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Abstract

Fish retinal ganglion cells (RGCs) can regenerate their axons after optic nerve injury, whereas mammalian RGCs normally fail
to do so. Interleukin 6 (IL-6)-type cytokines are involved in cell differentiation, proliferation, survival, and axon regrowth;
thus, they may play a role in the regeneration of zebrafish RGCs after injury. In this study, we assessed the expression of IL-6-
type cytokines and found that one of them, leukemia inhibitory factor (LIF), is upregulated in zebrafish RGCs at 3 days post-
injury (dpi). We then demonstrated the activation of signal transducer and activator of transcription 3 (STAT3), a
downstream target of LIF, at 3–5 dpi. To determine the function of LIF, we performed a LIF knockdown experiment using
LIF-specific antisense morpholino oligonucleotides (LIF MOs). LIF MOs, which were introduced into zebrafish RGCs via a
severed optic nerve, reduced the expression of LIF and abrogated the activation of STAT3 in RGCs after injury. These results
suggest that upregulated LIF drives Janus kinase (Jak)/STAT3 signaling in zebrafish RGCs after nerve injury. In addition, the
LIF knockdown impaired axon sprouting in retinal explant culture in vitro; reduced the expression of a regeneration-
associated molecule, growth-associated protein 43 (GAP-43); and delayed functional recovery after optic nerve injury
in vivo. In this study, we comprehensively demonstrate the beneficial role of LIF in optic nerve regeneration and functional
recovery in adult zebrafish.
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Introduction

Fish retinal ganglion cells (RGCs) are able to survive and

regenerate their axons even after transection of the optic nerve,

whereas mammalian RGCs cannot survive after injury [1,2].

Accordingly, a number of studies have searched for the factors that

enable fish RGCs to survive and regrow their axons after optic

nerve injury (for review, see [3,4]). Identifying and demonstrating

the functions of such regeneration-associated genes, especially at

the early stage of fish optic nerve regeneration, might offer new

and reliable strategies for facilitating mammalian optic nerve

regeneration [5,6].

Interleukin 6 (IL-6)-type cytokines, such as IL-6, ciliary

neurotrophic factor (CNTF), oncostatin M (OSM), cardiotro-

phin-1 (CT-1), and leukemia inhibitory factor (LIF), perform

important and versatile functions in intercellular communication

via membrane receptors and the Janus kinase (Jak)/signal

transducer and activator of transcription 3 (STAT3) signaling

pathway. Secreted IL-6-type cytokines first bind to the cell surface

receptor gp130 or a cytokine-specific receptor, and this event

triggers the phosphorylation of the Jak protein adjacent to the

receptors. The phosphorylated Jak subsequently phosphorylates

the STAT3 protein, which in turn forms a homodimer and works

as a transcription factor [7–9].

Among the IL-6-type cytokines, IL-6, CNTF, and LIF have

been described as ‘‘injury factors’’, produced in response to

damage of the peripheral and sympathetic nervous systems, which

show regenerative capacity (for review, see [10]). These data imply

that IL-6-type cytokines are regeneration-associated molecules. In

fact, studies on IL-6, CNTF [11–14], LIF [15], and the activation

of STAT3 after optic nerve injury in zebrafish [16] have suggested

that these molecules have axon-regenerative properties in the

central nervous system. At present, however, there are no reports

in the literature that are focused specifically on the expression,

localization, and function of these cytokines during zebrafish optic

nerve regeneration.

In this study, we assess the possible influence of the intrinsic

expression of IL-6-type cytokines, especially IL-6, CNTF, and LIF
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on the regeneration of zebrafish retina after optic nerve injury.

Because among the three IL-6-type cytokines, only LIF shows

significant upregulation after injury, we studied the expression and

function of LIF in detail as the main regeneration-associated

molecule. Here we show the upregulation of LIF and subsequent

activation of STAT3 at the early stage of zebrafish optic nerve

regeneration. We then identify the function of the upregulated LIF

and activated STAT3 in nerve regeneration by the means of an

LIF knockdown with a behavioral test in vivo. We also

demonstrate the relationship between the LIF upregulation and

growth-associated protein 43 (GAP-43) expression. This link may

point to the function of LIF as a ‘‘switch’’ for other regenerative

pathways during optic nerve regeneration in zebrafish.

Materials and Methods

Ethics statement
All experimental procedures were approved by the Committee

on Animal Experimentation of Kanazawa University (#86294),

and care was taken to minimize pain and the number of fish used.

All surgery was performed under anesthesia by ethyl 3-

aminobenzoate methanesulfonic acid (MS222), which is common-

ly used for fish anesthesia. For sacrifice of fish, we employed a

general method in which fish were killed by an overdose (0.1%) of

MS222 for 5 min.

Animals and the surgical procedure
Adult zebrafish (Danio rerio, 3–4 cm long; between the ages of 6

and 12 months) were used throughout this study. Optic nerve

injury was caused according to the method of Münzel et al. [17]

with a slight modification. In brief, fish were anesthetized by

immersion in 0.02% MS222 (Sigma–Aldrich, MO, USA) in

10 mM PBS (pH 7.4). Under anesthesia, the optic nerve was

carefully severed 1 mm posterior to the eyeball using microscis-

sors. The fish were reared in 28uC water until appropriate time

points.

Total RNA extraction and cDNA synthesis
At appropriate time points after the optic nerve injury, fish were

killed by an overdose (0.1%) of MS222/PBS (5 min). Retinas were

then excised and stored at 280uC until use. For total RNA

extraction, we used Sepasol-RNA I Super G (Nacalai Tesque,

Kyoto, Japan) or Nucleospin RNA extraction kit (Takara, Shiga,

Japan) according to the manufacturer’s instructions. Total RNA

samples from each time point or treatment were subjected to first-

strand cDNA synthesis using ReverTra Ace qPCR RT Master

Mix with the gDNA Remover kit (Toyobo, Osaka, Japan).

PCRs
We performed quantitative real-time PCR to measure the

mRNA expression of IL-6, CNTF, and LIF using the Thunderbird

SYBR qPCR Mix (Toyobo) and gene-specific primers (Table S1)

with the Mx3005P qPCR System (Agilent Technologies, CA,

USA) according to the manufacturer’s instructions. The expression

level was analyzed using the DDCt method [18] after we

confirmed PCR efficiency of each primer pair. b-Actin was used

as a reference gene. We performed qualitative PCR using the

SapphireAmp Fast PCR Master Mix (Takara) and gene-specific

primers (Table S2). PCR products were then analyzed by

electrophoresis on an agarose gel, stained with ethidium bromide,

and documented using the GeneGenius 2 Bio Imaging System

(Syngene, MD, USA).

Tissue preparation
At appropriate time points, the fish were killed and their

eyeballs were removed, followed by fixation with 4% paraformal-

dehyde in PBS overnight at 4uC. The eyeballs were then immersed

in 30% sucrose in PBS overnight at 4uC for cryoprotection and

embedded in optimal cutting temperature compound (Sakura

Finetek, Tokyo, Japan). The retinal cryosections (thickness 12 mm)

were prepared and stored at 280uC until analysis.

In situ hybridization
In situ hybridization was performed as described previously

with slight modifications [19]. In brief, retinal slices were

rehydrated and permeabilized using 5 mg/mL proteinase K (Life

Technologies) at 25uC for 5 min. After acetylation and prehy-

bridization, the slices were incubated with a digoxigenin (DIG)-

labeled antisense complementary RNA (cRNA) probe overnight at

55uC. The next day, the excess probe was washed off, and the

slices were incubated with an alkaline phosphatase (AP)-conjugat-

ed anti-DIG antibody (1:500 dilution; Roche Applied Science,

Mannheim, Germany) overnight at 4uC. On the third day, the

slices were washed, and the positive signals were visualized by

means of nitro blue tetrazolium (NBT)/5-bromo-4-chloro-3-

indolyl phosphate (BCIP; Roche Applied Science). The slices

incubated with a sense probe served as a negative control.

Western blotting
Retinas were isolated in the same manner as total RNA and

then sonicated in 50 mL of lysis buffer [15]. The supernatants were

collected and the protein concentration was measured by means of

the Bradford method (Bio-Rad, CA, USA). Western blotting was

performed as described elsewhere [20]. In brief, 20 mg of total

protein from each time point or treatment was subjected to (9% or

15%) polyacrylamide gel electrophoresis, and the separated

proteins were transferred to a nitrocellulose membrane (Whatman,

Maidstone, UK). The membrane was washed, blocked, and

incubated with a primary antibody (Table S3) overnight at 4uC.

Then, the membrane was washed and incubated with an

appropriate AP- or horseradish peroxidase (HRP)-conjugated

secondary antibody (1:1000; Sigma–Aldrich or Santa Cruz,

respectively) for 1 hour at 25uC followed by visualization of the

protein bands using the BCIP/NBT Phosphatase Substrate

System (KPL, MD, USA) or Clarity Western ECL Substrate

(Bio-Rad), respectively. Densitometric analysis was performed

using the ImageJ software. b-Actin served as a loading control.

Immunohistochemical analysis
The retinal slices were incubated with 10 mM citrate buffer (pH

6.0) for 5 min at 121uC for antigen retrieval. After washing, the

slices were blocked and incubated with primary antibodies (Table

S3) overnight at 4uC. After another washing step, the slices were

incubated with the appropriate Alexa Fluor 488- or 594-

conjugated secondary antibody (1:500; Life Technologies) for 1

hour at 25uC, followed by counter-staining with 2 mg/mL 49,6-

diamidino-2-phenylindole (DAPI; Wako Pure Chemical Indus-

tries, Osaka, Japan). Immunoreactivity signals were photographed

using a fluorescence microscope (VB-7000 or BZ-9000, Keyence,

Osaka, Japan).

Application of the morpholino oligonucleotides
To downregulate the expression of zebrafish LIF in vivo after

optic nerve injury, we prepared the following two zebrafish LIF-

targeting morpholino oligonucleotides (MOs): MO(1), 59-AGT

GTG GCG GTA ATA CTT ACT GAA T-39, targeting the exon

LIF Upregulation during Zebrafish Optic Nerve Regeneration
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1–intron 1 splice donor; MO(2), 59-CAA TCT CTG AGA CAG

GCA GAG CAT G-39, targeting the initiation codon. A standard

MO (59-CCT CTT ACC TCA GTT ACA ATT TAT A-39),

whose sequence is absent from the zebrafish genome, was used as a

control MO [21,22]. All MOs were labeled with fluorescein

isothiocyanate (FITC) and purchased from GeneTools, OR, USA.

Retrograde transport of FITC-tagged MO into zebrafish RGCs

was performed according to the method of Becker et al. [23] and

Veldman et al. [21]. In brief, a small piece of gelatin foam

(Spongel; Astellas, Tokyo, Japan) was soaked with 1 mL of 1 mM

MO and was applied to the cut site of the severed optic nerve

immediately after the nerve injury. In this method, MOs were

neither tagged with Vivo-Porter [24,25] nor coadministered with

Endo-Porter [26]. Therefore, the effects of MOs on nonneuronal

cells (e.g., astrocytes or oligodendrocytes), in the optic nerve

adjacent to the MO application site, can be considered negligible.

Retinal explant culture
Retinal explant culture was set up according to the method of

Sugitani et al. [19]. In brief, retinas were aseptically isolated and

cut into approximately 0.5 mm60.5 mm squares. The retinal

explants were then cultured in the Leibovitz L-15 medium (Life

Technologies) supplemented with 20 mM HEPES (pH 7.2;

Sigma–Aldrich), 10% fetal bovine serum (Life Technologies),

and antibiotics (Wako Pure Chemical Industries) in a poly-L-lysine

(Sigma–Aldrich)-coated dish at 28uC for 5 days. The percentage of

explants showing neurite outgrowth was assessed using the ImageJ

software.

Behavioral experiments
To evaluate the recovery of visual function after optic nerve

injury, the optomotor response (OMR) was tested using the

equipment designed by our group [27] based on the findings of

Neuhauss et al. [28]. In brief, fish were placed into an annular

water tank surrounded by rotating black and white stripes. Fish

will swim randomly when the stripes are not moving. On the other

hand, when the stripes are rotating, fish with an intact visual

system (or restored enough to recognize the stripes) will chase the

rotating stripes. In our experiments, the stripes were rotated at

72u/sec clockwise and counterclockwise. The fish movements were

captured by a video camera placed 1 m above the tank, and the

swimming direction of fish was analyzed using a custom-designed

software [22,27]. The concordance ratio was then calculated as

follows [27]:

Concordance ratio (%)~

Total time the fish swam in concord with the stripes

Total time of trial
{0:5

� �

|
1

0:5
|100

In this calculation, the concordance ratio ranges from 0%

(completely random swimming) to 100% (completely concordant

swimming).

Statistical analysis
The expression levels of LIF mRNA, LIF protein, phospho-

STAT3 (pSTAT3), and GAP-43 were calculated as mean 6 SEM,

and the differences were evaluated using one-way analysis of

variance (ANOVA) followed by Tukey’s post hoc test. The levels of

active caspase-3 and Bcl-2 were calculated as mean 6 SEM and

were analyzed using Student’s t-test. We calculated the percentage

of explants showing neurite outgrowth (.100 mm long) and used

the chi-square test followed by Bonferroni’s post hoc test to analyze

intergroup differences. To evaluate the results of the behavioral

test, two-way ANOVA followed by Tukey’s post hoc test was used.

In all cases, calculations were performed using the Prism software

(version 6.0c; GraphPad Software, CA, USA), and a p value,0.05

was considered statistically significant.

Results

Upregulation of LIF mRNA and protein in RGCs after
optic nerve injury in adult zebrafish

We first measured changes in the expression of three IL-6-type

cytokines (IL-6, CNTF, and LIF) in the zebrafish retina after optic

nerve injury. IL-6 mRNA expression showed little or no change

for at least 20 days post-injury (dpi). The level of CNTF mRNA

showed a significant decrease at 1–5 dpi. In contrast, LIF mRNA

levels increased 10.5-fold (n = 3; p = 0.004) at 3 dpi and returned

to baseline by 10–20 dpi (Fig. 1A). To determine the localization

of LIF mRNA in the zebrafish retina and to confirm the

quantitative PCR result, we performed in situ hybridization using

an LIF-specific antisense cRNA probe. In an intact retina, there

was a weak expression of LIF mRNA in the ganglion cell layer

(GCL; Fig. 1B). The expression of LIF mRNA became stronger

mostly in GCL at 3 dpi (Fig. 1C) and became weaker at 5 dpi

(Fig. 1D), consistent with the results of quantitative PCR (Fig. 1A).

A very weak positive signal of LIF mRNA was also observed in the

lower part of the inner nuclear layer (INL) and the photoreceptor

layer (PRL). In situ hybridization using a sense probe yielded no

positive signals even at 3 dpi (Fig. 1E).

We also examined the expression and localization of the LIF

protein in the retina after injury (Fig. 2). As with LIF mRNA, LIF

protein levels increased 2.3-fold (n = 3; p = 0.0003) at 3 dpi and

returned to baseline by 5–10 dpi (Fig. 2A). The upregulation of the

LIF protein was almost limited to GCL, as confirmed by

immunohistochemical analysis of the LIF protein (control, Fig. 2B;

3 dpi, Fig. 2C). Very small upregulation of LIF in the innermost

layer of INL was also observed; this result was consistent with the

slight upregulation of LIF mRNA in INL, as shown in Fig. 1C.

The pattern of immunoreactivity of LIF in GCL (Fig. 2C, D)

completely matched that of Tuj1 (bIII tubulin; Fig. 2E, F), a

marker of RGCs [19,29]. This finding confirms that LIF was

indeed produced in RGCs.

Phosphorylation (activation) of STAT3 in the zebrafish
retina after optic nerve injury

LIF triggers the phosphorylation of STAT3 via LIF receptor

and Jak kinases, and pSTAT3 works as a transcription factor

[7,15]. Because LIF was upregulated in RGCs after optic nerve

injury, we examined STAT3 phosphorylation (activation) in

RGCs after the injury. Western blotting of pSTAT3 and total

STAT3 (phosphorylated and unphosphorylated STAT3) showed

that the amount of pSTAT3 relative to total STAT3 increased

1.8-fold (n = 3; p = 0.0319) and 2.6-fold (n = 3; p = 0.0007) at 3 and

5 dpi, respectively (Fig. 3A). The amount of total STAT3 did not

change during this period. Immunohistochemical analysis revealed

that in the intact retina, total STAT3 was predominantly present

in GCL and the inner part of INL (Fig. 3B). In contrast, pSTAT3

was mainly detected in the outer plexiform layer (OPL) and was

faintly detectable in the inner part of the retina (Fig. 3C, D). At 5

dpi, the expression pattern of total STAT3 did not change much

(Fig. 3E). Nonetheless, as with western blotting, the positive signals

of pSTAT3 drastically increased mainly in GCL (Fig. 3F, G).

LIF Upregulation during Zebrafish Optic Nerve Regeneration
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The knockdown of LIF attenuated the activation of STAT3
After optic nerve injury, upregulation of LIF takes place

followed by STAT3 phosphorylation in RGCs. To prove the link

between these two events, we applied LIF-targeting MOs to RGCs

through the stump of the severed optic nerve. Two types of MOs

were prepared. The first type, LIF MO(1), blocks the exon 1–

intron 1 splice donor and causes the inclusion of intron 1, thereby

producing a premature termination codon. The second MO is LIF

MO(2), which blocks the initiation codon leading to the

suppression of LIF protein translation. At 3 dpi, control (i.e.,

normal) LIF was downregulated and LIF with intron 1 (+intron1

LIF) was upregulated in the LIF MO(1)-treated retina compared

with the control MO-treated retina (Fig. 4A). This result indicates

that LIF MO(1) successfully stimulated the inclusion of intron 1.

LIF protein expression was reduced in the LIF MO(2)-treated

retina compared with the control MO-treated retina. LIF MO(1)

also reduced the amount of LIF protein (Fig. 4B). Thus, both LIF

MO(1) and LIF MO(2) reduced LIF gene and protein expression

in vivo. The knockdown of the LIF protein by the means of LIF

MOs (a cocktail of two MOs) was also confirmed by immunohis-

tochemical staining of LIF. MOs were tagged with FITC so that

they could be visualized using their green fluorescence. The

upregulation of LIF in RGCs was detected in the control MO-

treated retina at 3 dpi (Fig. 4C–E), whereas LIF expression was

eliminated in the LIF MO-treated retina (Fig. 4F–H).

Next we tested the level of pSTAT3 after treatment with LIF

MOs. The level of pSTAT3 increased in the control MO-treated

retina at 5 dpi, whereas this level decreased in both LIF MO(1)-

and LIF MO(2)-treated retinas (Fig. 5A). The level of total STAT3

was not affected by MO treatment. Immunohistochemical analysis

of pSTAT3 also confirmed the decrease in the level of pSTAT3 in

the LIF MO-treated retina (Fig. 5E–G) compared with the control

MO-treated retina (Fig. 5B–D).

Figure 1. Upregulation of LIF mRNA in zebrafish RGCs after optic nerve injury. (A) IL-6 mRNA showed little or no change for at least 20
days after the nerve injury, but CNTF mRNA showed significant downregulation 1–5 days post-injury (dpi; n = 3, *p,0.01). The expression level of LIF
mRNA drastically increased at 3 dpi (n = 3, *p,0.01). (B–E) In situ hybridization revealed very weak expression of LIF mRNA in the intact zebrafish
retina (B). At 3 and 5 dpi, LIF mRNA was upregulated mostly in the ganglion cell layer [GCL; weakly in the inner nuclear layer (INL) and photoreceptor
layer (PRL)] (C and D, respectively). Incubation with the sense probe yielded no signal even at 3 dpi (E). The scale bar in (B) is 50 mm.
doi:10.1371/journal.pone.0106010.g001
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Taken together, these results confirmed that the knockdown of

LIF in zebrafish RGCs after optic nerve injury attenuated the

activation of STAT3, indicating that there was a connection

between LIF and Jak/STAT3 signaling.

The knockdown of LIF impaired axon regeneration and
delayed recovery of visual function after optic nerve
injury

Because LIF was upregulated at 3 days after optic nerve injury,

when RGCs are preparing for axonal regrowth [4], we next

explored the effects of LIF on axon regeneration and visual

function recovery.

First, we prepared a retinal explant culture where a control MO

or LIF MO were introduced beforehand. Retinal explants treated

with MOs were prepared at 3 dpi and cultured for another 5 days

(Fig. 6A). The percentage of explants showing neurite outgrowth

significantly decreased in LIF MO-treated explants compared with

injury-alone explants or control MO-treated ones (Fig. 6A;

p = 0.004 and p = 0.0007, respectively). Representative images of

retinal explants with injury alone, control MO, and LIF MO were

shown in Figure 6B, C, and D, respectively.

Second, we tested the recovery of visual function after LIF

knockdown in RGCs using the OMR test [27] in fish treated with

a control MO or LIF MO at 5, 10, 13, and 18 dpi (Fig. 6E). In this

experiment, fish swim in an annular water tank surrounded by

rotating black and white stripes. If the visual function of fish is

intact or restored, then the fish chase the stripes; thus, the direction

of the moving stripes and the fish should be the same (‘‘concord’’).

On the other hand, if the visual function is not working well

enough to recognize the moving stripes, then the affected fish swim

randomly (i.e., sometimes in concord and sometimes in discord).

To quantify the swimming performance, we expressed the concord

Figure 2. Upregulation of the LIF protein in zebrafish RGCs after optic nerve injury. (A) As with the expression changes of LIF mRNA, the
LIF protein was also upregulated starting on day 1 after the optic nerve injury, peaked at 3 days, and returned to baseline by 5 days post-injury (n = 3,
*p,0.001). (B, C) Immunohistochemical analysis of the LIF protein expression revealed that LIF was upregulated mainly in GCL at 3 dpi (C) compared
with the intact retina (B). (D–F) Double immunohistochemical staining of LIF (D) and Tuj1 (E) revealed that LIF is produced in RGCs (F). The scale bars
in (B) and (D) are 30 mm.
doi:10.1371/journal.pone.0106010.g002
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Figure 3. Activation of STAT3 in zebrafish RGCs after optic nerve injury. STAT3 is activated when its Tyr708 is phosphorylated (pSTAT3). (A)
Western blotting of pSTAT3 revealed the activation of STAT3 at 3–5 dpi (n = 3, *p,0.05, **p,0.001). The total amount of STAT3 was not changed. (B–
G) Immunohistochemical staining of total STAT3 and pSTAT3. Immunoreactivity corresponding to pSTAT3 in RGCs was drastically increased at 5 dpi
(F) compared to the intact retina (C), whereas total STAT3 remained unchanged (B: intact, E: 5 dpi). (D) and (G) show merged images of (B, C) and (E,
F), respectively, with nuclear staining for orientation. The scale bar in (B) is 50 mm. OPL: outer plexiform layer.
doi:10.1371/journal.pone.0106010.g003

Figure 4. Knockdown of LIF in zebrafish RGCs after optic nerve injury. (A) Effects of LIF morpholino (MO) on the expression of LIF mRNA at 3
dpi. LIF MO(1) decreased the amount of control (i.e., normal) LIF mRNA product (control; 571 bp) and increased the amount of LIF with intron 1 (+
intron1; 833 bp). The asterisk denotes a non-specific product. (B) Effects of LIF MO on the expression of LIF protein at 3 dpi. As expected, LIF MO(2),
along with LIF MO(1), decreased the amount of LIF protein compared with the control (ctrl.) MO treatment. (C–H) Immunohistochemical analysis of
LIF after MO treatment at 3 dpi. All MOs are labeled with FITC. LIF MO clearly attenuated the expression of LIF in the RGCs (F–H) compared with the
treatment with control MO (C–E). The scale bar in (C) is 30 mm.
doi:10.1371/journal.pone.0106010.g004
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between the stripes and swimming as a concordance ratio (Fig. 6E;

[27]). The uninjured fish showed approximately 60% concordance

ratio, and the ratio drastically dropped to ,10% at 5 dpi in all

groups. At 10 dpi, fish with the optic nerve injury alone and those

treated with control MO showed considerable recovery to

approximately 40% of the normal. Nevertheless, fish treated with

LIF MO showed no recovery (n = 6, p = 0.0002 vs injury-alone

group and p = 0.0092 vs control MO-treated group, at 10 dpi).

The fish treated with LIF MO then showed gradual recovery, and

the concordance ratio became comparable (approximately 50%)

to that in the uninjured fish by 20 dpi.

Taken together, these data showed that LIF may have a

beneficial effect on the onset, but not on the later stages, of the

regenerative process after optic nerve injury.

The knockdown of LIF reduced the expression level of
GAP-43

Next, we performed immunohistochemical analysis of GAP-43,

which is one of the regeneration-associated molecules during

zebrafish optic nerve regeneration [27,30–32], because the

expression of GAP-43 is associated with STAT3 activation [33].

The immunohistochemical and western blot analyses of the GAP-

43 protein were performed at 10 dpi when functional recovery was

significantly different between control MO-treated and LIF MO-

treated fish (Fig. 6E). As shown in Figure 7A–F, LIF MO clearly

attenuated the expression of GAP-43 in nerve fiber layer (NFL;

Fig. 7D–F) compared with the control MO-treated retina

(Fig. 7A–C). Quantification of the level of GAP-43 protein in

the retina confirmed the downregulation of GAP-43 in the LIF

MO-treated retina compared with the control MO treatment

(Fig. 7G; n = 4, p = 0.0008). These results indicate that the

Figure 5. Decrease in the phosphorylation level of STAT3 after treatment with LIF MO. (A) The activation of STAT3 was attenuated by LIF
MO, whereas the level total STAT3 protein was not affected at 5 dpi. (B–G) Immunohistochemical analysis of pSTAT3 after LIF MO treatment at 5 dpi.
As with the LIF expression demonstrated in Fig. 4, LIF MO suppressed the activation of STAT3 in RGCs (E–G) compared with control MO treatment (B–
D). The scale bar in (B) is 30 mm.
doi:10.1371/journal.pone.0106010.g005
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expression of LIF could trigger the expression of GAP-43 after

optic nerve injury in adult zebrafish.

Discussion

This study shows the intrinsic upregulation of LIF and

activation of STAT3 in zebrafish RGCs after optic nerve injury.

It also demonstrates that LIF is beneficial for regeneration of the

optic nerve and for functional recovery via induction of GAP-43.

The proposed mechanism of LIF/Jak/STAT3 signaling in

zebrafish RGCs is shown in Figure 8.

Upregulation of LIF at the early stage of zebrafish optic
nerve regeneration

Unlike their mammalian counterparts, fish RGCs can survive

and regrow their axons after optic nerve injury through the various

proteins encoded by the so-called regeneration-associated genes

[3,4]. In this study, we focus on IL-6-type cytokines as candidates

for regeneration-associated genes in the zebrafish retina after optic

nerve injury because these cytokines are known to be expressed in

injured neurons, for example, in the peripheral nervous system,

which can regenerate its axons [10].

We chose three IL-6-type cytokines IL-6, CNTF, and LIF

because these three factors are known as ‘‘injury factors’’ that are

Figure 6. Impairment of axonal regrowth and functional recovery by the LIF knockdown after optic nerve injury. (A) The experiment
with retinal explant culture. The LIF knockdown reduced the percentage of explants showing neurite outgrowth (.100 mm) compared with optic
nerve injury alone and control LIF MO-treated retina. The chi-square test was used to assess the significance (*p,0.01 vs. injury alone; **p,0.001 vs
control MO treatment). (B–D) Representative images of retinal explants. (B) injury alone, (C) treated with control MO, and (D) treated with LIF MO. (E)
Behavioral analysis with or without MO treatment. LIF MO significantly delayed functional recovery of OMR at 10 dpi (n = 6, {p,0.05 vs. injury alone;
n = 6, 1p,0.05 vs. control MO treatment) and comparable recovery was observed at 18 dpi. The scale bar in (B) is 100 mm. Uninj.: uninjured.
doi:10.1371/journal.pone.0106010.g006
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induced after peripheral nerve injury and have been studied

regarding their effects on CNS regeneration [12–16,34,35]. We

found that RGCs intrinsically upregulate LIF at 3 days after optic

nerve injury (Fig. 1, 2), whereas IL-6 expression remains

unchanged for at least 20 dpi (Fig. 1A). The process of optic

nerve regeneration in adult zebrafish can be classified into four

periods: preparation (1–4 dpi), axon elongation (5–30 dpi),

synaptic refinement in the tectum (35–80 dpi), and full functional

recovery (100–120 dpi) [4]. The time point of LIF upregulation (3

dpi) corresponds to the preparation stage of optic nerve

regeneration, when injured RGCs assume a regenerative state

such that they can produce new axons. The knockdown of LIF

clearly impairs neurite sprouting and delays functional recovery

after the injury (Fig. 6). Therefore, it can be speculated that LIF is

beneficial, if not essential, for the sprouting of new axons after

optic nerve injury in zebrafish.

We found it interesting that the level of CNTF mRNA

significantly decreased 1–5 days after the nerve injury (Fig. 1A).

There are far fewer studies on downregulated genes than on

upregulated genes [21], and there are extremely few studies (to the

best of our knowledge, at the moment, there is only one study) on

zebrafish CNTF gene expression [36]. In addition, we did not

analyze the localization of CNTF mRNA in the zebrafish retina.

Therefore, it is difficult to predict the function of CNTF in nerve

regeneration at this point. Given that the level of CNTF mRNA

also decreases during heart regeneration, whereas other IL-6-type

cytokines (including LIF) are upregulated [36], it seems that the

intrinsic upregulation of CNTF might not be required for the

regenerative process, although exogenous injection of CNTF is

beneficial for photoreceptor survival after light-induced injury

[37].

It is reported that there is constitutive neurogenesis at the edge

of the fish retina, called ciliary marginal zone (CMZ) [38].

Therefore, it is possible that LIF is expressed in this region because

LIF is also linked to cell proliferation. Nonetheless, at a lower

magnification of LIF immunohistochemical images, we found that

the LIF protein is mainly expressed in GCL, but not in CMZ, at 3

dpi (Fig. S1). For this reason, LIF may be a regeneration-specific

molecule rather than a regulator of cell proliferation.

Activation of Jak/STAT3 signaling after zebrafish optic
nerve injury

LIF has a signal peptide targeting it to be secreted from the cell

[39], and the secreted LIF affects its target cells via cell membrane

receptors (LIF receptor and gp130) and via the intracellular Jak/

STAT3 signaling pathway [7]. It has been reported that LIF

receptor and gp130 are expressed in the eye of the larval zebrafish

[40,41]. The present study also confirms the expression of LIF

receptors (LIFR-A and LIFR-B) and gp130 in RGCs of adult

zebrafish (Fig. S2). Thus, zebrafish RGCs are ready to transduce

LIF signals via those receptors.

We next demonstrated, in line with the findings of Elsaeidi et al.

[16], that optic nerve injury causes the activation of STAT3 at 3–5

dpi, the stage that corresponds to upregulation of LIF (3 dpi;

Figs. 1–3). We also show that a knockdown of LIF abrogates

STAT3 activation (Fig. 5). The activation of STAT3 (3–5 dpi;

Fig. 3A) is slightly lagging behind the peak of LIF expression (3

dpi; Fig. 2A). This slight difference could be explained by the

secretion delay of the LIF protein. LIF affects its target cells via cell

surface receptors; that is, in order to exert its action, LIF needs to

be secreted from the cell. A study of blood mononuclear cells

showed that the maximal secretion of IL-6 takes place 24 hours

Figure 7. Reduction in GAP-43 expression by an LIF knockdown. (A–F) Immunohistochemical analysis of GAP-43 in the MO-treated retina at 5
dpi. LIF MO reduced the expression of GAP-43 (D–F) compared with control MO treatment (A–C) in the nerve fiber layer (NFL). (G) Quantification of
GAP-43 expression by western blotting. GAP-43 was significantly upregulated at 10 dpi (n = 4, *p,0.001 vs. uninjured). LIF MO significantly reduced
the expression level of GAP-43 compared with control MO treatment (n = 4, {p,0.001 vs. control MO). The scale bar in (A) is 50 mm.
doi:10.1371/journal.pone.0106010.g007
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after lipopolysaccharide treatment [42]. Although the cell type and

the cytokine are different here, we can hypothesize that the peak of

LIF expression and that of pSTAT3 activation differ because of

the time necessary for the secretion of LIF.

The role of LIF and subsequent Jak/STAT3 signaling in
zebrafish optic nerve regeneration

Previous studies have shown LIF and the Jak/STAT3 pathway

to be axon regeneration promoters: LIF can stimulate neurite

outgrowth from dorsal root ganglion neurons [43]; pSTAT3 acts

as a retrograde signaling protein that promotes sensory and motor

neuron regeneration [44]; STAT3 activation evoked by peripheral

branch injury of the dorsal root ganglion promotes spinal axon

regeneration [33]; in addition, STAT3 activation is required for

zebrafish optic nerve regeneration according to the latest study

[16]. Some investigators have confirmed that STAT3 activation

acts to augment the expression of regeneration-associated mole-

cules such as GAP-43 and small proline-rich protein 1a (SPRR1A)

[14,45,46]. GAP-43 is known as a marker of growing and

regrowing axons [30] and is indeed upregulated in RGCs during

zebrafish optic nerve regeneration [27]. SPRR1A is reported to be

expressed in axotomized neurons and promotes axon outgrowth

[47]. Nonetheless, we were unable to find such a gene in the

zebrafish genome so far. In this study, we show that a knockdown

of LIF suppresses the expression of GAP-43 (Fig. 7) and impairs

neurite outgrowth and functional recovery (Fig. 6). The GAP-43

protein, however, is not completely eliminated by LIF knockdown.

Furthermore, the restoration of visual function is achieved, albeit

with a delay, even after LIF knockdown. The GAP-43 gene

expression is regulated not only by Jak/STAT3 signaling, but also

by the extracellular signal-regulated kinase 1/2 and phosphatidy-

linositol 3-kinase (PI3K)/Akt pathway [48]. The latter is indeed

activated during fish optic nerve regeneration [49]. Therefore, the

intrinsic upregulation of LIF is one of the necessary events for

regulating the expression of regeneration-associated genes (e.g.,

GAP-43), which are essential for neurite regrowth.

It has also been reported that Jak/STAT3 signaling is linked to

the regulation of cell survival. STAT3 activation directly induces

anti-apoptotic genes, Bcl-2 and Bcl-xL, in the neuronal cell line

PC12 [50]. In a model of focal ischemic brain injury, the cells most

Figure 8. Schematic summary of the results. Zebrafish RGCs upregulate LIF in response to optic nerve injury. The resultant LIF then
activates Jak/STAT3 signaling via LIF receptors in neighboring RGCs [or on the same (secreting) cell]. Activation of STAT3 leads to the upregulation of
regeneration-associated molecules (e.g., GAP-43) directly or indirectly, which facilitates neurite sprouting and, consequently, optic nerve regeneration
in adult zebrafish.
doi:10.1371/journal.pone.0106010.g008
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positive for active caspase-3 staining (these cells will undergo

apoptotic cell death) are pSTAT3 negative, and vice versa. These

observations point to the STAT3 activation as a neuroprotective

event capable of preventing ischemic cell death [51]. Given that

fish RGCs can survive after nerve injury owing to the upregulation

of Bcl-2 and suppression of caspase-3 activity [49], we can

speculate that LIF and Jak/STAT3 signaling in zebrafish RGCs

can also be crucial for cell survival after injury. However, neither

Bcl-2 nor active caspase-3 levels are affected by the knockdown of

LIF (Fig. S3). Because we could not directly detect apoptotic cell

death (e.g., TUNEL assay), we cannot rule out the possibility of

caspase-3-independent and Bcl-2-independent apoptosis. None-

theless, we can theorize that after injury, LIF and STAT3

activation are not involved in cell survival, at least in caspase-3-

dependent apoptotic mechanisms.

Can LIF also be effective at regenerating a mammalian
optic nerve?

We show here that LIF triggers axonal regrowth through GAP-

43 induction after optic nerve injury in adult zebrafish. Because

there is a report that LIF secreted from astrocytes ameliorates

optic nerve regeneration under inflammatory conditions in

mammals [15], therapeutic use of LIF for mammalian optic nerve

regeneration is a possibility. However, some issues need to be

resolved first. Lens injury, which triggers an inflammatory reaction

in the eye, is reported to activate astrocytes adjacent to RGCs and

to cause astrocytes to produce LIF (and CNTF), which in turn

promotes axon growth in the mouse retina [15]. On the other

hand, another study shows that lens injury is not related to either

astrocyte activation or LIF/CNTF production but rather to

macrophage infiltration and production of oncomodulin (which

may be responsible for axon regeneration just like LIF and CNTF)

[52–54]. These two arguments are open to debate. In addition,

LIF shows quite low homology in its amino acid sequence among

species: homology is only 14.9% between humans and zebrafish.

There are some investigators who tried to produce a species-

specific LIF to maintain species-specific stem cells (i.e., rat LIF for

rat stem cells, chicken LIF for chicken stem cells, and so on) [55–

57]. In our preliminary experiments, indeed, the addition of

recombinant mouse LIF cannot induce neurite sprouting in

zebrafish retinal explant culture (Fig. S4; p = 0.76, the chi-square

test). The function of fish LIF is similar to that of mammalian LIF

to the extent that LIF induces myeloid cell differentiation [58] and

affects nerve regeneration [15]. Thus, we can hypothesize that the

binding affinity of LIF for LIF receptor varies among species

because of the variation in the amino acid sequence. Due to the

above problems, it is difficult to say whether LIF can be used

directly for mammalian optic nerve regeneration. Nonetheless, the

proposed LIF/Jak/STAT3/GAP-43 cascade may be a promising

source of molecules that can be used therapeutically for

mammalian optic nerve regeneration. First, the function of LIF

in nerve regeneration needs to be confirmed in mammals, and

species-specific LIF needs to be prepared and tested.

In conclusion, we have demonstrated the beneficial effects of

LIF during the early stage of optic nerve regeneration in zebrafish.

Accordingly, we believe that LIF, not IL-6 or CNTF, participates

in the intrinsic regeneration process and in recovery of visual

function in adult zebrafish after optic nerve injury. The proposed

notion that the LIF/Jak/STAT3/GAP-43 pathway is involved in

axonal regrowth may lead to the identification of new therapeutic

targets in optic nerve diseases.

Supporting Information

Figure S1 Expression of LIF in the ciliary marginal
zone. Immunohistochemical staining of LIF on a retinal slice (at 3

dpi) revealed that LIF was strongly expressed in the ganglion cell

layer (GCL; solid arrowheads), but not in the ciliary marginal zone

(CMZ; open arrowheads). The scale bar is 100 mm. INL: inner

nuclear layer, ONL: outer nuclear layer.

(TIF)

Figure S2 LIF receptor expression in the retina of adult
zebrafish. (A) RT-PCR of two LIF receptors (LIFR-A and

LIFR-B) and gp130 on uninjured retinal cells. All of these receptor

genes are expressed in the zebrafish retina, although their

expression levels vary greatly. (B–G) In situ hybridization

experiments with LIF receptors. The localization of LIFR-A,

LIFR-B, and gp130 mRNA is shown in (B), (C), and (D),

respectively. All of the receptors are expressed in the GCL and

other cell layers at the same levels as shown by RT-PCR (A). Sense

probes yielded no specific staining (E–G). The scale bar in (G) is

50 mm. GCL: ganglion cell layer, INL: inner nuclear layer, PRL:

photoreceptor layer.

(TIF)

Figure S3 No changes in the expression of pro-apoptotic
and anti-apoptotic factors after a LIF knockdown. (A–C)

Immunohistochemical staining of active caspase-3, the effector

molecule of apoptotic cell death, in LIF MO-treated retina at 10

dpi. Caspase-3 was not activated by LIF knockdown. (D) Changes

in Bcl-2, the anti-apoptotic factor, and active caspase-3 levels in

the control MO- and LIF MO-treated retina (10 dpi). Neither the

level of Bcl-2 nor that of active caspase-3 was affected by LIF

knockdown (n = 4; p = 0.88 and p = 0.89, respectively); n.s.: not

significant. GCL: ganglion cell layer.

(TIF)

Figure S4 Addition of recombinant mouse LIF to
zebrafish retinal explant culture. Supplementation with

recombinant mouse LIF had no effect on the ratio of explants

showing neurite outgrowth (p = 0.76); n.s.: not significant.

(TIF)

Table S1 Primers used for quantitative real-time PCR.

(PDF)

Table S2 Primers used for qualitative PCR and in situ
hybridization probe.

(PDF)

Table S3 Primary antibodies used in this study.

(PDF)
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