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Research Highlights 

(1) Cochlear gene therapy has been successfully used in the treatment of sensorineural hearing loss. 

Use of atonal homolog 1 gene delivered by viral vectors contributes to inner ear hair cell regeneration.  

(2) Various types of viruses have been successfully used as vectors for transporting genes in the 

cochlea.  

(3) Embryonic and adult inner ear neural stem cells can differentiate into hair cells. 

 

Abstract  
Most recent studies on regeneration of inner ear hair cells focus on use of stem cells, gene therapy 

and neurotrophic factors. Cochlear gene therapy has been successfully used in the treatment of neu-

rosensory hearing loss. This suggests that cochlear hair cell regeneration is possible. The objective of 

this paper is to review research and clinical application of inner near hair cell regeneration. 
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INTRODUCTION 

    

Over the last two decades, great progress 

has been made in physiopathological re-

search on neurosensory hearing loss. The 

discovery of inner ear hair cell regeneration 

has important clinical implications. The ob-

jective of this paper is to review literatures 

on theory and clinical application of inner ear 

sensory hair cell regeneration. 

 

 

PIONEERING RESEARCH IN INNER 

EAR HAIR CELL REGENERATION 

    

Epimorphic regeneration in animals has 

been recognized since the time of Aristotle 

(4
th
 century B.C.) who described the tail 

regeneration in urodeles and reptiles. Many 

animals exhibit the ability to regenerate lost 

body parts after damage. Starfish
[1]

, lizards
[2]

, 

and amphibians such as salamanders
[3] 

can 

spontaneously regenerate skin, muscle, 

nerve or bone after amputation. In mammals, 

several adult organs such as the skin
[4]

, 

blood
[5] 

or placenta
[6]

 show a limited ability to 

regenerate. A landmark in human regenera-

tion was found since it was observed that 

the distal phalanges of the hand of a child 

were able to regenerate after amputation
[7]

. 

This type of regeneration is called epimor-

phic regeneration. This phenomenon oc-

curs in the presence of early mesenchymal
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blastema cells and neural plate to origin correct      

innervations.  

 

Moffat and Ramsden were the first authors who discov-

ered the possibility of the auditory system in humans in 

1977
[8]

. Their description is based on a 37-year-old man 

with malignant hypertension caused by bilateral chronic 

kidney failure who received a kidney transplant. In the 

postoperative period, he developed a staphylococcal 

infection and was administered 240 mg gentamicin over 

10 hours. Twenty-four hours after gentamicin adminis-

tration, the patient developed bilateral deafness. The first 

pure-tone audiometry test, 9 days after gentamicin ad-

ministration, confirmed complete deafness in the left ear 

and severe neurosensory hearing loss in the right ear. 

Electrocochleography on day 13 showed a hearing 

threshold of 100 dB and very poor cochlear microphonics 

(0.64 μV at 110 dB). However, 3 weeks later, the 

pure-tone audiometry indicated an improvement in 

hearing at a frequency of 125–500 Hz and by 8 months 

the threshold of conversational frequency was around  

70 dB. Further, in 1980, Fee
[9]

 reported a series of 138 

patients who were administered tobramycin and genta-

micin. 55% of these patients recovered their hearing 

between 1 week and 6 months and 53% recovered their 

vestibular function between 10 days and 9 months after 

ototoxic treatment.  

 

Cotanche
[10]

 first referred the regeneration of inner ear 

hair cells of birds after noise-induced hearing loss.  He 

found that the damaged cells were extruded from the 

epithelium and replaced by a layer of germinal basal 

cells. This process occurred rapidly: microvilli appeared 

on the apical surface of the epithelial tissue 48 hours 

after the noise-induced trauma, and hair cell regenera-

tion was completed after 10 days of the trauma. Rege-

neration of the basilar papilla of birds after gentamicin 

intoxication was reported by Cruz and colleagues
[11]

 who 

observed recovery of the hair cells 3 weeks after use of 

ototoxic. 

 

Jørgensen and Mathiesen
[12]

 were the first authors to 

note the capacity for regeneration of the normal vestibu-

lar epithelium in adult Australian parrots. Later, Roberson 

et al 
[13]

 studied the normal vestibular epithelium of 

12-day-old white Leghorn chicks using tritiated thymidine 

and bromodeoxyuridine. Their findings with these cell 

markers suggested that the supporting cells are the 

precursors of type II hair cells.  This regenerative 

process occurs continuously, even during adulthood and 

in the absence of stimulus, trauma or ototoxic damage of 

the epithelium. In this sense, we have described that in 

the embryonic vestibular epithelium of humans and of 

rats there seems to be a group of immature cells that are 

able to differentiate into sensory and supporting cells, 

depending on the metabolic requirements of the epithe-

lium
[14-18]

. Therefore, it is currently believed that vestibu-

lar epithelium of birds and mammals are renewed de-

pending on the regenerative capacity of the cells that 

survive to a particular injury.  

 

López et al 
[19]

 studied hair cell recovery in the crista 

ampullaris of the chinchilla, following administration of a 

50 μg dose of gentamicin to the perilymphatic space of 

the superior semicircular canal. They assessed four ex-

perimental groups compared to controls histologically 

using optical and transmission electron microscopy 

techniques. They recorded cell counts for hair and sup-

porting cells. During 7–14 days after treatment, type I 

hair cells were not observed, while 85–88% of type II hair 

cells were lost. The number of supporting cells had de-

creased to 76% after 7 days, but recovered to 91% by 

day 14. By 1 month after ototoxic insult, there was a clear 

recovery of the epithelial cells, 83% of the cells being 

type II hair cells and 3% type I hair cells. The percentage 

of supporting cells was 86%, a level they considered 

close to normal. From days 14 to 28, the number of type 

II hair cells increased by 1758, indicating around 125 

new cells per day, while the number of supporting cells 

remained steady. These results suggest that new hair 

cells are originated by the mitotic activity of supporting 

cells following proliferation and differentiation. 

 

Later, Sliwinska-Kowalska et al 
[20]

 studied cell regenera-

tion in the basilar papilla of 1-day-old white Leghorn 

chicks exposed to wide-band noise at 120 dB sound 

pressure level for 20, 40 or 72 hours, continuously or 

intermittently. They observed that initially there was 

damage in the tectorial membrane and short hair cells, 

similar to the outer hair cells in humans. Considering the 

proliferating cell nuclear antigen, cell proliferation activity 

was detected in the supporting cells and in the ganglion 

cells of the cochlear nerve. New cells appeared in the 

epithelium 5 days after noise-induced trauma. Further, 

Wooley and colleagues
[21]

 studied hair cell regeneration 

and recovery of auditory thresholds in Bengalese finches 

after 1 week of daily dose of amikacin. While a normal 

morphological structure developed in 13 days, functional 

recovery continued up to 12 weeks after treatment. Re-

sults from a previous study
[22]

 showed in 15-day-old white 

Leghorn chicks (Gallus domesticus) exposed to a 2 kHz 

pure tones at 120 dB sound pressure level for 48 hours, 

distortion-product otoacoustic emissions and brainstem 

auditory evoked potentials started to return to physio-
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logically normal levels from 5 days after the 

noise-induced trauma, and reached full recovery after 30 

days. 

 

With regards to regeneration, Lee and Cotanche
[23]

 de-

scribed a series of factors that seem to stimulate the 

synthesis of DNA and induce cell proliferation and diffe-

rentiation, including insulin-like growth factor 1, plate-

let-derived growth factor and basic fibroblast growth 

factor as well as the peptides associated with retinoic 

acid. On the basis of their findings, these authors sug-

gested that basic fibroblast growth factor and retinoic 

acid may play an important role in the regulation of the 

regeneration mechanisms of the basilar papilla of chicks 

after noise-induced trauma. 

 

 

RECENT ADVANCES IN INNER EAR HAIR 

CELL REGENERATION 

 

Stem cells 

Some scholars
[24-26]

 recently described that both em-

bryonic and adult inner ear stem cells can differentiate 

into hair cells. These scholars focused on confirming this 

differentiation, and assessed cell viability and in situ 

maturation. They confirmed that once implanted, stem 

cells can become integrated in the inner ear even in the 

early stage of development.  

 

Vectors used in cochlear genetics 

There is evidence that non-viral vectors, including plas-

mids, have advantages over other vectors of being less 

toxic and causing less inflammation, although they have 

lower transduction rate
[27-28]

. Further, in a recent study, 

Zhang et al 
[29]

 proposed the use of nanoparticles for 

transporting DNA-polylysine particles into the cochlea of 

mice.  

 

Nevertheless, most studies focused on use of virus sub-

types, for example, adenovirus, adeno-associated virus, 

herpes virus, helper-dependant adenovirus and lentivi-

rus
[30]

. Of these virus subtypes, adeno-associated virus-

es have the greatest potential, given that they do not 

cause ototoxicity
[30-32]

. Various subtypes of ade-

no-associated virus have been successfully used for 

transporting genes in the cochlea and were found to 

cause little damage to the organ of Corti
[33-34]

. Kilpatrick 

et al 
[34]

 observed that adeno-associated virus serotypes 

1, 2, 5, 6 and 8 have good gene expression in hair cells 

and basal cells, as well as the cochlear nerve and spiral 

ganglion. A disadvantage, however, is that these vectors 

can only carry fragments up to 5 kb, restricting their use 

for transduction.  

 

Kesser and Lalwani
[35]

 reported that adenoviruses over-

come the limitations of adeno-associated viruses. A 

study published by Duan and Mi
[36]

 indicates that lenti-

viral vectors do not spread beyond the cochlea, mini-

mizing toxicity in the neighbouring tissue. As for how to 

deliver the viral vectors, most studies consider that the 

best method is cochleostomy, or direct injection through 

the round window membrane, using enzymatic digestion 

with collagenase
[37]

. 

 

Regeneration of hair cells with the atonal homolog 1 

gene 

The atonal homolog 1 or Math gene in mice codifies the 

transcription factor for sensory hair cell differentiation of 

cochlear basal cells
[38-41]

. Izumikawa et al
 [38]

 reported that 

atonal homolog 1 improved the hearing of deaf mice, 

achieving good results in both cellular and functional 

terms. Oshima et al 
[41]

, from Dr. Stefan Heller’s labora-

tory, showed how to differentiate stem cells to hair cells 

with bundle structure and function. They used mouse 

embryonic stem cells and induced pluripotent stem cells, 

which were directed toward becoming ectoderm capable 

of responding to otic inducing growth factors. The re-

sulting otic progenitor cells were subjected to varying 

differentiation conditions, one of which promoted the 

organization of cells into epithelial clusters displaying 

hair cell-like cells with stereociliary bundles. Bun-

dle-bearing cells in these clusters responded to me-

chanical stimulation with currents that were reminiscent 

of immature hair cell transduction currents. 

 

Gubbels et al 
[42]

 showed that in utero transfer of atonal 

homolog 1 gene produces functional supernumerary hair 

cells in the mouse cochlea. These hair cells were capable 

of mechanoelectrical transduction and showed basolateral 

conductance with age-appropriate specializations. Their 

results demonstrated that manipulation of cell fate by 

transcription factor misexpression produces functional 

sensory cells in the postnatal mammalian cochlea. 

 

Studies carried out in mice with aminoglycoside-induced 

vestibular toxicity have also demonstrated that vestibular 

function is recovered due to hair cell regeneration, which 

is induced by the transcription of the Math-1 gene me-

diated by viral vectors
[27, 43-45]

. 

 

Gene therapy  

For ototoxicity  

Zheng et al 
[46]

 reported a study in newborn rats with 

the organ of Corti affected by aminoglycosides, in 
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which adeno-associated viral vector 2-mediated ex-

pression of activity-dependent neurotrophic factor-9 

could protect the cochlea from aminoglycoside-induced 

impairment. 

 

For genetic deafness 

Gene therapy for genetic deafness poses the greatest 

challenge for cochlear gene therapy. There are few 

publications on this topic. Some scholars
[47-48]

 used 

connexin 26 mutation as a model to attempt to improve 

hearing. They used animals in which deafness had 

been induced by introducing a defective gene and then 

used RNA interference to suppress this gene. Zhou et 

al 
[49]

 reported an experimental study demonstrating 

that a lack of interleukin-10 in mice generates a strong 

autoimmune response that causes hearing loss, while 

the transport of interleukin-10 to the cochlea improves 

hearing.  

 

Neurotrophic factors for neuronal preservation in the 

spiral ganglion 

Wise et al 
[50]

 explored the protection of brain-derived 

neurotrophic factor and neurotrophin 3 gene therapy 

against spiral ganglion neuronal degeneration in animal 

models. They found that cell regeneration in the cochlea 

is possible, even when there is severe damage to the 

organ of Corti. Shibata et al 
[32] 

found similar results in 

guinea pigs, using the same factors mediated by ade-

no-associated viruses. Wu et al 
[51] 

investigated the effect 

of a human growth factor gene mediated by adenovirus 

in deaf mice and found that the group that underwent 

gene therapy had milder hearing impairment than a con-

trol group.  

 

Nevertheless, some of these potential treatments may 

have unfortunated adverse effects. Specifically, some 

scholars
[52-53]

 have stated that these treatments could 

initiate tumours. Accordingly, more studies on the 

cochlea in the mammalian models are needed to test 

the potential of these treatments for deafness in   

humans. 

 

 

CONCLUSION 

 

There are still several questions to be addressed in the 

clinical implications of neurosensory hearing loss:  

 

Which are stem cells in this area and how can they be 

identified? Is the destiny of the stem cells predetermined? 

What are the stimuli for regeneration? How is cell re-

placement achieved? Is it possible to identify or to de-

velop a “biological implant” that could help in the treat-

ment of neurosensory hearing loss? 

 

Taken together, cochlear gene therapy has been suc-

cessfully used in the treatment of neurosensory hearing 

loss and other inner ear disorders. Greatest progress will 

be achieved, in the near future, in the regeneration of 

hair cells after use of atonal homolog 1 gene delivered by 

viral vectors and this may become the best clinical 

treatment method of certain types of hearing loss. 
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Correction Announcement  

 

Ho Jun Yi, Je Hoon Jeong, Eun-Sun Jin, Il Young Shin, Hyung Sik Hwang, Seung-Myung Moon published an article entitled 
“Evaluation of vitamin D level in patients from neurosurgical intensive care unit” in Neural Regeneration Research 
[2013;8(16):1528-1534]. The information about the results described in Abstract should be as follows: “Serum level of 

25-hydroxyvitamin D, the primary circulating form of vitamin D, was significantly decreased in patients with confirmed infection 
after a 2-week neurosurgical intensive care unit hospitalization, while serum level of 1,25-dihydroxyvitamin D, the active form 
of vitamin D, was significantly decreased in patients after a 4-week neurosurgical intensive care unit hospitalization. Levels of 

both 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D were in the deficient state after 7 and 14 days in the neurosurgical 
intensive care unit, respectively, in patients with clinically suspected infection.” In addition, there are some corrections in Figure 
1. The corrected Figure 1 is shown at www.nrronline.org. 
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