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ABSTRACT
The underlying pathogenesis of type-II diabetes mellitus is in the dysfunc-

tion and selective loss of pancreatic islet b-cells, which ultimately leads to

underproduction of endogenous insulin. Amylin, a 37-amino-acid human

hormone that is cosecreted with insulin, helps regulate gastric emptying and

maintain blood glucose homeostasis through improved postprandial satiety.

It is hypothesized that amylin protofibrils cause selective loss of pancreatic

b-cells in a manner similar to amyloid b aggregation in Alzheimer’s disease.

b-Cell death occurs in vitro when isolated human or rodent b-cells are

exposed to micromolar concentrations of amylin, but the exact mechanism

of selective b-cell loss in vivo remains unknown. Therefore, pursuing small-

molecule drug discovery for chemoprotectants of amylin-induced b-cell

toxicity is a viable phenotypic target that can lead to potential pharma-

cotherapies for the preservation of b-cell mass, delaying insulin dependence

and allowing additional opportunities for lifestyle intervention. Additionally,

chronic endoplasmic reticulum (ER) stress induced by chronic hyperglycemia

and hyperlipidemia is a potentiating factor of amylin-induced b-cell loss.

Herein, we describe a high-content/high-throughput screening (HTS) assay

for the discovery of small molecules that are chemoprotective of amylin-

induced, ER-stress-potentiated b-cell loss. We also put forth a general

method for construction of a robust well-level multivariate scoring system

using partial least squares regression analysis to improve high-content assay

performance and to streamline the association of complex high-content

data into HTS activity databases where univariate responses are typical.

INTRODUCTION

D
iabetes affects *8% of the U.S. population totaling $178

billion annually in federal healthcare costs. The current

prediction is that one-third of the U.S. population will

develop type 2 diabetes (T2D) in their lifetime.1,2 Diabetes

also causes debilitating and costly complications, including neu-

ropathy and nephropathy, and increases risks for limb amputation

and other diseases, including cardiovascular disease.

The b-Cell and Diabetes
b-Cells of the pancreatic islets secrete insulin in response to glu-

cose and other nutrients. During T2D, the pancreas is unable to

produce sufficient amounts of insulin to maintain blood glucose

homeostasis. Insulin deficiency in both type 1 diabetes (T1D) and T2D

is characterized by a significant reduction in b-cell mass. The un-

derlying pathogenesis of T2D is in the dysfunction and selective loss

of pancreatic islet b-cells, which ultimately leads to underproduction

of endogenous insulin. While T1D results from an autoimmune attack

on the b-cells,3 in T2D, numerous factors, such as obesity, insulin

resistance, hyperinsulinemia, hyperglycemia, and hyperlipidemia,

can lead to cellular stress or toxic cellular environments that result in

a decrease in b-cell number and function.4 The combination of hy-

perglycemia and hyperlipidemia is referred to as glucolipotoxicity,

and it is most common in patients with T2D. The exact mechanism(s)

of glucolipotoxicity in human islets is unclear,5–7 but it involves

induction of endoplasmic reticulum (ER) stress, increased apoptosis,

and decreased islet function.5,6 Loss of the pancreatic b-cells is the

underlying cause of all diabetes, resulting in a loss or considerable

reduction in insulin production.3,4 Innovative and efficacious ther-

apies to prevent b-cell loss are urgently needed to prevent the pro-

gression to insulin-dependent type-II diabetes mellitus and to allow

additional time for lifestyle intervention.

Current Therapies
The main pharmacological approach for treating T1D is insulin-

replacement therapy via multiple injections daily or by insulin pump.

For T2D, there is primarily a focus on the use of insulin sensitizers

(e.g., metformin and thiazolidinediones [TZDs]), incretin mimetics

(e.g., GLP1R agonists such as Exenatide), DPP-IV inhibitors (to raise

endogenous levels of active GLP1), various insulin secretagogues,

and insulin injections. Despite these different classes of drugs for the

treatment of T2D, only *36% of diabetic patients achieve the A1c

goal of £ 7%8; unresponsiveness to treatment hastens the progression
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to insulin dependence through b-cell loss. Thus, current therapies

do not effectively target the underlying loss of b-cell mass. There is

significant need to discover therapies that can (1) prevent b-cell loss,

and (2) increase b-cell mass via stimulation of b-cell/islet growth.

Amylin Connection to Diabetes
Amylin is cosecreted with insulin and helps regulate gastric

emptying and maintain blood glucose homeostasis through im-

proved postprandial satiety.9,10 Depending on concentration, amylin

can form small b-cell-toxic aggregates called protofibrils. These fi-

brils can form either intracellularly or extracellularly with intracel-

lular toxic concentrations several orders of magnitude less than

extracellular.11 It has been suggested that irregularities arising dur-

ing the synthesis, folding, and processing of amylin cause amyloid

formation.12 Interestingly, amylin’s propensity to form fibrils and

amyloids is linked to its amino acid sequence. While human amylin

can be toxic, amylin isolated from rodents is nontoxic and does

not form fibrils, nor amyloids. Westermark et al. published that

the amino acids in the positions 25–29 are responsible for amylin

amyloidogenic nature.13 This region is highly variant between hu-

mans and rodents; a proline substitution at serine 28 is responsible

for nontoxic nature of rodent amylin.13,14 However, transgenic ro-

dents with human amylin have been shown to undergo spontaneous

diabetes and show b-cell loss.14 b-Cell death also occurs in vitro when

isolated human or rodent b-cells are exposed to micromolar con-

centrations of amylin, but the exact mechanism of selective b-cell

loss remains unknown. Therefore, pursuing small-molecule drug

discovery for chemoprotectants of amylin-induced b-cell toxicity is a

viable phenotypic target that can lead to potential pharmacotherapies

for the preservation of b-cell mass, delaying insulin dependence and

allowing additional opportunities for lifestyle intervention. Addi-

tionally, chronic ER stress induced by chronic hyperglycemia and

hyperlipidemia is a potentiating factor of amylin-induced b-cell

loss.15,16 Herein, we describe a high-content/high-throughput screening

(HTS) assay for the discovery of small molecules that are chemo-

protective of amylin-induced, ER-stress-potentiated b-cell loss.

Increasing High-Content Information in HTS
The multivariate nature of high-content screening (HCS) end-

points poses a significant challenge for screening applications where

a single parameter/endpoint (herein the percentage of dead cells) is

typically used to select positive compounds for further analysis. In

many instances, an ideal univariate response can adequately detect

meaningful biological conditions. However, if there is no ideal/robust

single parameter or we do not know how to extract it, then additional

high-content features can be utilized in a multivariate scoring system

to improve assay performance.

A recent analysis of 118 published high-content screens by Singh

et al. showed that 60%–80% of the studies utilized only one or two

measured features of the cells.17 Underutilization of accessible in-

formation is often due to the fitting of HCS into the HTS data in-

frastructure; extracting ‘‘hits’’ from highly dimensional data can be

daunting in the screening process because a single microtiter plate

can generate over a billion data points. Principal component analysis

(PCA), a data-reduction technique that is often used in early assay

development, can help guide the screener to the most important

feature(s) by assessing where the most variance in the data set occurs.

These highly variant features are often the most relevant but they can

also reflect irrelevant biological variability, especially when the

signal-to-noise ratio is low. After discovering the most important

feature or features, screeners typically only focus on those and ignore

the vast number of other parameters in order to facilitate the merging

of biological data with chemical information in conventional HTS

software. Therefore, there is a dramatic need to increase the in-

formation content in high-content/high-throughput screens while

working within the confines of our HTS data infrastructure where

registration of hundreds of features per cell is prohibitive. Different

stages of screening and different assay types require appropriate

levels of access to high-content data spanning from a single-well-

averaged parameter to multivariate scoring of subpopulations at the

single-cell level. Large-scale rapid/single-concentration screening

necessitates a more simplistic scoring system that can guide screeners

to interesting compounds/conditions for more detailed analysis.

Herein we describe, in a simplistic, high-content cytotoxicity assay, a

general method for generating a well-averaged multivariate parameter

that can dramatically improve assay performance using partial least

squares (PLS) regression. This technique can help bridge the univari-

ate-to-multivariate gap in a conventional HTS data infrastructure

while allowing the screener appropriate access to underlying detail.

MATERIALS AND METHODS
Cells and Reagents

Rat insulinoma (INS-1) cells were graciously donated by Christo-

pher Newgard at Duke University. INS-1 cells were cultured ac-

cording to ATCC guidelines with RPMI-1640 growth medium (Sigma

No. r8758), supplemented with 10% FBS, 1% P/S, 1% HEPES, and 1%

INS supplements: 10 mM HEPES, 2 mM glutamine, 1 mM sodium

pyruvate, and 0.05 mM 2-mercaptoethanol (all concentrations are

final). This INS-1 stable cell line was expanded to generate a master

cell bank for HCS. Cryogenically preserved stocks were made at the

same passage number with *2 · 106 cells per 1-mL tube in cryo-

preservation media consisting of growth media supplemented with

5% dimethyl sulfoxide (DMSO).

A 10 mg/mL stock of tunicamycin was prepared by dissolving

10 mg of tunicamycin in 1 mL of DMSO (tunicamycin, Enzo Life

Sciences Cat No. BML-CC104-0010). A 4 mg/mL solution of amylin

was prepared fresh in autoclaved ddH2O (Bachem, H-7905).

NuPage Novex 12% Bis-Tris gradient gels were used (Life Tech-

nologies, Grand Island, NY) for SDS-PAGE analysis and multiplexed

western blotting was performed using a LiCor Odyssey imaging

platform. The rabbit anti-BiP monoclonal antibody (C50B12) was

purchased from Cell Signaling Technology (Danvers, MA) and used at

1:1,000 dilution. The mouse anti-b-tubulin monoclonal antibody

(T5201) was purchased from Sigma-Aldrich (St. Louis, MO) and used

at 1:15,000 dilution. Secondary antibodies were purchased from Li-

Cor and used at the manufacturer-recommended dilutions.
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High-Content Viability Assay Overview
The amylin-induced toxicity assay was developed in 384-well

format with a final assay volume of 56 mL. Cellular health/viability

was assessed using a cell-permeant nucleic acid stain to label all cells

(Hoechst 33342), and a cell-impermeant nucleic acid stain (YoYo-1)

to label dead/membrane-permeable cells. This staining was followed

by fixation to preserve the viability signal. The goal of this assay is to

detect compounds that can be protective/overcome amylin/ER stress

toxicity, to provide chemical probes to further the understanding

of islet-specific amylin toxicity, and to discover compounds with

clinical translational potential for preserving b-cell mass in the

progression of T2D. As a measure of cellular toxicity, total cell

counts, live/dead ratio, DNA content, and nuclear morphology were

all assessed. Positive-compound effects manifest in high cell counts,

high live/dead ratio, normal DNA content (i.e., not sub-G0), and

smooth nuclear morphology. Assay timing is as follows. Day 1: cells

are plated and allowed to attach overnight. Day 2: a cocktail of

amylin/tunicamycin is added and immediately followed by screening-

compound addition using a 50-nL pintool array; the cell plate was

then allowed to incubate for 24-h. Day 3: live-cell plates were stained

with Hoechst-33342 and YoYo-1 and allowed to incubate for 45 min

prior to fixation and imaging (Table 1).

Cell Plating
The 384-well poly-D-lysine-coated, NUNC black/clear bottom

tissue-culture-treated imaging plates (NUNC No. 152029) were used

for the assay. Cells were thawed from freezer-stocks, counted using

a Vi-Cell XR (Beckman-Coulter, Brea, CA), and diluted to a final

concentration of 0.083 · 106 viable cells/mL. Twenty microliters of

prewarmed growth medium was added to each well using a Muti-

drop-384 (Thermo/Fisher) with a sterile head before depositing 30 mL

of cell suspension (2,500 viable cells/well) into each well. The cell

plates were then allowed to attach overnight in the incubator.

Amylin and Tunicamycin Addition
To stimulate physiologically relevant ER stress potentiation of

amylin toxicity, a combination of tunicamycin and amylin peptide

was used to achieve *80% cell death. In positive-control wells in the

assay plates, the amylin/tunicamycin solution was omitted and cells

were highly viable. Tunicamycin was diluted to a 100 mg/mL stock in

DMSO. About 2.5 mL of this tunicamycin stock was added to each well

using a repeating pipette. Amylin was diluted to a 256 mM stock in

autoclaved water and added to each well via a multichannel pipettor.

The final concentration of amylin in each well was 20 mM. The final

assay volume was 56 mL. These plates were incubated at 37�C for 24 h.

The tunicamycin/amylin solution was added to all wells in columns

1–22 and was omitted in positive-control wells in columns 23 and 24.

Compound Libraries and Delivery
Two highly annotated small-molecule libraries were used for pilot

screening purposes, including an 1120-molecule, FDA-approved drug

set (Prestwick Chemical Library�) and 502 purified natural products

(Enzo Life Sciences). Compounds were stored in 5-mL aliquots in 384-

well Axygen rigid PCR plates at 1000· concentration for both single-

point/rapid screening and dose–response confirmation. Compounds

were applied to cell plates with a Biomek NX workstation (Beckman-

Coulter, Brea, CA) equipped with a 50-nL pintool array (V&P Scientific,

San Diego, CA) for an approximate 1,000-fold dilution, thereby

avoiding an intermediate dilution step. The final concentrations of

Prestwick library and Enzo natural product library compounds were 1

and 5mM, respectively, and final DMSO concentration was 0.1%.

Table 1. High-Content Assay Protocol Table

Step Parameter Value Description

1 Plate cells 30mL 2,500 INS-1 cells/well

2 Attachment time 24 h Plated cells incubated at

37�C, 5% CO2

3 Amylin/tunicamycin 6mL Amylin/tunicamycin mixture added

to columns 1–22

4 Controls 6mL DMSO control added to control

wells in columns 23 and 24

5 Library compounds 50 nL Compounds added for a direct

1,000-fold dilution

6 Incubation 24 h Cells incubated with compounds

at 37�C, 5% CO2

7 Staining agents 20 mL YoYo-1 and Hoechst added

to each well

8 Incubation time 45 min Cells incubated at 37�C, 5% CO2

during staining

9 Fixing agent 20 mL Cells fixed with 4% formaldehyde

Step Notes
1. Plated in 384-well NUNC poly-D-lysine-coated, black/clear bottom tissue-

culture-treated plates.

2. Cells were allowed to attach overnight.

3. Columns 1–2 were controls for max. dead cell signal; columns 3–21 were the

experimental wells.

4. Columns 1–2 were controls for max. dead cell signal; columns 22–24 were

control wells for min. dead signal.

5. Prestwick Chemical Library and Enzo Life Sciences natural product library

were tested. The Biomek NX workstation was used to transfer the compounds

to each plate using pintool array.

Final DMSO concentration was 0.1%.

6. The cells were incubated with the tested compounds overnight.

7. The Biomek NX workstation was used to remove media and add the staining

agents.

Pipette tip Z-coordinate was - 0.35 mm relative to liquid height during

aspiration (tips go down as liquid goes down) until 10mL liquid volume

remained. Pipette tips were offset from center to upper left corner for all

transfers.

8. The cells were incubated to allow for dye penetration for 45 min.

9. The staining agents were removed and replaced with fixing agent. The fixing

agent was incubated with the cells for 20 min before being replaced with PBS

prior to imaging.
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Staining and Fixation
Approximately 45 mL of media with compound was removed from

each well using the Biomek NX workstation leaving enough liquid

behind to wet cells. A solution of 10 mg/mL Hoechst-33342 and

50 nM YoYo-1 (Invitrogen, Carlsbad, CA) was prepared in growth

media (omitting serum and antibiotics) and 30 mL was added to each

well and then incubated for 45 min at 37�C. Thirty microliters of

media was aspirated to remove excess dye and was replaced with

30 mL of fresh 4% formaldehyde. The cell plates were incubated in

fixative for 45 min at 37�C. The cells were then washed once with PBS

using the Biomek-NX at the slowest dispense speed, sealed with

Thermo-ABgene plate sealer, and imaged on a BD Pathway 855

bioimager (Becton Dickenson, San Jose, CA).

Fluorescent Imaging
The BD Pathway 855 was used to acquire multiplexed epi-

fluorescent images in 384-well format with a 10 · /0.40 NA Olympus

UPlanSApo objective lens using the BD Attovision software. The

YoYo-1 channel (dead cells) was imaged with a 488/10-nm band-

pass excitation filter, Fura/FITC epifluorescence dichroic, and a 515-

nm long-pass emission filter. The Hoechst-33342 channel (all cells)

was imaged with a 380/10-nm band-pass excitation filter, a 400-nm

dichroic long-pass, and a 435-nm long-pass emission filter. Laser-

based autofocus was performed in each well prior to the collection of

YoYo-1 and Hoechst images. Batches of six plates were processed and

imaged at a time. Exposure times for both the YoYo-1 and Hoechst

channels were adjusted prior to each batch to ensure optimal signal-

to-noise ratio. The entire well was imaged using the BD Pathway 855

using a 4 · 5 montage with camera binning = 2.

Cell Detection, Segmentation, and Quantitation
of Nuclear Morphology

The open-source CellProfiler software was used for cell segmen-

tation, feature extraction, quantitation of signal intensities, and

tabulation of cell-level results.18 About 4 · 5 image montages for the

Hoechst and YoYo-1 channels were demontaged into 20 separate

images and background illumination correction was performed using

a 25-pixel block-size Gaussian filter on each image. Demontaged

images were coded with parental metadata (plateID and wellID) and

also with row/column metadata. Nuclei were identified in the

Hoechst/DNA image as primary objects after automatic thresholding

using the mixture of Gaussian method. Both shape and intensity

measurements were used to segment closely spaced cells in the il-

lumination-corrected demontaged images. Nuclear intensities and

shape/morphological properties were tabulated for the Hoechst and

YoYo-1 channels. A single-measurement statistical classifier was

then used to classify cells as live or dead based on the mean YoYo-1

intensity inside the nuclear mask, with high intensities indicative of

cell death/permeabilization. All cellular measurements were ex-

ported to a comma-delimited spreadsheet for data analysis. Numer-

ous YoYo-1 and Hoechst intensity and distribution features were

tabulated per-cell to achieve a comprehensive phenotypic nuclear

description to be used in the multivariate scoring system.

Multivariate Scoring System Overview
The vast majority of high-content assay endpoints when used for

HTS are often severely truncated to the most relevant one or two

factors to facilitate the merging of biological data with chemical data

in HTS database applications. This simple approach, if the univariate

parameter is not ideal, can lead to a reduction in screening efficiency

and results in false positives/negatives. However, with over 106 cells

observed per 384-well plate · 200 primary features extracted for

each cell, the incorporation of 109 data points per 384-well plate

screened into a screening database is onerous in commercially avail-

able HTS software and the majority of observed features are unim-

portant. We therefore needed a reliable data-reduction technique to

capture a reliable and informative well-averaged result for selection of

interesting conditions warranting deeper phenotypic analysis. Toward

this goal, we developed a multivariate scoring system based on well-

averaged cellular features that delivers a single score that is comprised

of *10–20 of the most important observed features. This approach

eliminates the unimportant variables and delivers a single score per

well that only includes variables that respond upon treatment in a

linear combination with scaling factors that indicate importance.

PLS Regression Analysis
PLS regression, similar to PCA, is a multivariate regression tech-

nique that can be used to relate a response (Y) variable to several

explanatory (X) variables. It can deal efficiently with high-content

data sets where many variables are highly correlated and substantial

random noise is involved. PLS was developed in the 1960s by Herman

Wold as an econometric technique and was later made popular by

Svante Wold in chemometric research.19,20 The Molecular Operating

Environment (MOE software; Chemical Computing Group, Montreal,

Canada) and JMP software (SAS, Cary, NC) were used to perform PLS

regression analysis to determine a linear combination of observed

variables that showed the strongest correlation with the positive- and

negative-control conditions. Our general workflow for PLC scoring

system development is shown in Figure 1.

Tabulated features for negative- and positive-control wells were

assigned a categorical predicted score of 0 or 1, respectively. A table

for regression analysis was constructed using 384-well-averaged

features (observed variables) and predicted scores (NC = 0, PC = 1).

The data set was randomly split 80% as a training set for model

development and 20% as a test set for model evaluation. Four sep-

arate random 80/20 splits were carried through all PLS modeling to

ensure that each random selection was a representative subset.

Iterative PLS was performed using the 80% training set and the re-

sulting models were evaluated on the 20% test set.

Eleven models for each data split were created where each model

included a different number of principal components. Briefly, a

principal component is derived from a mathematical procedure that

reduced the dimensionality of the data. The PLS procedure takes all

the cellular descriptors and generates a set of uncorrelated values,

each of which is called a principal component. We varied the number

of principal components in the model from PC = 0 to PC = 10, where

PC = 0 is the inclusion of all principal components (equal to the total
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number of cellular features/descriptors). Z-prime values were cal-

culated from the predicted scores for each model (ranging from 0% to

100% effect) and were compared with the univariate PctDead Z-

prime values.

Utilizing the INS-1 rodent pancreatic b-cell line, we observed a

marked negative synergy between amylin exposure and tunicamy-

cin-induced ER stress, indicating that they are

mechanistically linked. Typically, HTS assays se-

lect a single primary or derived parameter to re-

port for the selection of interesting compounds.

However, this method of selection may exclude

other unanticipated phenotypic effects exhibited

during screening, thus verifying the need for a

multivariate approach to capture this diversity. An

improved general method for multivariate scoring

is presented using a PLS method for hit determi-

nation in a cellular toxicity rescue assay. This assay

utilized nuclear count, cell morphology, and plas-

ma membrane permeability as endpoints and the

improved scoring system significantly impacted

the robustness and quality of screening data.

High-Throughput Screening Data Analysis
ScreenAble HTS software (ScreenAble Solu-

tions, Chapel Hill, NC) was used in the analysis of

HTS results in conjunction with Jchem chemical

database and Jchem Oracle cartridge (ChemAxon, Budapest, Hun-

gary) for chemical management and integration of biological data

with chemical structures. Multiple-well-averaged features were re-

ported back to the ScreenAble database along with classified images

(see Fig. 3D) stored as a BLOB data type within the database allowing

for registration of multiple features and rapid access to classified

images for quality control purposes and visual hit validation.

RESULTS
Amylin-Induced Cytotoxicity

Toward the development of a 384-well high-throughput assay to

ameliorate amylin-induced cytotoxicity, the dose-dependent in-

crease in cell death was quantitated with the maximum effect of 30%

cell death at 20 mM amylin concentration (Fig. 2), which is consistent

with previously published reports of in vitro amylin toxicity wherein

an exponential increase in amylin-induced cytotoxicity occurs after

reaching a critical concentration for fibrillar aggregate formation,

causing membrane blebbing and chromatin condensation.9 Interest-

ingly, there is a narrow concentration window for amylin cytoxicity

with the onset at 5mM in INS-1 cells increasing until a maximum

of*30% cell death at 20mM, where below and above this concentration

range does not favor the formation of the toxic fibrillar aggregate.

To investigate the role of clinically relevant ER stress in the con-

text of amylin-induced cytotoxicity, tunicamycin was added during

amylin exposure to induce ER stress through inhibition of protein

glycosylation. It has been previously described that ER stress is a

mechanism by which amylin induces apoptosis.21 The addition of

subtoxic concentrations of tunicamycin (10–20 mM) induces the

unfolded protein response (UPR) as detected by induction of Bip/

Grp78 expression (Fig. 2A, western blot relative to zero tunicamycin/

DMSO control). The western blot in Fig. 2A shows BiP expression (red

bands) in response to increased tunicamycin concentration with

maximal induction of UPR/ER stress at 10–20 mg/mL tunicamycin.

Wells Score Vars

PC 1 ...

NC 0 ...

Training set: 80% Test set: 20% 

Develop multivariate models 
with PLS (CL=0,  10) 

Predict the scores for both
training and test set with 

the above models  

Calculate Z’ for both training and test sets 

Wells Score Vars Wells Score Vars

...

...

PC 1

NC 0

PC 1 ...

NC 0 ...

Fig. 1. Workflow to develop multivariate models from min-max
assay development experiments. PC: the positive controls are as-
signed to have scores of 1. NC: the negative controls are assigned
to be 0. The original data table is split into two sets: 80% of the
wells are placed into the training set and the remaining 20% are
placed into the test set. Z-prime values are computed per plate
with each model generated.

Fig. 2. ER-stress-potentiated amylin cytotoxicity. (A) Western blot shows induction of
BiP (red) at 10 and 20 mg/mL indicating ER stress response and tubulin (green) as a
protein loading control. Densitometry is color coded for red and green bands in relative
fluorescent units (RFU). L denotes protein ladder, and numbers correspond to mg/mL
concentrations of tunicamycin. (B) INS-1 cells were incubated for 24 h with increasing
concentrations of amylin peptide – tunicamycin. The percentage of dead cells was
calculated by dividing the number of YoYo1-positive cells by the total number of cells
observed. Error bars represent standard error of n = 6 values.
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Tunicamycin concentrations above 20mg/mL result in cell loss/toxicity

and fail to induce the UPR likely due to transcriptional shutdown.

To recapitulate the type-II diabetic condition where amylin over-

expression accompanies insulin overexpression in the b-cell caus-

ing ER stress, we chose the combination of 20 mM amylin and 10 mM

tunicamycin as the in vitro disease model for ER-stress-mediated

amylin-induced cell death. Figure 2B shows that the addition of

subtoxic doses of tunicamycin significantly increases the live/dead

ratio from a maximum of *30% to over 60% dead, indicative of a

negative synergism (i.e., greater than additive cell death caused by

each treatment. Note: final optimized negative-control condition

resulted in 80%–90% dead cells.).

Assay Validation
With the selection of optimal concentrations and ratio of amylin

and tunicamycin, assay validation was performed to determine

suitability for HTS purposes. Initial validation attempts in 384-well

plates consisted of min-max conditions, where half the plate (192

wells for each condition) was negative control (INS-1 cells treated

with amylin/tunicamycin resulting in cell

death) and the other half was positive

control (treated with vehicle only), signi-

fying rescue from the amylin/tunicamycin

insult. These validation experiments as-

sessed the assay window and variability in a

univariate readout; percent dead cells—

where the dead cell count (YoYo-1 positive)

was divided by the total cell count.

Figure 3 shows typical whole-384-well

images, which are seamless 4 · 5 image

montages, for the negative control (Fig. 3A)

where amylin/tunicamycin have been ad-

ded to induce cytotoxicity, and the positive

control (Fig. 3B) where amylin/tunicamy-

cin have been omitted to represent 100%

effect in chemoprotection. Figure 3C shows

the YoYo-1 image from a single field where

green cells are dead/membrane permeabi-

lized, and Figure 3D shows the results of the

statistical classifier for the same area where

red cells are identified as dead and blue cells

are identified as live. In the CellProfiler

software using the ‘‘Classify Objects’’ mod-

ule, the statistical classifier used a single

parameter, YoYo-1 average intensity to

classify cells as live or dead by setting the

threshold approximately halfway between

the average intensity for live cells and that

of dead cells. Due to the large difference

between live and dead YoYo-1 average in-

tensities, this threshold was not modified

plate-to-plate or day-to-day.

PLS Scoring System
A PLS model was developed to reduce the 70 primary cellular

features, from both fluorescent channels, at the well-averaged level

into a single response variable composed only of the most important

features. The high-content feature extraction in CellProfiler mea-

sured 70 phenotypic parameters in this relatively simple assay and

our PLS analysis selected and weighted 19 parameters for computing

the well-average ‘‘cell health’’ score for each well. Reducing the 70

primary phenotypic parameters using PLS to a single score allows for

the sensitive detection of effects that can manifest in changes in any

of the selected 19 extracted features and makes the assay substan-

tially more tolerant to outliers yielding significant improvements in

Z-prime/statistical robustness. These parameters were selected au-

tomatically with the MOE software with the criteria that they maxi-

mize the separation in score between positive and negative controls.

Well-averaged data from the min-max assay validation runs were

compiled into a spreadsheet and manually scored as 0.0 for the

negative control wells and 1.0 for the positive control wells as the

response variable for regression analysis. The data set was split

Fig. 3. Pipeline images used for identifying and categorizing HCS data at the cell level with
live nuclei stained with cell-permeant Hoechst-33342 (blue) and dead nuclei stained with
both Hoechst-33342 and YoYo-1 (green). (A) Amylin/tunicamycin-treated entire-well image
showing mostly double-positive blue/green nuclei indicating dead cells. (B) Vehicle (DMSO)–
treated well image showing mostly Hoechst-positive nuclei indicating live cells. (C) YoYo-1-
positive nuclei image showing dead cells. (D) Classified nuclei image: live nuclei (blue) and
dead nuclei (red).
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randomly into two sets: 80% of the data as the training set, and 20%

of the data as the test set to evaluate the unbiased performance of the

model against data not used in the creation of the model. Five sep-

arate 80/20 random splits were created and regression analysis was

performed on all training sets to avoid any subsampling bias. PLS

regression analysis was performed using the manual NC = 0.0,

PC = 1.0 score as the regression variable and incorporation of dif-

ferent numbers of principal components was used to determine the

optimal number of principal components for inclusion into the final

scoring system. Z-primes were calculated for the entire data set using

the univariate response variable (percent dead cells), and for each

model scoring system that was generated. Table 2 shows the result of

the regression analysis for PctDead, PC1—where the maximum

number of principal components was used (equal to the number of

primary features *70), PC5—where the first five principal compo-

nents were included, and so on. At PC5 and above, the model reached

convergence at Z-prime = 0.8, representing a significant improve-

ment over the PctDead parameter.

Table 3 shows the final scoring system, including 19 primary

features with the associated positive or negative scaling factor.

Parameters with constants below 0.0001 were truncated due to low

contribution and for ease of implementation. The scoring system is

applied using the following linear combination (equation 1):

PLS Score = 0:70938 + +
i

Constanti � Featurei (1)

Min-Max Scatter: Percent Dead Versus PLS Scoring System
Figure 4 shows the comparison of the PctDead univariate pa-

rameter versus the PLS scoring system. The Figure 4A shows a plate-

normalized scatter plot for a 384-well min/max plate where red

circles indicate PctDead and blue crosses indicate the PLS score.

Histograms and boxplots for positive- and negative-control wells are

shown in the Figure 4B. The main difference observed is in the

positive-control condition (highly viable cells), centered at 1.0, where

the standard deviation collapses and dramatically improves the sig-

nal-to-noise ratio of the assay. Figure 4C shows tabulated Z-primes

for this 384-well min/max plate and interquartile ranges for the

negative and positive controls. Pilot Screening
Two highly annotated chemical libraries containing FDA-

approved drugs and purified natural products were screened for

chemoprotection from ER-stress-mediated amylin-induced cell

death. Figure 5 shows a scatter plot of a representative screening set

with positive controls (blue triangles), negative controls (red circles),

and compounds tested (solid green circles). The average Z-prime for

the entire screen was 0.7 and plate-to-plate and day-to-day coef-

ficient of variation was < 5%. A total of 18 hits were discovered

in primary screening with a hit rate of 1.1%. Of the compounds

identified, two muscarinic-receptor-related compounds, ipratropium

bromide and edrophonium chloride, were identified (Fig. 6) as che-

moprotective in this assay with maximal inhibition of 53% and

57%, respectively. Compounds were considered active in single-point

screening if they achieved > 50% inhibition.

Table 2. Partial Least Squares Z-Prime Training Results

Data Seta PctDead PC-1b PC-5c PC-10 PC-70

Training
0.71

0.55 0.84 0.83 0.83

Test 0.55 0.80 0.80 0.80

aTraining data set was used for scoring system development; test data set

was used for external validation.
bPC-X denotes the inclusion of X number of principal components into the

scoring system.
cPC-5 was selected as the final model for the highest performance. See Table

3 for final scoring system.

Table 3. Partial Least Squares Scoring Parameters

Constanta Feature

0.70938 Constant

- 0.0368 Dead cell percentage

- 0.0356 % dead (dead/total)

- 0.002 Mean nuclei center X

- 0.0004 Mean nuclei classify dead

- 0.0003 Mean nuclei orientation

- 0.0002 Mean nuclei minor axis length

- 0.0002 Threshold weighted variance nuclei

- 0.0001 Mean nuclei integrated intensity dead cells

- 0.0001 Mean nuclei mass displacement dead cells

- 0.0001 Threshold sum of entropies nuclei

0.0001 Mean nuclei eccentricity

0.0001 Mean nuclei integrated intensity edge CorrDNA

0.0004 Mean nuclei classify live

0.0004 Mean nuclei integrated intensity CorrDNA

0.0005 Mean nuclei major axis length

0.001 Mean nuclei center Y

0.001 Mean nuclei perimeter

0.0013 Mean nuclei area

0.0368 Live cell percentage

aFeatures with constants below 0.0001 were omitted.
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DISCUSSION
The amylin connection to the selective loss of pancreatic b-cells is

well established; however, the underlying mechanism and potenti-

ating factors remain unclear. The discovery of small molecules that

can prevent/inhibit amylin-induced b-cell loss can lead to the dis-

covery of valuable chemical probes to dissect the underlying mo-

lecular mechanisms. Thus, chemoprotection of amylin-induced

cytotoxicity is a validated phenotypic target for HCS. Additionally, it

is widely recognized that ER stress plays a role in the pathogenesis of

diabetes.16 Herein, we describe a high-throughput/high-content as-

say for the discovery of small molecules that can overcome toxic

concentrations of amylin peptide in the presence of ER stress, which

mimics the clinical condition of selective pancreatic b-cell loss and

the accumulation of amylin plaques in their place.16 It is assumed

that the mechanism of amylin-induced cytotoxicity is largely me-

chanical; that is, amylin protofibrils penetrate the plasma membrane.

However, the mechanism for b-cell selectivity is unclear. In T2D

patients with substantial insulin resistance, the overproduction of

insulin leads to a proportional increase in amylin secretion that

should be generally toxic.10 In this state, the remaining b-cells are

under stress to produce large quantities of insulin in an attempt to

maintain blood glucose homeostasis and ER stress then occurs as part

of the UPR due to high translational burden by the cell.22 In an effort

to create a clinically relevant disease model for amylin-mediated b-

cell loss, we chose to chemically induce ER stress using tunicamycin—

an inhibitor of protein glycosylation that induces ER stress/UPR. The

addition of tunicamycin had the additional benefit of widening the

assay window due to large negative synergy with amylin toxicity that

increased the percentage of dead cells observed (up to 90% dead cells)

Fig. 5. Representative screening data from the Prestwick/Enzo li-
braries using the PLS scoring system. Positive controls are blue
triangles (D), negative controls are red circles (B), and test com-
pounds are solid green circles (�). The average Z-prime for the
screen was 0.7 for *1,600 compounds.

Fig. 6. Two muscarinic-receptor-modulating compounds identified
in pilot screening: (A) ipratropium bromide—a muscarinic receptor
antagonist used to treat bronchial spasms, and (B) edrophonium
chloride—an acetylcholinesterase inhibitor shown to also interact
with the human M1 muscarinic receptor used to treat myasthenia
gravis. Maximal percent inhibition shown relative to DMSO controls.

Fig. 4. (A) Scatter plot of the positive and negative controls over-
laid comparing the PctDead parameter against the PLS scoring
system. The percent dead (PctDead) data are shown as red circles
(B) and PLS data as blue crosses ( + ). (B) Box plots showing
distributions of the positive and negative controls for PctDead and
PLS scoring system showing a large reduction in variance in the
positive-control scatter. (C) Z-primes and interquartile ranges for
negative control and positive control distributions.
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as compared with the relatively nontoxic dosage of tunicamycin

(10%–20% dead cells, data not shown).

Endpoint assays for quantifying eukaryotic cell membrane per-

meability using a combination of fluorescent cell-permeant and -

impermeant dyes have long been used to assess cytotoxicity/viabil-

ity. Multiple assay technologies have been used successfully in-

cluding high-content analysis, well-averaged fluorescent intensity

ratios, and absorbance-based/chromogenic dye exclusion. In this

study, HCS was used in conjunction with a multivariate scoring

system to determine the benefit of the imaging platform over a

conventional univariate/well-averaged readout in 384-well format.

Several key factors discovered in assay development were identified

and led to a robust assay, including (1) the source of amylin: syn-

thetic, purified amylin produced the highest level of cytotoxicity as

compared with bacterially expressed amylin, and (2) entire well

imaging using multiple fields at 10·to ensure adequate cell counts to

develop statistical significance.

After initial assay validation attempts that consistently yielded Z-

prime values above 0.5 for the univariate PctDead response variable,

it was noted that this parameter was susceptible to false positive

events where the total cell count was extremely low and the few re-

maining cells in a well appeared to be viable. This result, while clearly

the result of compound toxicity, reported a low percent-dead score and

was a false positive. With this straightforward, easily understandable

high-content assay that was developed against a univariate read-

out (PctDead), we sought to implement a well-averaged multivariate

scoring system as a test case where the resulting scoring system could

be easily interpreted. This was done in an effort to leverage the nu-

merous features extracted in this high-content data set to improve the

screening outcomes by avoiding false positives/negatives. Develop-

ment of a well-averaged multivariate scoring system also streamlines

the integration of high-content data into HTS screening databases

without sacrificing the feature-rich underlying data. This approach in

early assay development rapidly directs the screener to the most im-

portant features, allowing the rapid detection of hits/interesting con-

ditions in screening. When interesting conditions are discovered, a

detailed full analysis of responses can be performed on fewer condi-

tions, thereby reducing the burden of data analysis substantially.

During this process, the scoring system incorporated the antici-

pated features; dead cell percentage and live cell percentage have

equal but opposite constants that contribute to *70% of the score.

Some interesting unanticipated features were discovered that led to

improvements in the robustness of the assay. One example is the

‘‘Mean Nuclei Center X’’ and ‘‘Mean Nuclei Center Y’’—the average

position of a cell in the image that is equivalent to center of mass of

cells in the image. When toxicity manifests, cells often detach leaving

irregular clusters/patches of cells behind. This effect causes a mi-

gration of the center of mass from the center of the image that can be

used to buttress other measures of cytotoxicity.

In a thorough analysis of PctDead vs. the PLS score (as shown in

Fig. 4 scatter plot), it is apparent that the PLS scoring system dra-

matically reduced the standard deviation of positive control (i.e., the

highly viable/healthy cells). Indeed, the noise relating to the PctDead

parameter is largely due to the variable cell counts per well and

incomplete cell segmentation of closely packed cell clusters where

the YoYo-1 intensity for mixed live/dead cells gets averaged to

values less than a single dead cell. The application of the PLS scoring

system did not have a large impact on the means of the controls and

mainly improved the robustness of the assay through reductions in

noise, leading to higher screening efficiency and avoidance of false

positives/negatives. This PLS scoring technique is broadly applicable

to HCS in the context of HTS for linear responses. In this study we

chose a simplistic assay for the sake of illustration to demonstrate

that, even when a univariate response is easily understood and ro-

bust, the PLS scoring system can still offer substantial benefits. This

technique can easily be expanded to more detailed high-content cell

death assays at higher magnification to include features like nuclear

texture, mitochondrial membrane potential, and micronuclei/nuclear

fragmentation. To capture nonlinear responses, artificial neural

networks or support vector machines can be used in lieu of PLS.

Training a scoring system based on the effects of a positive-control

condition or compound can substantially bias the scoring system

toward that particular effect but is particularly useful in assays where

the positive outcome is straightforward, like cell health/viability.

When more nuanced phenotypes are expected or multimodal re-

sponses are anticipated, performing PCA on data sets from pilot

screening can be highly informative. Seeking to understand the first

three principal components in a data set can often lead to the dis-

covery of different effect modalities that can be used as the basis of

PLS scoring system development.

Compounds discovered in pilot screening exhibited a potentially

shared mechanism through the cholinesterase pathway. Ipratropium

bromide (trade name Atrovent) is an anticholinergic drug used in the

treatment of bronchial spasms and is a direct antagonist of musca-

rinic acetylcholine receptors.23 Edrophonium chloride is a reversible

acetylcholinesterase inhibitor that prolongs the presence of acetyl-

choline in the synaptic cleft that has been recently shown to have

agonist activity against the human M1 muscarinic receptor (Pub-

chem Assay AID 588816 and 602250).24 This result demonstrates a

potential connection between muscarinic receptor modulation and

b-cell survival, which has been previously described and is poten-

tially related to muscarinic receptor inhibition of cytokine (IL-1b and

IFNg)–mediated pancreatic b-cell apoptosis.25–27

In conclusion, this high-content HTS assay platform is a viable

approach for phenotypic drug discovery for identifying chemopro-

tectants against a clinically relevant amylin-induced b-cell death.

High-content automated imaging in conjunction with automated

feature extraction yields a data-rich phenotypic fingerprint for

compound effects that can ultimately lead to new molecular targets,

pathways, and compounds with therapeutic effects. Even in a simple

live/dead assay as described herein, a PLS scoring system can sig-

nificantly improve assay performance, reduce the number of false

positives/negatives, and help streamline integration of high-content

data into conventional HTS data infrastructures. Additionally, two

potential chemical probes were discovered in this study that can be

used to further mechanistic insight into amylin-induced b-cell loss.

HCS & MULTIVARIATE SCORING FOR AMYLIN TOXICITY IN b-CELLS

ª MARY ANN LIEBERT, INC. � VOL. 12 NO. 7 � SEPTEMBER 2014 ASSAY and Drug Development Technologies 383



ACKNOWLEDGMENTS
The research reported in this article was partially supported by the

National Institute of Diabetes and Digestive and Kidney Diseases of

the National Institutes of Health under award number R01DK088248

to J.Z.S. and was partially supported by the North Carolina Bio-

technology Center Biotechnology Research Grant (BRG) program

grant number 2011-BRG-1212 to J.Z.S. The content is solely the

responsibility of the authors and does not represent the official views

of the National Institutes of Health or the North Carolina Bio-

technology Center Biotechnology. The authors would also like to

thank Tomas Ding for thoughtful input on experimental design and

Kelly B. Sexton for reviewing this article.

DISCLOSURE STATEMENT
No conflict of interest for all listed authors.

REFERENCES

1. Centers for Disease Control and Prevention: 2007 National Diabetes Fact Sheet.

2007. Available at http://www.cdc.gov/Features/dsDiabetes/

2. Centers for Disease Control and Prevention: 2011 National Diabetes Fact Sheet.

2011. Available at http://www.cdc.gov/diabetes/pubs/factsheet11.htm

3. Kloppel G, Lohr M, Habich K, Oberholzer M, Heitz PU: Islet pathology and the

pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol
Res 1985;4:110–125.

4. Lupi R, Del Prato S: Beta-cell apoptosis in type 2 diabetes: quantitative and

functional consequences. Diabetes Metab 2008;34 Suppl 2:S56–S64.

5. Cunha DA, Hekerman P, Ladriere L, et al.: Initiation and execution of lipotoxic

ER stress in pancreatic beta-cells. J Cell Sci 2008;121:2308–2318.

6. Poitout V, Robertson RP: Glucolipotoxicity: fuel excess and beta-cell dysfunction.

Endocr Rev 2008;29:351–366.

7. Sargsyan E, Bergsten P: Lipotoxicity is glucose-dependent in INS-1E cells but

not in human islets and MIN6 cells. Lipids Health Dis 2011;10:115.

8. Meece J: Dispelling myths and removing barriers about insulin in type 2 diabetes.

Diabetes Educ 2006;32:9S–18S.

9. Lorenzo A, Razzaboni B, Weir GC, Yankner BA: Pancreatic islet cell toxicity of

amylin associated with type-2 diabetes mellitus. Nature 1994;368:756–760.

10. O’Brien TD, Butler PC, Westermark P, Johnson KH: Islet amyloid polypeptide: a

review of its biology and potential roles in the pathogenesis of diabetes

mellitus. Vet Pathol 1993;30:317–332.

11. Hiddinga HJ, Eberhardt NL: Intracellular amyloidogenesis by human islet

amyloid polypeptide induces apoptosis in COS-1 cells. Am J Pathol 1999;154:

1077–1088.

12. Potter KJ, Scrocchi LA, Warnock GL, et al.: Amyloid inhibitors enhance survival

of cultured human islets. Biochim Biophys Acta 2009;1790:566–574.

13. Westermark P, Engström U, Johnson KH, Westermark GT, Betsholtz C: Islet

amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril

formation. Proc Natl Acad Sci U S A 1990;87:5036–5040.

14. Zraika S, Hull RL, Verchere CB, et al.: Toxic oligomers and islet beta cell death:

guilty by association or convicted by circumstantial evidence? Diabetologia
2010;53:1046–1056.

15. Pétremand J, Puyal J, Chatton J-Y, et al.: HDLs protect pancreatic b-cells

against ER stress by restoring protein folding and trafficking. Diabetes 2012

2012;61:1100–1111.

16. Eizirik DL, Alexssandra K, Cnop M: The role for endoplasmic reticulum stress in

diabetes mellitus. Endocr Rev 2008;29:42–61.

17. Singh S, Carpenter AE, Genovesio A: Increasing the content of high-content

screening: an overview. J Biomol Screen 2014;19:640–650.

18. Carpenter AE, Jones TR, Lamprecht MR, et al.: CellProfiler: image analysis

software for identifying and quantifying cell phenotypes. Genome Biol 2006;

7:R100.

19. Wold S, Sjostrom M, Eriksson L: PLS-regression: a basic tool of chemometrics.

Chemometrics Intelligent Lab Syst 2001;58:109–130.

20. Wold S, Trygg J, Berglund A, Antti H: Some recent developments in PLS

modeling. Chemometrics Intelligent Lab Syst 2001;58:131–150.

21. Huang CJ, Lin CY, Haataja L, et al.: High expression rates of human islet amyloid

polypeptide induce endoplasmic reticulum stress mediated beta-cell apoptosis,

a characteristic of humans with type 2 but not type 1 diabetes. Diabetes
2007;56:2016–2027.

22. Laybutt DR, Preston AM, Akerfeldt MC, et al.: Endoplasmic reticulum stress

contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 2007;50:752–

763.

23. Baigelman W, Chodosh S: Bronchodilator action of the anticholinergic drug,

ipratropium bromide (Sch 1000), as an aerosol in chronic bronchitis and

asthma. Chest 1977;71:324–328.

24. Fluorescence-based cell-based primary high throughput screening assay to

identify antagonists of the human M1 muscarinic receptor (CHRM1). 2011.

Avaliable at https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid = 588852

(last accessed June 11, 2014)

25. Gautam D, Han SJ, Duttaroy A, et al.: Role of the M3 muscarinic acetylcholine

receptor in beta-cell function and glucose homeostasis. Diabetes Obes Metab
2007;9 Suppl 2:158–169.

26. Laychock SG, Sessanna SM, Lin MH, Mastrandrea LD: Sphingosine 1-phosphate

affects cytokine-induced apoptosis in rat pancreatic islet beta-cells. Endocrinology
2006;147:4705–4712.

27. Sridhar GR, Thota H, Allam AR, Suresh Babu C, Siva Prasad A, Divakar C:

Alzheimer’s disease and type 2 diabetes mellitus: the cholinesterase connection?

Lipids Health Dis 2006;5:28.

Address correspondence to:

Jonathan Z. Sexton, PhD

Department of Pharmaceutical Sciences

Biomanufacturing Research Institute and Technology Enterprise

North Carolina Central University

Durham, NC 27707

E-mail: jsexton@nccu.edu

Abbreviations Used

A1c¼ glycated hemoglobin or hemoglobin A1c

DMSO¼ dimethyl sulfoxide

DPP-IV¼ dipeptidyl peptidase-4

ER¼ endoplasmic reticulum

GLP1¼ glucagon-like peptide-1

GLP1R¼ glucagon-like peptide-1 receptor

HCS¼ high-content screening

HTS¼ high-throughput screening

INS-1¼ insulinoma cells

PCA¼ principal component analysis

PctDead¼ percent dead cells

PLS¼ partial least squares

RFU¼ relative fluorescent unit

T1D¼ type I diabetes

T2D¼ type II diabetes

TZDs¼ thiazolidinediones

UPR¼ unfolded protein response
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