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Abstract

Magnetic resonance imaging can now provide human brain images of structure, function, and connectivity with
isotropic voxels smaller than one millimeter, and thus much smaller than the cortical thickness. This resolution,
achievable in a scan time of less than 1 h, enables visualization of myeloarchitectural layer structure, intracortical
variations in functional activity—recorded in changes in blood oxygenation level dependent signal or cerebral
blood volume CBV—and intracortical axonal orientational structure via diffusion-weighted magnetic resonance
imaging. While recent improvements in radiofrequency receiver coils now enable excellent image data to be
obtained at 3T, scanning at the ultra-high field of 7T offers further gains in signal-to-noise ratio and speed of
image acquisition, with a structural image resolution of about 300 lm. These improvements throw into sharp
question the strategies that have become conventional for the analysis of functional imaging data, especially
the practice of spatial smoothing of raw functional data before further analysis. Creation of a native cortical
map for each human subject that provides a reliable individual parcellation into cortical areas related to Brod-
mann Areas enables a strikingly different approach to functional image analysis. This proposed approach in-
volves surface registration of the cortices of groups of subjects using maps of the longitudinal relaxation time
T1 as an index of myelination, and methods for inferring statistical significance that do not entail spatial smooth-
ing. The outcome should be a far more precise comparison of like-with-like cortical areas across subjects, with
the potential to greatly increase experimental power, to discriminate activity in neighboring cortical areas, and
to enable correlation of function and connectivity with specific cytoarchitecture. Such analyses should enable a
far more convincing modeling of brain mechanisms than current graph-based methods that require gross over-
simplification of brain activity patterns in order to be computationally tractable.
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Introduction

It is an important goal of imaging neuroscience to de-
velop well-grounded mechanistic models of the function

of neural circuits. To achieve this, it is clearly vital to be able
to associate localized changes in brain activity, and the end
points of axonal pathways, with specific well-characterized
neural substrates. Physical mechanisms exist only in physical
objects, in this case individual human subjects: A multi-subject
averaged brain image is no longer a physical object, but is only
an abstraction that is incapable of function. A mechanism based
on such an average can be proposed, but obviously cannot be
experimentally tested on an averaged brain. Instead, it should
be tested on data from each individual brain. To reveal actual
mechanisms, network analysis clearly needs to be carried out
on individual subject data, and only then generalized across a
group of subjects.

The rebirth of scientific interest in myeloarchitecture, now
implemented using high-resolution structural magnetic reso-
nance imaging (MRI), holds the promise of deeper insights
into principles of cortical organization. Once the location of
changes in brain activity in a given subject’s brain can be iden-
tified via their own native myelin-based cortical atlas, the
corresponding cytoarchitecture can be looked up in a concor-
dance atlas. When combined with high-quality crossing-fiber
diffusion-weighted magnetic resonance imaging tractography,
such information could provide an empirical basic for a mech-
anistic explanation of brain function.

To promote this goal, building on the insights described in
the papers of a Special Issue of Neuroimage published in
2014 (Turner and Geyer, 2014), we describe strategies to
provide increasingly complete in-vivo native cortical and
subcortical atlases of individual human subjects, in which
the boundaries of many cortical areas are clearly identified.

Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.

BRAIN CONNECTIVITY
Volume 4, Number 7, 2014
ª Mary Ann Liebert, Inc.
DOI: 10.1089/brain.2014.0261

547



For such strategies to bear fruit, however, changes should be
made in how functional imaging data are normally analyzed.
Commonly employed practices of spatial smoothing of
image data before statistical analysis, with clumsy compari-
sons across subjects, prevent assignment of specific neural
substrates to specific functions, and directly result in many
false-positive apparent activations. It is likely that such prac-
tices have resulted in serious misinterpretations of functional
magnetic resonance imaging (fMRI) data over the past fif-
teen years. Since better methods are now becoming avail-
able, they should be abandoned as soon as possible.

Toward a Native Cortical Map for Each Human
Subject—The ‘‘In-Vivo Brodmann
Mapping/Triple Jump’’ Approach

Despite two centuries of neuroanatomy and the genius of
pioneers such as Ramon y Cajal, we are still very unsure of
the nature and function of the component parts of the human
brain. It is clear that brain gray matter can be categorized as
cortical and subcortical, and subcortical regions such as the
amygdala, the basal ganglia, striatum, and thalamus can be
subdivided into nuclei with specific connections and well-
understood developmental pathways (Swanson, 2012). We
can even make some testable inferences regarding the role
that each nucleus plays in the coordinated activity of the
brain (Forstmann et al., 2011).

With regard to the white matter and the cortical gray matter,
we are on weaker ground. The typical poverty of our under-
standing of the organization of white matter fibers in the
human brain is revealed; for instance, by the widely held as-
sumption over the decade 2000–2010 that most of this tissue
can be considered to comprise a small number of highly coher-
ent axonal fascicles, with infrequent fiber crossings. A few
minutes spent examining histological samples of brain tissue
stained for myelin with a good optical microscope reveals
that this assumption is obviously incorrect. The ‘‘small
world’’ connectivity (Hilgetag et al., 2000) of a brain, indeed,
implies a very large number of short connections between brain
areas, and a smaller number of longer connections (Schüz and
Braitenberg, 2002), which may well be quite coherent, but are
inevitably crossed frequently by connections between other
brain regions ( Jeurissen et al., 2013). Diffusion-weighted
MRI techniques that have been available since 2010 are start-
ing to provide a much more realistic picture of white matter or-
ganization (Jones et al., 2013; Wedeen et al., 2012).

The situation is even worse when it comes to cortical gray
matter. As recently summarized by Elston and Garey (2013),
Triarhou (2013), and Nieuwenhuys (2013a, 2013b), the
0.23 m2 area of gray matter in the human brain has been
known for more than a century to show many compact sub-
regions (Brodmann areas) defined by their distinctive
cytoarchitecture and myeloarchitecture (Brodmann, 1909;
Elliot Smith, 1907; Vogt and Vogt, 1919). Ideally, a mecha-
nistic explanation that enables valid prediction requires a
clear definition of the given mechanism’s components,
their specific functional roles, and how these sub-functions
are integrated into the operation of the mechanism as a
whole. Some would argue (Mikula et al., 2012; personal
communication) that reasonably accurate predictions may
only be achievable when we can specify components at a
nanometer scale across the entire brain. However, given

the comparatively uniform structure of cortical areas and the
anatomical discriminability of subcortical nuclei, it may be
more pragmatic to start with these as the units of analysis
and mechanistic modeling. This would limit the number of
components to no more than 200, which along with more
than 20 different neurotransmitters, neuropeptides, and corti-
costeroids should already provide a requisite level of com-
plexity (Lohmann et al., 2013).

Consensus remains to be built, however, regarding how
many such cortical regions can and should be distinguished,
and there is an urgent need for a useful concordance atlas be-
tween myeloarchitecture and cytoarchitecture in the same ca-
daver human brains. Research in the human myeloarchitecture
has made little progress in a century (Nieuwenhuys, 2013a,
2013b). Although details of myeloarchitecture are often far
more easily visible than in cytoarchitecture, such as the heavily
myelinated stria of Gennari in the primary visual cortex (ob-
servable even with the naked eye), there has been little specu-
lation or research regarding the functional role of specific
myeloarchitecture in each cortical area (but see Glasser
et al., 2014). Some important details of cortical connections
have been carefully researched, such as the respective inputs
and outputs to and from other brain regions and the spinal
cord, although the variations between cortical areas of the hor-
izontal bands of myelinated cortical fibers comprising the
Exner stripe and the two Bands of Baillarger remain unex-
plained. The arrangement of cytoarchitectural features within
the cortex is no better explained, although terms such as ‘‘gran-
ular’’ and ‘‘agranular,’’ ‘‘allocortex’’ and ‘‘isocortex’’ give the
impression that the mode of operation of specific types of cor-
tex is already well understood. Even though different networks
may be able to ostensibly perform the same task (Price and
Friston, 2002), it is obvious that brain areas with different
microarchitecture have different information processing com-
petences (Shepherd, 2009). However, current methodologies
for functional data analysis pay little regard to the precise di-
vision of labor that this would imply, as will be discussed next.

It would, thus, be a major leap forward if it were possible
to generate an individual-specific map of genuine cortical
microstructure in vivo and correlate it with cortical function
in the same brain. This is for at least two reasons. The first is
that like could always be compared with like in group
studies—averaging of structural and functional results
could be performed in an area-wise manner, without spatial
smoothing. The second reason that this goal is desirable is
that it may enable connection of the findings of systems neu-
roscience with those of cellular neuroscience; for instance,
explanation of the functional competence of some specific
cortical area in terms of its neuronal makeup and configura-
tion. In recent years, two advances are bringing us closer to
this ambitious goal. The first is the dramatic improvement
in the quality of in-vivo MRI scans, as already mentioned.
Even at 3T, use of a 32-element radio frequency (RF) re-
ceiver coil has dramatically increased signal-to-noise ratios
(SNRs), and at 7T, structural images of entire brains can
be obtained with better than 0.5 mm isotropic resolution
(Trampel et al., 2011). Functional blood oxygenation level
dependent (BOLD) contrast changes can be mapped with
0.65 mm isotropic resolution (Heidemann et al., 2012). The
second advancement is based on the observation that maps
of the longitudinal relaxation time T1 effectively indicate
the presence of myelin and closely resemble myelin-stained
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histological sections (Dick et al., 2012; Geyer et al., 2011;
Sereno et al., 2013; Turner, 2011, 2013), whereas differences
in cytoarchitecture are detectable with MRI only in rare
instances such as the unique islands of large neurons in
layer II of the entorhinal cortex (Augustinack et al., 2005).
Research by Cécile and Oskar Vogt, pioneers in the field
of myeloarchitecture in the first half of the twentieth cen-
tury, has shown that there is a great degree of concordance
between structural parcellations of the cortex based on dif-
ferences in myeloarchitecture and those in cytoarchitecture
(Vogt and Vogt, 1919). Myelo- and cytoarchitecture are not
two parallel universes but two different views of the same
universe.

‘‘In-vivo Brodmann mapping’’ (Geyer et al., 2011) ex-
ploits the longitudinal relaxation time T1 and reveals cortical
microstructure by showing, similar to myelin-stained histo-
logical sections, differential gray matter myelination. Corti-
cal areas known from postmortem studies to be heavily
myelinated such as primary motor, somatosensory, auditory,
visual cortex, or area V5-MT (Clarke and Miklossy, 1990;
Hopf, 1955, 1956; Hopf and Vitzthum, 1957) are easily dis-
cernible from surrounding less myelinated regions. In addi-
tion, a ‘‘triple jump’’ approach enables us to validate the
myelin-based in vivo maps with ‘‘classic’’ histology data
ex vivo, and—what is even more important—to define pre-
cise borders between cortical areas: Formalin-fixed postmor-
tem tissue blocks of the human cortex are scanned with a 7T
MRI sequence that produces T1 maps, sectioned with a mi-
crotome, sections are stained for myelin sheaths or cell bod-
ies, and the MR architecture is correlated with myelo- and
cytoarchitecture. This approach makes it possible (1) to de-
fine a cortical area based on myelo- and cytoarchitecture,
(2) to extract the ‘‘MR fingerprint’’ of this area ex vivo,
and (3) to transfer this ‘‘fingerprint’’ to living brains and de-
fine this area in vivo. As an example, this technique has been
successfully used to map microstructural borders between
cortical areas in the pre- and postcentral gyrus, especially
the functionally important border between primary motor
(Brodmann’s area 4) and somatosensory (area 3a) cortex.
Here, a sharp drop in T1 values at the base of the precentral
gyrus of a formalin-fixed tissue block (ex vivo) coincides
with an increase in myelin density in a histological section
of the same block immunostained for myelin basic protein
(myeloarchitecture). In an accompanying section stained
for cell bodies (cytoarchitecture), this position is character-
ized by an increase in gray matter thickness, a disappearing
inner granular layer, and emerging giant pyramidal (Betz)
cells—which altogether marks the border between area 3a
and area 4. A T1 map of the central sulcus region in a living
subject (in vivo) also shows a sharp drop in T1 values and an
increase in cortical thickness at the base of the precentral
gyrus. The position and MR parameters of this border
in vivo match the corresponding border between area 3a
and 4 ex vivo (Geyer, 2013; Geyer et al., 2011).

The justification for terming this myelin-based approach
‘‘in-vivo Brodmann mapping’’ [which refers to cytoarchitec-
ture, the cell-architectonic technique used by Brodmann for
mapping the cortex; see Brodmann (1909) and Garey
(2006) for an English translation] comes from the writings
of Cécile and Oskar Vogt, who repeatedly stressed the
great degree of topographical concordance between areal
borders based on differences in myelo- and cytoarchitecture.

See also the comprehensive reviews of earlier myeloarchitecture
research in Nieuwenhuys (2013a, 2013b). In a schematic draw-
ing of the pre- and postcentral gyrus, published by Vogt and Vogt
(1919, p. 394), they present a pictorial synopsis of the topography
of cortical areas and their borders as defined by cyto- and mye-
loarchitecture. There is a precise spatial correspondence, for
example, in the fundus region of the central sulcus between
cytoarchitectonic area 4 (primary motor cortex) and mye-
loarchitectonic area 42, cytoarchitectonic area 3a and mye-
loarchitectonic area 67, and cytoarchitectonic area 3b (primary
somatosensory cortex) and myeloarchitectonic area 69. Of
course, this sketch represents only a tiny sample of the entire ce-
rebral cortex and borders were defined solely by subjective vi-
sual inspection through the microscope—the only technique
available at that time. Extending this concordance mapping be-
tween cyto- and myeloarchitecture to the entire cerebral cortex,
and verifying areal borders with objective analysis techniques is
under rapid development. The articles by Bazin et al. (2014) and
Waehnert et al. (2014) present first and very promising results in
this direction.

Thus, ‘‘in-vivo Brodmann mapping’’ based on high-field
MRI can detect functionally important borders such as the
one between primary motor (area 4) and somatosensory (area
3a) cortex ex vivo and—more importantly—also in vivo. This
will continue to be an integral step toward individual-specific
microanatomical brain maps, with the great potential to make
direct correlations between microstructure and function in liv-
ing human brains.

Spatial Smoothing: A Critique

Using MRI and BOLD contrast, Kwong et al. (1992) local-
ized functional activity in the human brain with a much better
spatial resolution than O-15 PET, MRI’s functional precursor.
With the advent of fMRI, the inadequacy of gross sulcal and
gyral brain anatomy for precise location of specific cortical
areas became much more apparent. Cortical areas are defined
cytoarchitecturally only in cadaver brains, but human brains
naturally show considerable variability, both in the pattern
of sulcal folding and generally in the relative locations of cor-
tical areas on the sulci and gyri. While some areas such as pri-
mary visual or primary motor cortex are quite well defined by
their sulcal location (Fischl, 2013; Fischl et al., 2008), their
spatial extent can still vary dramatically across subjects.
Since MRI data were then incapable of defining cortical fea-
tures, the spatial localization of brain activity was initially
specified using the work of Talairach and Tournoux (1988),
who projected the cytoarchitecturally defined Brodmann
areas onto the external cortex of the brain of an elderly French
woman. The usefulness of this work lay mainly in the defini-
tion of a three-dimensional coordinate system, which could be
used to suggest locations of Brodmann areas in other brains.
The invention of MRI by Mansfield and Lauterbur in the
early 1970s made it feasible to project this Talairach map
onto any desired living brain, which could be scanned with
a spatial resolution of about 1 mm by the time of Kwong’s dis-
covery in the early 1990s. The coordinate system defined by
Talairach was subsequently replaced by Montreal Neurologi-
cal Institute (MNI) coordinates (Le Goualher et al., 1999).

Leading imaging neuroscience laboratories, such as the FIL
in London, then developed the now-current methodology,
which attempts to link brain location, neuroanatomy, and
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function at a spatial scale of about 8 mm—which is about as
close as anyone dared to expect that corresponding cortical
areas could be located across brains. The strategy of spatial
smoothing, using a Gaussian smoothing kernel of typically
about 8 mm, was fundamental to this approach. This had the fol-
lowing very important benefits: (1) it often considerably im-
proved the SNR of functional data; (2) it enabled very simple
analytic equations (Worsley et al., 1992) to be used for assessing
the statistical significance of measured brain activity, and thus
for thresholding the resulting group images to provide spatial ac-
tivation maps; and (3) after structural brain images had been
spatially normalized into a standard template brain registered
within MNI space, smoothing enabled the residual mismatch
of actual cortical areas, so that positive results could be antici-
pated from group averaging across normalized brains.

Such maps could then be interpreted in relation to the psy-
chological task paradigm experienced by the human subjects,
and discussed in the context of the rapidly growing body of
results obtained using a similar strategy. From this perspec-
tive, it is clear that at the time of discovery of BOLD fMRI in
the early 1990s, the methodology just outlined was driven by
necessity. MRI scanner resolution for structural in-vivo brain
images was about 1 mm, unable to resolve details within the
3 mm thickness of the cortex, and BOLD functional imaging
could provide adequate quality images with no better than
3 mm isotropic resolution. In 1995, affordable lab computers
required 30 min or more to analyze time series of fMRI even
with the simplistic methods for assessing significance that
were then recommended. MRI using any type of sequence
has never been good at depicting variations in cortical
cytoarchitecture, and very few researchers were aware in
1992 that it could be made quite sensitive to myeloarchitec-
tural details (Clark et al., 1992).

The situation these days is very different: (1) scanners with
a field strength of 3T and higher, along with vastly more sen-
sitive phased array RF receiver coils, give much improved
sensitivity, so that enough contrast-to-noise ratio is often
available without spatial smoothing; (2) by virtue of Moore’s
Law, 18 years of improvement in computer speed and capac-
ity have made practicable many alternative methods for
assessing statistical significance (such as correct implementa-
tions of False Discovery Rate), rendering spatial smoothing
unnecessary; and (3) a deeper understanding of the importance
and scope of myeloarchitecture enables identification of corti-
cal areas within each human subject, so that smoothing is in-
creasingly unnecessary to ensure overlap across subjects.

To illustrate the weakness of traditional methods for analy-
sis of fMRI data, we summarize important human brain char-
acteristics, and review and critique the implicit and explicit
assumptions embedded within these traditional methods.
Several of the papers in the 2014 Neuroimage Special Issue
show that relatively detailed parcellation of the cortex can
be performed into regions comparable to those identified by
Brodmann, which can then plausibly be taken as brain compo-
nents with definable processing competences (see also Bridge
et al., 2005, and Sánchez-Panchuelo et al., 2012). We outline
the crucial features of more suitable analysis and richer mod-
eling strategies based on such components, and finally discuss
the multiple benefits of such a scientific paradigm shift for
understanding human brain function.

As a reminder of what a human brain is really like, there
are about 1011 neurons, about 1011 glial cells, and on the

order of 1014 synaptic connections (cf. Lent et al., 2012).
The cerebral cortex can be parcellated into probably more
than 100 areas of recognizably different cyto- and mye-
loarchitecture. Each area is axonally connected to at least
10 other areas, and to several thalamic nuclei, basal ganglia,
and specific cerebellar regions. Many cortical areas have
sharp boundaries (less than 1 mm in thickness), and since
brain areas and even sparsely encoding separate neurons
can be selectively activated by appropriate combinations of
stimuli, brain activity cannot be assumed in general to be
spatially smooth. However, for most tasks, many brain
areas are jointly in operation, due to the intense connectivity.
No neurons are more than about eight synapses apart, and
most are separated by no more than five synapses.

Significant local activity takes place on time scales from
1 msec to minutes and days, and inter-area transit times for ac-
tion potentials are about 10–50 msec. The brain itself is nonsta-
tionary: its connections are dynamic. A stationary brain would
be useless to its organism. The strengths of synaptic connec-
tions are continually changing and the concentration patterns
of modulatory neurotransmitters, neuropeptides, and corticoste-
roids, which strongly modulate brain network activity, vary di-
urnally and with situations. New dendrites and terminal axons
are continually growing and new synapses are being formed;
while simultaneously other synapses are lost, dendrites are reab-
sorbed, and neurons die.

Thus, the facts that stable, reproducible neurovascular
responses to carefully controlled tasks can be observed, and
that these can be replicated across subjects, should be consid-
ered somewhat surprising, and in themselves worthy of scien-
tific curiosity. That many tasks require concerted activity
among large assemblages of neurons is clearly evident, but
this should not exclude the possibility that increased (or de-
creased) task-related activity of small numbers of neurons,
perhaps spatially distributed, may have an enormous impact
on how a task is performed.

Readers also need to be reminded of certain biophysical
facts regarding brain activity, and its detection with MRI
techniques. Gray matter has an energy demand (and corre-
sponding blood volume) about four times greater than that
of white matter. This energy demand is supplied by glucose
and oxygen in blood delivered by capillaries and terminal ar-
terioles, branching almost entirely from arteries lying on the
pial surfaces. Blood that has delivered these metabolic sub-
strates is drained from the cortex by pial veins (Turner,
2002). Since the BOLD signal is proportional to the blood
volume in each voxel, as well as to the change in blood oxy-
genation (Menon et al., 1995), one can expect much larger
changes in BOLD signal to arise from the cortex, especially
at the cortical surface, than in white matter. It is, thus, a good
assumption that apparently activated voxels lying in white
matter, cerebrospinal fluid (CSF), or bone are, in fact, false
positives. As regards the smoothness of the BOLD signal,
since the cortex is never more than 4 mm thick, the maximum
spatial smoothness that can be expected in the trans-cortical
direction is this value, 4 mm. In fact, rapid spatial variations
of BOLD signal have been reliably observed over shorter
distances—across cortical layers (Koopmans et al., 2010)
and cortical columns (Yacoub et al., 2008). It might be
expected that that the draining vein effect (Turner, 2002)
might blur out such high spatial frequency effects—but the
surface veins carrying deoxygenated blood that could give
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rise to spurious signals are relatively discrete and can, thus,
be edited out of the image (Yacoub et al., 2008). It should
be mentioned that this may entail loss of some more local-
ized activity arising from cortical capillaries. Boundaries be-
tween cortical areas are often narrower than the cortical
thickness, and tracking BOLD activation time courses across
voxels often shows abrupt changes at such cortical bound-
aries. The point-spread function of BOLD within the primary
visual cortex has been measured to be less than 2 mm full-
width half maximum (Shmuel et al., 2007). Statistically
based estimates of the spatial smoothness of BOLD activa-
tion (Kiebel, 1999) entirely fail to take account of the physics
of brain tissue and of the MRI acquisition.

Typical in-vivo MRI and fMRI image parameters,
as used in standard functional studies in magnetic
fields of 3T and below

In the late 1990s, most labs studying brain function using
MRI converged on a standard protocol for imaging. This was
especially helpful for cognitive neuroscience studies of per-
ception, cognition, and motor control, because it made rea-
sonably good use of the current MR scanner capabilities,
and enabled straightforward comparisons to be made be-
tween studies performed at different laboratories. While
some variations on this theme continue to be used, in relation
to specialized hypotheses and specific brain areas (such as
early visual areas), a convention was rapidly agreed on. In
broad terms, this consists of acquisition of structural images
of entire volunteer subject brains with 1 mm isotropic resolu-
tion, using the T1-weighted magnetization prepared rapid
acquisition gradient-echo MRI sequence, followed by acqui-
sition of functional data using gradient-echo echo-planar im-
aging sensitive to BOLD contrast, at about 3 mm isotropic
resolution.

The 1 mm isotropic resolution structural images are often
used for voxel-based morphometry (VBM) studies of com-
parative morphometry (Ashburner and Friston, 2000), and
recently especially for exploring neural plasticity. Seg-
mented gray matter images are usually smoothed using a
Gaussian kernel of approximately 10 mm, in order to con-
struct a fictitious parameter described as ‘‘grey matter densi-
ty,’’ which can be compared across the appropriately
normalized brains of a group of subjects using standard sta-
tistical tests relying on Gaussian Random Field theory. It can
be mentioned here that this construction of gray matter den-
sity results in an inextricable confounding of cortical thick-
ness and the intensity of gray matter signal, known to
reflect myelin density in T1-weighted and T2*-weighted im-
ages. Thus, there is no way of knowing whether inter-group
differences found in VBM result from differences in cortical
thickness or cortical myelination.

The functional images are analyzed using the apparatus of
the Design Matrix and the general linear model (GLM) (Fris-
ton et al., 1995). As described earlier, spatial smoothing is an
integral feature of this analysis strategy.

Current analysis methods are unable to make effective
use of ultra-high field-MRI data

Since 1995, the number of cognitive neuroscience studies
that utilize neuroimaging techniques has increased exponen-
tially. Between 1995 and 2000, a very widespread consensus

emerged regarding acceptable strategies for analysis of fMRI
data, led by the work of Friston at the Institute of Neurology in
London. These strategies were embodied in software packages
such as SPM (Ashburner, 2012), FSL (Jenkinson et al., 2012),
and BrainVoyager (Goebel, 2012). It was clearly of great ben-
efit to this young research field to have such consensus, but it
can now be argued that this was often a case of premature clo-
sure, given the continual improvement in the brain image data
available. AFNI (Cox and Hyde, 1997) is a laudable example
of a package that allows the researcher a wider range of
choices of strategy. However, this requires much greater detail
to be supplied of the guiding assumptions when the results of
analysis are reported, and a consensus has yet to be reached of
the most appropriate strategy.

To make this explicit, let us consider the stages of data
analysis that are recommended in using SPM8 for a standard
neurocognitive study. The first step is, of course, to acquire
the fMRI data, as a series of 300–600 brain volumes, each
taking about 2 sec to acquire, while a well-controlled brain
task is performed. It is considered that results which can be
generalized to a subject group or an entire population require
scanning about 16 subjects, a number just large enough to en-
able estimation of inter-subject variance.

The next steps in analysis immediately involve a set of ex-
plicit and implicit assumptions regarding brain mechanisms
and brain spatial organization. This set of assumptions is
commonly adopted (whether they are aware of it or not) by
users of all data analysis packages, such as SPM, FSL, that
use spatial smoothing and probabilistic atlases.

Problematic assumptions of standard fMRI analysis

Smoothing is required for statistical inference. It is com-
monly assumed that statistical inference using fMRI data can
only be performed if the image is smoothed by a kernel thrice
the size of the acquired voxels. Gaussian Random Field the-
ory requires such smoothness for valid estimation of the sta-
tistical significance of brain activations. With the standard
acquisition voxels of about 3 mm, this means that a smooth-
ing of 8 mm or more is usually applied. The result, after sta-
tistical thresholding, is generally a relatively formless blob of
voxels that are considered functionally active. Since the pe-
rimeter of such blobs is anatomically meaningless, only the
points at which significance is maximal are usually reported.
The time course of activity at such points is considered to
summarize the activity of the entire blob.

One implication of this assumption is the tacit acceptance
of the idea that Neural Mass Modeling (Friston, 2008) is
valid everywhere in the brain, at a scale of 8 mm or more.
Instead of modeling individual neurons, this approach ap-
proximates a group of neurons by its average properties
and interactions. This raises the important neurophysiologi-
cal question: Is there a spatial scale for which Neural Mass
Modeling might be reliably valid? Spatial smoothing lumps
together the highly specific and well-localized task-related
changes of blood oxygenation observable with fMRI, such
that only the locations of the maxima of the thresholded
smoothed map of t-scores are attributed any physical mean-
ing. If Neural Mass Modeling were valid on a spatial scale of
8 mm, smoothing on this scale might be appropriate, but
there is compelling evidence that this assumption is gener-
ally incorrect. To take but a few examples, a columnar
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structure with a scale of 1 mm or less is found in primary
visual and somatosensory cortices, where the perceptually
relevant ‘‘neural fields’’ are certainly smaller than 1 mm in
extent; and the brain is equipped with many spatially orga-
nized maps, again with a scale of 1 mm, such as the retino-
topic, tonotopic, and somatotopic maps in the cortex and
thalamus. Smoothing to 8 mm is likely to obscure this func-
tionally crucial detail, and the common practice of smooth-
ing data of individual subjects before they are even
examined by the experimenter means that one would never
be aware of this problem.

When data are smooth enough that the residuals after fit-
ting to some model can be described as a Gaussian Random
Field, the Worsley et al. (1992) formula enables a very robust
and computationally quick evaluation of significance. Given
the vast amount of data to be analyzed in a typical fMRI ex-
periment, the speed of this operation was very appealing in
the mid 1990s.

However, can statistical inference be performed without
smoothing? The answer is, yes, of course. The basis of all
statistical inference is repeated measures, which enables
the computation of the mean and the variance of each mea-
sured variable. A normal fMRI experiment, consisting of a
time course of hundreds of brain volumes, provides many
samples of the signal in each image voxel of the brain for
each condition, and thus, in principle, contains all the infor-
mation needed to assess significance. Spatial smoothing
might help by effectively performing a local average of the
functional signal, which would improve the SNR, and
hence sensitivity, if the noise were random and uncorrelated
across voxels. However, most of the apparently randomly
fluctuating component of the BOLD signal at a typical spatial
resolution arises from more-or-less spatially correlated vari-
ations in neuronal activity (Bianciardi et al., 2009), not from
random stochastic thermal noise.

As already mentioned, it is quick and easy to make whole-
brain statistical inferences on spatially smooth data. How-
ever, Moore’s Law and the remarkable reduction in the
cost of computing hardware mean that much more appropri-
ate, albeit more elaborate methods for assessing significance
in functional data, without smoothing, are now feasible (Lee
et al., 2012). Based mainly on the concept of False Discovery
Rate (Benjamini and Hochberg, 1995), these methods still
have to account for the fact that in comparing the intensities
of images voxel by voxel, many statistical inferences are
made simultaneously. Significance estimates should, there-
fore, be corrected for multiple comparisons, which is not
straightforward when data are not smooth.

Brain architecture is conserved across brains at a scale of
8 mm, and is defined by a probabilistic brain atlas valid for all
adult brains. The variability across brains of the relation-
ship between microarchitectonically different cortical areas
and their gross anatomical location has been well known
for more than a century (Elliot Smith, 1907). Even when
brain image volumes are normalized quite precisely using
nonlinear warping techniques, corresponding brain areas
may fail to overlap by as much as 10 mm (Geyer et al.,
1999, 2000). One increasingly popular strategy is to use
the probabilistic atlas by Eickhoff et al. (2005), which defi-
nes a set of brain areas on an internationally agreed template
brain using data from ten cadaver brains that have been

parcellated by cytoarchitecture into the equivalent of Brod-
mann areas. The probabilistic atlas depicts boundaries be-
tween areas on the template brain corresponding to the
maximum probability that a given voxel will belong to a
given brain area. However, an examination of the source
overlap maps that show the data from all ten brains reveals
that some Brodmann areas show very few concordant voxels.

Thus, it is invalid to assign a Brodmann location to the
maximum t-score from a smoothed activation—in the gen-
eral sense that it is quite improbable that in any particular
brain the peak activation actually lies within the specified
Brodmann area, whether the data have been smoothed or not.

At this point, it can be strongly emphasized that volumet-
ric cadaver brain maps of cytoarchitecture, such as the Big-
Brain (Amunts et al., 2013), are of very slender value in the
vitally important task of in-vivo cortical parcellation, for the
simple reason that while MRI is exquisitely sensitive to var-
iations in cortical myelination, it is almost incapable of dis-
criminating cytoarchitecture. While it may sometimes be
useful to access digitally the cytoarchitecture of some mor-
phologically defined region in the single cadaver BigBrain
that was assembled from histological slices, this work falls
far short of the requisite cortical parcellation concordance
atlas which could have been compiled decades ago.

The importance of a given brain area for a specific task is
indicated only by a positive mean activity, on a scale of 8 mm.
Most BOLD fMRI cognitive studies show thresholded maps
of the positive BOLD signal, along with tables of activation
maxima in MNI space. However, pattern classification tech-
niques can decode reliably from patterns of scale 1 mm
(Bode et al., 2011), which include decreases of BOLD signal
as well as increases. It should not be surprising that localized
decreases of neuronal activity in a given cortical area should
have informational relevance for other brain areas.

Lateral inhibition (reviewed in Beck and Hallett, 2011;
von Békésy, 1967) is a well-known neural strategy that en-
hances edge detection and focuses spatial attention, for in-
stance, in the visual system. It is not known how often a
brain typically uses such a means of attentional focusing.
For a small area of activation, smoothing by 8 mm is likely
to include an area of negative BOLD corresponding to lateral
inhibition, and thus reduce the apparent amplitude of the ac-
tivation. For instance, in the primary visual cortex, regions of
positive BOLD activation are usually surrounded by a ring of
negative BOLD signals, over cortical distance scales of sev-
eral millimeters (Shmuel et al., 2006). Obscuration of this
ring by smoothing incurs the obvious risk that a vital compo-
nent of the mechanism of vision will remain undiscovered
(see also Harvey et al., 2013).

Activity in any given brain voxel is statistically independent
from any other brain voxel. Many fMRI analyses, whether
using SPM, FSL, AFNI, or BrainVoyager, are conducted
using the GLM, which treats each image voxel as indepen-
dent, except insofar as the image is spatially smooth. The so-
lution of the GLM entails formulation of a Design Matrix,
which includes time series of all covariates of interest and
of no interest. Computation of the pseudo-inverse of the de-
sign matrix then provides least-squares-fit best estimates of
the linear dependences (betas) of the data time course in
each voxel on the covariates of interest and of no interest.
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To estimate the statistical significance of the coefficients of
variation thus obtained, spatial smoothness should be taken
into account. In SPM, this is estimated statistically from
the residuals after the GLM fit, and its value is used in cor-
recting the final voxel-by-voxel significance estimates for
multiple comparisons. Once this has been performed, cluster
size can be used to obtain an additional estimation of signif-
icance, which clearly enables the use of lower values for the
z-score or t-score in computing significance thresholds.

The GLM has proved to be a very powerful tool in objec-
tively identifying brain regions in which significant changes
in BOLD contrast take place in controlled experimental
conditions (Monti, 2011). However, at a conceptual level,
its validity is fundamentally compromised by the well-
established fact that a brain (of any species) is intrinsically
multivariate in operation. It is the very dependence of activ-
ity in one group of neurons on the activity in a different
group of neurons that enables a brain to function. Even the
brain of a fly is intrinsically multivariate in operation. Any
neuron projects to several other neurons, often in a variety
of areas. Synchronized synaptic input at any neuron from
many other neurons is required to trigger delivery of an ac-
tion potential. Analyses that ignore these trivially obvious
facts will never be capable of providing insights into brain
mechanisms.

Attempts to include spatial covariance using graph theory
with an artifactually small number of nodes, such as
Dynamic Causal Modeling (critiqued by Lohmann et al.,
2012) or Granger Causality (Goebel et al., 2003), are un-
likely to do justice to the complex detail of neural perfor-
mance. Recent work using unusually long averaging times
per volunteer subject in a simple fMRI study have shown
that time-locked activity can be detected in 95% of gray mat-
ter voxels, when the data are not smoothed (Gonzalez-
Castillo et al., 2012). This result suggests that conventional
fMRI analyses are likely to incur a very large number of
false negative findings. The appearance of simplicity pro-
vided by spatial smoothing and conservative thresholding
of fMRI data may be highly misleading.

Fortunately, as mentioned earlier, multivariate analytic
techniques—brain decoding—have recently come to the
forefront (Formisano and Kriegeskorte, 2012; Kriegeskorte
et al., 2006) and offer access to coordinated spatial patterns
of brain activity, which manifest themselves most particu-
larly in the numerous cortical maps (retinotopic, tonotopic,
and somatotopic maps) in which variations in perceptual
parameters become spatially encoded in brain networks. In
such analyses, spatial smoothing is rarely explicitly per-
formed, though an effective smoothing is implicit in
‘‘searchlight’’ methods for pattern classification (Kriege-
skorte et al., 2006). It should be pointed out that such tech-
niques would produce no results if the activity in each
voxel was uncorrelated.

Gray matter, white matter, and CSF are considered equally
likely, as possible locations of changed brain activity. After
BOLD fMRI data have been spatially smoothed by 8 mm,
analyzed and the resulting t-statistic map has been thresh-
olded (typically at p < 0.05 corrected for multiple compari-
sons), it is usually overlaid on a high-resolution gray-scale
T1-weighted image of the brain, inviting assignment of the
spatial localization of the activations found. Sadly, the acti-

vated region usually then has the topology of a distorted
sphere, rather than the *3 mm thick curved surface corre-
sponding to the cortical gray matter. Thus, it is inevitable
that many voxels in the high-resolution map which are
CSF, bone, or white matter are then labeled as a part of the
activated region. In point of fact, all such voxels are false
positives: there can be no activation in them.

If a given voxel’s task-related variance is smaller than a
statistical threshold of p < 0.05, after correction for multiple com-
parisons, it can play no role in the task performance. This as-
sumption infringes one of the fundamental principles of
experimental science: Absence of evidence does not constitute
evidence of absence. The just-cited paper of Gonzalez-Castillo
et al. (2012) shows that at least for some experimental para-
digms, longer data collection and averaging of more samples
reveals activation in a much greater number of voxels. The
critical question arises, by what criteria can it be decided
which of these voxels are most important for the performance
of the given experimental task? Should an activated region of
limited extent, but strong BOLD contrast, so that when spa-
tially smoothed it expands over a wide area, be considered
more vital to some task performance than a much larger area
of voxels with activations which fail to reach the arbitrary
threshold of p < 0.05 corrected?

It can be strongly argued that attempting model fits to data
with many false negatives is just as pointless as trying to fit
data with many false positives (as with Assumption 5).

The position of the maximum t-score of a thresholded
activated area completely defines its localization. It is cus-
tomary to display fMRI results in tabular form, giving coor-
dinates of maximal activation in MNI space. With the typical
8 mm spatial smoothing, this maximum will be located close
to the centroid of the activated volume. Any other spatial pa-
rameters of the activated area are very difficult to interpret
anatomically, particularly when much of the thresholded vol-
ume fails even to lie within gray matter. However, especially
when group average data are considered, the maximum
t-score itself may lie in a part of the brain that cannot be iden-
tified with any particular cortical area. For example, if the
crown of a gyrus and each of its banks are activated in
some particular study, the maximum will lie in white matter
somewhere within the gyrus, where there is, in fact, no
change of BOLD contrast. If one of the goals of functional
neuroimaging is to associate function with specific brain ar-
chitecture, the MNI coordinates cited in such a study can pro-
vide no useful information whatever.

It should be noted that the strategies criticized here have
generally been restricted to imaging studies related to cogni-
tive neuroscience and human subjects. Even in humans, there
is an extensive body of fMRI research, beginning with the
retinotopic studies of Engel et al. (1994), that has explored
the functional anatomy of occipital cortex using little or no
smoothing, and group data were combined after separate de-
tailed analysis of the data from each subject. The same is true
for many fMRI studies of animal brain, ranging from rat
(Silva et al., 1999) to cat (Zhao et al., 2006), to macaque
brain (Logothetis et al., 1999). In such studies, it has been
vital to respect the distinction between spatial extent and am-
plitude, and the underlying neuroanatomy is typically suffi-
ciently well understood that there is no likelihood of
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conflating distinct brain regions. Thus, the difficulties that
have encouraged reckless smoothing have mainly arisen
when the so-called ‘‘higher’’ brain functions of humans—
cognition, emotion, attention, and language—have been the
object of study.

Keys to New Analysis Methods

A more powerful strategy is clearly desirable for neuroi-
maging studies of human cognition. One important concept
might be the idea of ‘‘cortical competence,’’ that is, the de-
scription of the relationship between input and output
streams of action potentials for any given clearly identifiable
area of cortex—and for completeness, the linked concept of
‘‘nuclear competence,’’ with regard to the deep brain nuclei
such as the thalamic nuclei and the basal ganglia. The ex-
plicit assumption is made, following the great 20th century
neuroanatomists, that myeloarchitecture and cytoarchitec-
ture are not epiphenomenal, as one might gather from con-
temporary research publications, but are closely related to
the transformational properties of specific areas. A careful
study of cyto- and myeloarchitecture may afford important
clues regarding such competences. The fact that some details
of myeloarchitecture can be observed in vivo, and correlated
with task-related activation, invites attempts at interpretation
of why it varies across cortical areas.

We suggest the following routine procedures to replace
existing conventions, in order to facilitate the mechanistic
modeling of the functional roles of specific well defined cor-
tical areas: (1) in-vivo brain imaging at a submillimeter res-
olution of structure, function, and connectivity; (2) in-vivo
cortical parcellation; (3) voxel encoding (Huth et al., 2012;
Vu et al., 2011) or multivariate analysis; and (4) across-subject
averaging by anatomically defined regions of interest. This
latter operation can be greatly assisted by the use of surface
cortical registration driven by the matching of cortical T1
maps. This has been shown to align equivalent heavily my-
elinated cortical areas across subjects with remarkable pre-
cision (Tardif et al., 2013). Figure 1 (provided by Tardif)

shows the result of such a surface alignment based on T1
maps, for an average of five brains, scanned at 0.5 mm iso-
tropic resolution at 7T. Here, the surfaces at each of four
cortical depths, calculated using the methods of Waehnert
et al. (2014), have been separately aligned across the five
subjects. A great deal of conserved myeloarchitectural de-
tail can be seen, which will enable a quite specific assign-
ment of functional activity to known cortical areas.

In the analysis of functional data, it should be noted that
spatial smoothing should be strictly avoided, except possibly
at the final stage of presentation of data after analysis—and
then only within the cortical sheet. This approach clearly en-
ables a much closer association of function and connectivity
with each distinct cortical and deep brain area. Obvious ad-
vantages are the greatly increased statistical power provided
by the region-of-interest analysis across subjects, and the
continued separation of spatial extent and amplitude as inde-
pendent variables.

It is important to recognize that cognitive neuroscientific
analysis of human brain function could be productive at a
much coarser spatial scale. However, such understanding can
only be validated once it has become clear what approxima-
tions a coarse-grain approach entails, and what justifies the
ignoring of neuroanatomical details. So far, high-resolution
functional studies of animal brain have offered little support
for the sweeping generalizations inherent in Neural Mass
Modeling at the spatial scale of 8 mm.

Beyond this, fundamental research on the neuroscience of
cognition should progress far more rapidly when cortical
areas supporting specific psychological tasks can be more
unambiguously identified. Currently, standard functional
image analysis methodology is unable even to assign brain
activity to a particular bank of a sulcus, once averaging has
been performed across human brains. The great power of
spatial mapping of brain activity for understanding when dif-
ferently labeled tasks are, in fact, the same, and when appar-
ently similar tasks are actually dissociated, can only be used
to its fullest when the neuronal substrate of brain functional
activity has been properly identified. Meta-analysis, already

FIG. 1. Group averaged human brain in-vivo T1 map (n = 5) at different cortical depths, from the gray/white boundary to
the pial surface. The T1 contrast between cortical areas varies with cortical depth, and reveals evidence of area-specific mye-
loarchitecture. Computed from images acquired at 0.6 mm isotropic resolution at 7T, using the MP2RAGE imaging sequence
(Data provided by Tardif). See Tardif et al. (2013) for details.
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showing great promise, should really take off when such cor-
relations have even been partly established.
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Schüz A, Braitenberg V. 2002. The human cortical white matter:
quantitative aspects of cortico-cortical long-range connectiv-
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