malleable and that human health is

actively managed by an active protein folding program referred to as protein homeostasis or

proteostasis—a conserved and ancient biological language base directing the function of the

protein fold and managing the overall health of the human proteome.

The cell continually exploits the emergent properties of the proteostasis system which

includes >2,500 protective chaperones and degradative pathways that remove defective

proteins. The proteostasis language base generates a “cloud” of management capacity

around each protein in the proteome to promote proteome health as well as remove proteins

that are defective (Fig. 1) as often occurs in disease. The proteostasis program responds to

numerous folding stress signaling pathways of high clinical relevance to the neonate,

childhood development and adult liver and lung pathophysiology. These include

environmentally triggered inflammatory diseases (COPD, emphysema, asthma) and a

multitude of inherited diseases (i.e., α1-antitrypsin (A1AT) deficiency (ATD), cystic

fibrosis (CF) (cystic fibrosis transmembrane conductance regulator (CFTR)) as well as

DLD) (Fig. 1).

Management by the proteostasis language is very dynamic-protecting and coordinating

proteome health in diverse cell, tissue and organ environments. Using the same pathways

that the cell uses to optimize proteostasis for protection on a daily basis, and that often fail in

inherited and sporadic complex diseases, we are learning to manipulate the proteostasis

folding language by altering the composition and function of the proteostasis network. In

both cystic fibrosis and A1AT we have conducted high throughput genomic and proteomic

screens as well as small molecule “corrector” screens to understand the basic principles

responsible for these diseases, the changes in the proteostasis program that are responsible
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for a loss of protein function, and through use of small molecule correctors, how to alter the

proteostasis language base to correct the diseased state. In each case we are discovering a

common framework based on changes in the proteostasis network to therapeutics that can

bring about substantial change in the folding efficiency of mutant proteins and that are

anticipated to provide substantial benefit in terms of beginning to restore normal activity in

the clinic. By merging our advanced genomic, proteomic and small molecule HTS

approaches with bioinformatic tools we are beginning to build a multi-layered, system-wide

view of the language of proteostasis to develop therapeutics that should provide benefit to

the many diseases affecting human healthspan (Fig. 1).32–37

GENOME-WIDE DNA METHYLATION PATTERNS IN INTERSTITIAL LUNG

DISEASE (ILD) AND CHRONIC OBSTRUCTIVE LUNG DISEASE (COPD)

(DAS)

Epigenetic mechanisms are likely to be involved in the control of gene expression in COPD

and ILD, especially given the association of these diseases with cigarette smoking and the

relationship between cigarette smoke and changes in epigenetic marks.

Using the comprehensive high-throughput arrays for relative methylation (CHARM)

method, we collected genome-wide DNA methylation profiles on lung tissue from 179

subjects with COPD, 159 subjects with ILD, and 79 non-disease controls from the LTRC.

Percent methylation estimates from the normalized and scaled dataset were fit to disease

status, age, gender and smoking status in a linear regression model. We correlated DNA

methylation changes with changes in gene expression collected on the Agilent platform. We

also performed similar analyses to identify differentially methylated regions (DMRs)

associated with cigarette smoke, decline in lung function, and %emphysema in COPD.

We identified 3737 unique genes with a significant DMR (Bonferroni-adjusted P < 0.05)

located ≤2 kb from the gene associated with ILD and 5,409 associated with COPD, after

controlling for age, gender, and smoking status. Fifteen percent of these DMRs are

associated with changes in gene expression, including a number of genes known to be

associated with the development of chronic lung disease (chemokine receptors, ADAM

family genes, integrins, collagens, coagulation genes).

Our genome-wide analysis of DNA methylation patterns identified DMRs associated with

COPD and ILD that may be involved in regulating gene expression in these diseases.

Understanding epigenetic regulation of biological processes in the lung may lead to the

development of novel diagnostic and therapeutic approaches for chronic lung disease.

VENTILATION AFFECTS HISTONE MARKS IN LUNG AND BRAIN OF

PRETERM LAMBS (KHA)

Mechanical ventilation (MV) injures the lung and brain of chronically ventilated preterm

neonates. Our studies using chronically ventilated preterm lambs show that both organs have

genome-wide hypoacetylation of histones when managed by mechanical ventilation. Lung
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and brain injury is reduced and genome-wide hyperacetylation of histones occurs with a

gentler ventilation mode: nasal high-frequency ventilation (HFV; similar to nasal CPAP).

Dichotomy of genome-wide acetylation state of histones between ventilation modes (MV vs.

nasal HFV) suggests that epigenetic mechanisms may participate in the pathogenesis of

multiple-organ injury that typifies neonatal chronic lung disease. We hypothesized that

treating preterm lambs with histone deacetylase (HDAC) inhibitors during MV would lead

to histone hyperacetylation and reduce injury to the lung and brain.

Preterm lambs (~132 days gestation; term ~150 days), treated with antenatal steroids and

postnatal surfactant, were managed by MV, MV + valproic acid (VPA; non-specific HDAC

inhibitor), MV + trichostatin A (TSA; specific HDAC inhibitor), or nasal HFV (n = 4/

group). Each inhibitor was given once/d, intravenously. At the end of 3 days, lung

parenchyma and temporal lobe white matter were analyzed by immunoblot for acetylated

(ac) H3K14, H3K27ac, H3K18ac, trimethylated (me3) H3K36, and histone deacetylase.

Immunoblot results were normalized for total H3. Structural measurements were made of

alveolar formation in the lung and apoptosis/proliferation of neurons and glia in the brain.

Histone marks H3K14ac, H3K27ac, H3K18ac, H3K36me3 were significantly lower (P <

0.05) in the lung and temporal lobe of the brain of preterm lambs that were supported by

MV than nasal HFV. HDAC protein abundance was significantly higher in the MV group.

During MV, inhibition of histone deacetylation, with either VPA or TSA, significantly

increased H3K14ac, H3K27ac, H3K18ac, H3K36me3 in the lung, and white and gray matter

of the brain. HDAC protein abundance was significantly decreased in both organs.

Structurally, the lung of both groups of treated preterm lambs had significantly greater

morphometric indices of alveolar formation in the lung. Markers of apoptosis (cleaved

caspase 3) and proliferation (proliferating nuclear cell antigen) were significantly lower in

white matter of the temporal lobe of the brain.

In summary, treating preterm lambs with HDAC inhibitors during MV leads to histone

hyperacetylation and reduces injury to the lung and brain. These molecular and structural

outcomes are similar to the outcomes following support of preterm lamb with nasal HFV.

These results suggest an epigenetic mechanism for the pathogenesis of neonatal chronic lung

disease. We speculate that the lung epigenetic and structural effects are triggered by

ventilator-induced stretch. We further speculate that the brain epigenetic and structural

effects result from release of pro-inflammatory cytokines and/or chemokines from the

injured lung that triggers local inflammatory responses in the brain.

MODELING LUNG REMODELING IN TRANSGENIC MOUSE MODELS (JAW)

Transgenic mice have been used widely for the study of lung diseases for more than two

decades, providing the ability to delete, mutate or express genes of interest in pulmonary

cells. The molecular pathways regulating lung morphogenesis in function are highly

conserved among vertebrate species. While the structure of the murine lung differs in size,

extent of branching, and ontogeny from that in humans, the cellular and molecular features

of the mouse and human lung are remarkably similar. Thus, studies in transgenic mice have

been highly useful in identifying and assessing the pathological basis of lung diseases.
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Cell and tissue specificity, conditionality of the control of gene expression using cell-

specific gene regulatory elements have been developed and refined. These mouse models

permit lineage analysis, cell specific ablation, deletion or mutation, and the ability to

manipulate the mouse genome to create models relevant for the study of lung disease and

repair.38

Alveolar Injury in the Pathogenesis of ILD

Genetic studies in children and families, as well as genetic engineering in complementary

transgenic mouse models, strongly implicate injury of the alveolar epithelial cell in the

pathogenesis of ILD, lung fibrosis, and other lung disorders related to surfactant

dysfunction. Mutations in genes encoding the proteins critical for the surfactant system are

expressed in alveolar type II cells, for example, SP-A, SP-B, SP-C, and ABCA3, all cause

epithelial cell dysfunction and/or surfactant deficiency that underlie epithelial cell injury,

inflammation and remodeling that are associated with respiratory failure and ILD in children

and adults. Deletion or mutation of SP-B, ABCA3, or SP-C caused similar pulmonary

abnormalities in humans and transgenic mice (Fig. 2). Mutations in telomerases, genes that

are critical for maintenance of telomeres and cell survival, are associated with ILD in adult

patients. Taken together, experimental and genetic studies support the concept that alveolar

cell injury is an important mechanism underlying chronic lung disease (see Ref.39 for

review).

Direct proof that epithelial cell injury causes lung remodeling and fibrosis was provided by

experiments in which a floxed diphtheria toxin A gene was conditionally activated in

pulmonary epithelial cells under control of doxycycline-dependent elements expressing Cre-

recombinase in type II alveolar cells or conducting airway cells. Repeated injury to the

airway epithelium caused epithelial cell specific apoptosis, causing lung fibrosis, creating a

model of epithelial cell injury and repair in the mouse, useful for elucidating the

mechanisms involved in lung fibrosis and remodeling.40

Growth Factor and Cytokine Mediated Lung Injury

Chronic lung injury and abnormal repair are associated with dysregulation of the immune

system, leading to chronic inflammation as mediated, at least in part, by a number of growth

factors and cytokines, for example TGF-β, TGF-α, CTGF, IL-13, IL-1β, and others.

Expression of these factors in respiratory epithelial cells of conducting or peripheral airway

epithelial cells is readily achieved in transgenic mouse models. Expression or deletion of

genes mediating inflammation and repair provide models of lung disease that are useful in

understanding the pathogenesis of lung disease. For example, conditional expression of

IL-13 in the mouse lung using doxycycline-regulated strategies induces mucus metaplasia,

lung inflammation, and remodeling with features of asthma. Conditional expression of TGF-

α in the respiratory epithelium causes extensive lung fibrosis. Many of the physiological and

structural changes induced by these signaling molecules are reversible upon withdrawal of

doxycycline.41 Thus, these transgenic models provide insight into the processes involved in

both pathogenesis and resolution of lung pathology. Transgenic mouse models of human

disease related genes, for example caused by mutations in CFTR, ABCA3, SFTPC, and

SFTPB, share features with those caused by mutations in the genes in patients, providing
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models useful for understanding the molecular physiological and structural consequences of

hereditable lung diseases that are useful for identifying and testing new therapeutic

strategies for treatment of lung disease.

REGULATION OF PROGENITOR CELL FATE IN THE AIRWAY EPITHELIUM

(WVC)

In the mature lung, airways are lined by a well-balanced population of ciliated, secretory and

neuroendocrine (NE) cells, which perform functions as diverse as air humidification,

detoxification and clearance of environmental particles. How these different cell types

emerge and these fates are maintained in airways is still little understood. Aberrant patterns

of differentiation with increase in specific cell populations are seen in a number of diseases,

such as asthma, COPD, pulmonary NE cell hyperplasias, among others. Our studies in the

embryonic lung show a critical role of Notch in formation of secretory cells and restriction

of the ciliated and NE cell phenotypes during development.42,43 This role has been

confirmed by both loss and gain of function approaches.42–44 Notch signaling was also

found to be required during neonatal life to repress a goblet cell program in Clara cells.45

Disruption of Notch signaling during neonatal life resulted in aberrant formation of goblet

cells in proximal airways. Moreover, we provide evidence that during development distinct

subpopulations of secretory precursors cells are defined at a very early stage in airways. We

show that when airways are forming these subpopulations differ in gene expression, regional

distribution and in their association with NE cells. We identified a novel subpopulation of

secretory precursors juxtaposed to presumptive NE bodies (NEB) distinguished by their

strong secretoglobin Scgb3a2 and Uroplakin3A signals, and reduced Clara Cell Secretory

Protein (Ccsp or Scgb1a1) expression. Disrupting expression of the transcription factor

Ascl1 abolished NEBs and prevented formation of these secretory precursors in mutant

mice.46 Thus, NEB seemed to influence dramatically the features of gene expression and,

potentially, the behavior of these cells. Analysis of the Notch pathway reveals a differential

distribution of Jagged and Delta ligands throughout the airways, suggesting that distinct

subpopulations of secretory cells may arise from Notch activation by a selective ligand. We

conclude that Notch is a major signal regulating cell fate in airways likely playing a role in

conditions that result in unbalance of cell phenotypes and faulty adaptation responses of the

lung to environmental agents.

INDUCED PLURIPOTENT STEM CELLS FOR THE STUDY AND TREATMENT

OF ChILD (DNK)

Recent advances in reprogramming technologies have led to the derivation of pluripotent

stem cells from the somatic cells of humans, including those suffering from lung diseases.

What are the implications of these newly described stem cells, termed induced pluripotent

stem (iPS) cells, for individuals with childhood interstitial lung diseases (ChILD)?

Pluripotent stem cells, such as embryonic stem (ES) cells, can be differentiated in vitro into

many lineages, including endodermal epithelia, such as lung airway and alveolar cells.

However, until recently it was not possible to derive pluripotent stem cells from individual

patients. In 2006, Dr. Shinya Yamanaka and colleagues published a reprogramming
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methodology able to induce pluripotency in somatic cells, such as dermal fibroblasts.47,48

The pluripotent stem cells derived by exogenous expression of Oct4, Klf4, Sox2, and CMyc

closely resembled ES cells derived from blastocyst embryos, and these newly derived cells

were named iPS cells indicating their derivation did not require any embryonic or fetal

tissue, in contrast to ES cells. Since 2006, Dr. Yamanaka’s approach has been adapted and

optimized resulting in many methods for generating iPS cells from a variety of somatic

tissues, including human skin biopsy-derived fibroblasts or aliquots of peripheral blood

cells.49 There are now numerous reprogramming methodologies; for example, the use of an

excisable lentiviral vector has been employed to generate the first lung disease-specific iPS

cell lines from adults with inherited lung diseases.50 To date numerous lung disease-specific

iPSC clones have been banked, the majority generated from humans suffering from

epithelial and vascular lung diseases, such as cystic fibrosis, emphysema, alpha-1 antitrypsin

deficiency, scleroderma, sickle cell disease, and pediatric lung diseases due to mutations in

NKX2.1, SFTPB, SFTPC, or ABCA3. Until recently there was little to do with this bank as

the protocols had not yet been developed to differentiate iPSCs into lung lineages. The

recent publication of protocols for the derivation of Nkx2.1+ lung epithelial lineages from

pluripotent stem cells51–53 now allows unprecedented opportunities to utilize disease-

specific iPS cell to model lung disease pathogenesis in vitro. These in vitro models should

enable the study of the earliest moments of human lung development as well as examination

of the cell fate decisions and epigenetic mechanisms involved in specifying lung epithelia.

Ultimately, drug screens, individualized therapeutic tests, and tissue engineering approaches

may be developed for each patient using this new in vitro model system. Since iPS cell-

derived lung epithelia from each patient contain each individual’s own genetic background,

these cells potentially provide individualized models of disease pathogenesis and

individualized trials of drug efficacy testing. iPS cells derived from individuals carrying

mutations causing ChILD (children’s interstitial lung disease) provide a particularly

powerful platform to study disease pathogenesis of diseases whose onset in the developing

lung epithelium occurs at a fetal stage that is otherwise difficult to study in vivo.

Stem Cells as Therapy for chILD Lung Disease (SK)

Bronchopulmonary dysplasia (BPD) is a complex chronic lung disease with multifactorial

etiology, characterized by the arrest of alveolar and vascular growth associated with

inflammation and parenchymal fibrosis. Historically, oxygen toxicity and ventilator-induced

injury have been the prerequisites for BPD in premature infants born at less than 28–32

weeks gestation with respiratory distress syndrome, but BPD may also occur in immature

infants with few signs of initial lung injury.

The saccular stage of murine lung development is completed after two weeks of postnatal

alveolarization. Hence, the developmental stage of the mouse lung at birth resembles that in

the human preterm neonate between 24 and 28 weeks gestation, making the newborn mouse

an excellent model to study human developmental lung injury. Hyperoxia-induced lung

damage in neonatal mice is characterized by rarefication and simplification of alveoli and

thickened alveolar septa, inflammation and parenchymal fibrosis, a pattern which is similar

to human BPD.
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Mesenchymal stem cells, also referred to as multi-potent stromal cells (MSCs), have

attracted significant attention as potential cell-based therapy for BPD and other severe lung

diseases because these multipotent cells exhibit beneficial effects in related animal models

through anti-inflammatory, immunomodulatory, pro-survival (endothelial, epithelial), and

anti-fibrotic mechanisms. We have previously demonstrated that intravenous injection of

bone marrow-derived MSCs in newborn mice conferred significant vascular and

immunological protection from hyperoxia-induced injury but had limited effect in

preserving alveolar architecture. Concentrated MSC-conditioned media (MSC-CM),

however, prevented both vascular and alveolar hyperoxic injury resulting in normal alveolar

number and thin septa, comparable to controls in room air.54 These findings suggested that

MSCs have important cytoprotective effects in the hyperoxia mouse model of BPD via

paracrine mechanisms including the release of immunomodulatory and vasoprotective

mediators. Given that clinically it’s more relevant to reverse BPD as prevention cannot be

readily achieved, we tested the ability of MSC-CM to rescue injury in this animal model.

Indeed, a single intravenous dose of MSC-CM reversed—to a significant degree—

hyperoxia-induced BPD and pulmonary vascular disease versus mouse lung fibroblast-CM

(MLF-CM) control: MSC-CM-treatment (1) reversed the hyperoxia-induced parenchymal

fibrosis and peripheral pulmonary artery (PA) devascularization (PA pruning), (2) partially

reversed alveolar injury, (3) normalized lung function (airway hyperresponsiveness,

dynamic lung compliance), (4) fully reversed the moderate pulmonary hypertension (PH),

and (5) attenuated peripheral PA muscularization associated with hyperoxia-induced BPD.55

Factors secreted in MSC-CM promote signaling pathways of lung repair and include

inhibitors of inflammation that are linked to the development of PH and pulmonary fibrosis.

An attractive speculation is that the beneficial effect of MSC-CM may be, at least in part,

due to activation of endogenous lung stem cells. To explore this hypothesis, we investigated

bronchioalveolar stem cells (BASCs), an adult lung stem cell population capable of self-

renewal and differentiation in culture, and proliferation in response to bronchiolar and

alveolar lung injury in vivo. We demonstrated that MSC-CM treatment led to a significant

increase in BASCs in the lung compared to untreated controls. Treatment of BASCs with

MSC-CM in culture resulted in an increase in growth efficiency, suggesting a paracrine

effect of MSCs on BASCs. Lineage tracing in bleomycin-treated adult mice showed that

CCSP-expressing cells, including BASCs, are capable of contributing to alveolar repair after

lung injury. Thus, MSC-derived factors likely stimulate BASCs and/or other endogenous

lung stem cells to contribute to the restoration of distal lung cell epithelia in BPD.

In preliminary proteomic analysis to identify the active moiety within MSC-CM, we noted

the presence of proteins, including CD63, CD81, moesin, and hsp70, reported to be

associated with intracellular vesicles known as exosomes. Exosomes are small

microvesicles, 30–100 nm in diameter, that are stored within multi-vesicular bodies and

released into the environment by fusion with the cell membrane. Microvesicles are now

considered to be important mediators of intercellular communication by transferring their

contents including proteins, mRNAs and miRNAs, to recipient cells. The physiological

relevance of MSC-derived exosomes has not been evaluated in lung disease in vivo, even

though their cellular source and factors they secrete have promising therapeutic potential on

lung injury.
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Using the adult hypoxic murine model of PH, we demonstrated that intravenous delivery of

MSC-derived exosomes (MEX) inhibited hypoxic lung inflammation, vascular remodeling

and PH, whereas MEX-depleted media or fibroblast-derived exosomes (FEX) had no

effect.56 MEX suppressed the hypoxic activation of signal transducer and activator of

transcription 3 (STAT3) and the upregulation of the miR-17 superfamily of microRNA

clusters, whereas it increased lung levels of miR-204, a key microRNA, the expression of

which is decreased in human pulmonary hypertension. MEX produced by human umbilical

cord mesenchymal stromal cells inhibited STAT3 signaling in isolated human pulmonary

artery endothelial cells, demonstrating a direct effect of MEX on hypoxic vascular cells.

Ongoing work will evaluate the mechanisms and signaling pathways by which MEX

modulate lung injury, inhibit lung inflammation and reverse lung diseases such as BPD.
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Fig. 1.
The proteostasis cloud protecting the protein fold in health and disease. Illustrated are two

examples where deficiencies in protein folding due to hereditary changes (mutations),

including ATD and CF, require the activity of the proteostasis language base to manage the

protein fold to protect the neonate and child from the severe consequences of protein

misfolding. We are learning that the proteostasis “cloud” (cloud icons) can be bolstered

therapeutically with small molecules to provide an improved folding environment to restore

protein function and provide benefit to human disease.
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Fig. 2.
Representative histopathology of diseases caused by gene variants in surfactant-associated

genes in humans which have been modeled in transgenic mice. See the Inherited Disorders

of Surfactant Metabolism (AH) Section for a description of these disorders.
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