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Abstract

Anthracimycin is a recently discovered novel marine-derived compound with activity against 

Bacillus anthracis. We tested anthracimycin against an expanded panel of Staphylococcus aureus 

strains in vitro and in vivo. All strains of S. aureus tested, including methicillin-sensitive (MSSA), 

methicillin-resistant (MRSA), and vancomycin-resistant strains of S. aureus were sensitive to 

anthracimycin at minimum inhibitory concentrations (MIC) of < 0.25 mg/L. Although its post-

antibiotic effects were minimal, anthracimycin exhibited potent and rapid bactericidal activity, 

with a > 4-log kill of USA300 MRSA within 3 hours at 5 times its MIC. At concentrations 

significantly below the MIC, anthracimycin slowed MRSA growth and potentiated the bactericidal 

activity of the human cathelicidin, LL-37. The bactericidal activity of anthracimycin was 

somewhat mitigated in the presence of 20% human serum, and the compound was minimally toxic 

to human cells, with an IC50 = 70 mg/L against human carcinoma cells. At concentrations near the 

MIC anthracimycin inhibited S. aureus nucleic acid synthesis as determined by optimized 

macromolecular synthesis methodology, with inhibition of DNA and RNA synthesis occurring in 

the absence of DNA intercalation. Anthracimycin at a single dose of 1 or 10 mg/kg was able to 

protect mice from MRSA-induced mortality in a murine peritonitis model of infection. 

Anthracimycin provides an interesting new scaffold for future development of a novel MRSA 

antibiotic.
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INTRODUCTION

The continued prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infections 

represents a major clinical challenge in the US.1,2 Complicating this fact, the rate of new 

antibiotic discovery over the last decade has not nearly kept pace with the rapid 

development of antibiotic resistance.3 Discovery of novel chemical entities with potent 

antibiotic activities is critical to continue the pipeline of therapeutic development. Marine-

derived bacteria represent an important source of new chemical scaffolds with anti-MRSA 

activity.4-8 A novel tricyclic dione, termed anthracimycin, was recently purified from a 

previously uncharacterized marine-derived species of Streptomycetes and found to have 

potent activity against Bacillus anthracis and other Gram-positive bacteria.9 However, its 

activity against clinically-relevant drug-resistant pathogens including MRSA is unknown. 

Therefore, we undertook a more comprehensive analysis of anthracimycin activity in vitro 

and in vivo.

MATERIALS AND METHODS

Isolation of Anthracimycin

Anthracimycin was purified exactly as described from the marine-derived Streptomyces 

strain CNH365,9 and the structure of the purified compound was determined by combined 

spectroscopic methods and confirmed by a single crystal X-ray experiment (Figure 1).9

Minimum Inhibitory Concentration (MIC) Assays

Antimicrobial activity was evaluated by broth microdilution according to CLSI guidelines 

(Clinical and Laboratory Standards Institute. 2009. M100-S19 Methods for dilution 

antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 9th 

ed. CLSI, Wayne, PA). MIC analysis in serum was done as previously described10 by 

addition of 20% pooled human serum (collected from > 5 donors according to an approved 

UCSD Institutional Review Board protocol). Bacterial viability at the end of the assay was 

determined by addition of resazurin to the wells. The MIC in serum was then determined to 

be the lowest compound concentration that did not produce a visible conversion of the 

resazurin (blue color) to resorufin (pink color).10

Time-Kill Kinetics

Anthracimycin time-kill kinetics and post-antibiotic effects were performed in duplicate by 

broth macrodilution. For the time-kill kinetics anthracimycin at 0x, 1x, 5x, 10x, or 20x the 

MIC (MIC = 0.125 mg/L for USA300 MRSA strain TCH1516) was added to CA-MHB in 

duplicate sterile polystyrene tubes (Falcon, Bedford MA). The media was then inoculated 

with ~ 5 x 105 colony-forming units (CFU)/mL in a final volume of 5 mL, and the tubes 

were incubated in a 37°C shaking incubator (New Brunswick). Viable bacteria over time 

were quantitated by removal of 25 μL aliquots for serial dilution in phosphate-buffered 

saline and plating on Todd-Hewitt agar (Hardy Diagnostics, Santa Maria, CA). Time-kill 

kinetic studies were performed in triplicate.
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Post-Antibiotic Effect

MRSA strain TCH1516 was inoculated into 5 mL of CA-MHB containing anthracimycin 

(MIC = 0.125 mg/L) or vancomycin (MIC = 0.78 mg/L) at 1x or 10x MIC and incubated in 

a shaking incubator at 37°C. At one hour the bacteria were pelleted and then washed twice 

in 10 mL of phosphate-buffered saline and then resuspended in 5 mL CA-MHB. The tubes 

were placed back in the 37°C shaking incubator, and bacterial re-growth was measured at 

selected timepoints up to 24 hours by plating 25 μL samples of serial dilutions on Todd-

Hewitt agar plates and counting colonies.

MRSA Growth in sub-MIC Anthracimycin

Growth curves at sub-MIC concentrations of anthracimycin, vancomycin, or vehicle control 

were performed by broth macrodilution format. Duplicate glass tubes containing CA-MHB 

(5 mL per tube) with either anthracimycin or vancomycin at predetermined concentrations 

were inoculated with ~ 5 x 105 CFU/mL MRSA strain TCH1516 and incubated in a 37°C 

shaking incubator. Growth was monitored at various timepoints up to 24 hours by measuring 

absorbance at 600 nm in a spectrophotometer (Spectronic 20D+, Thermo Scientific, 

Waltham, MA).

Growth studies at sub-MIC anthracimycin and LL-37 were done in broth microdilution 

format in 96 well plates using RPMI supplemented with 5% Luria broth (RPMI/LB). 

RPMI/LB (0.2 mL) containing ½x MIC of either: LL-37 (LL-37 MIC in RPMI/LB = 16 

μM), anthracimycin, LL-37 in combination with anthracimycin, or vehicle was inoculated 

with ~ 5 – 10 × 105 CFU/mL MRSA strain TCH1516. The plates were incubated at 37°C, 

and bacterial survival over time was monitored by plating 25 μL serial dilutions on Todd-

Hewitt agar for quantitative cultures.

Mammalian Cell Cytotoxicity

We assessed mammalian cytotoxicity using the human cervical carcinoma line HeLa (ATCC 

CCL-2). HeLa cells were plated at a density of 2 × 104 cells per well of sterile flat-bottom 

96 well tissue-culture-treated plates (Corning), and anthracimycin was added at increasing 

concentrations. The plates were incubated in 5% CO2, 37°C, and cell viability 

(proliferation) was analyzed at 72 hours using the Promega Cell Proliferation kit (Promega, 

Madison, WI) according to manufacturer’s instructions, and IC50 was determined.

Mechanism of Action Studies

Anthracimycin mechanism of action studies were carried out using an optimized 

macromolecular synthesis assay11. Briefly, S. aureus strain ATCC 29213 was grown to mid-

logarithmic phase in CA-MHB. Macromolecular synthesis in the presence of increasing 

doses of anthracimycin was monitored by measuring the incorporation of radiolabeled 

precursors of DNA, RNA, protein and cell wall synthesis ([3H]-Thymidine, [3H]-Uridine, 

[3H]-Leucine, and [3H]-N-Acetylglucosamine, respectively) in the presence of increasing 

anthracimycin. The extent by which synthesis of each pathway was inhibited was 

determined by calculating the difference in label incorporation relative to untreated controls. 
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DNA intercalation was examined using a commercially available kit (Topogen) and 

observation of the products by agarose gel electrophoresis.

Murine Infection Studies

For the in vivo infection studies, eight week old female CD1 mice (Charles River 

Laboratories, Wilmington, MA) were inoculated intraperitoneally with ~ 1 × 109 CFU of 

MRSA strain Sanger 252 (a sequenced hospital-associated MRSA strain) and then treated 

one hour later with a single intraperitoneal dose of anthracimycin (1 or 10 mg/kg) or 

equivalent vehicle control (n = 10 mice per group). Survival was monitored over seven days, 

and mice that appeared moribund were humanely euthanized. This in vivo infection study 

was performed in duplicate, and data from one representative experiment are shown. All 

studies involving animals were reviewed and approved by the University of California San 

Diego Animal Care and Use Committee.

RESULTS

We found that anthracimycin was potent against all strains of S. aureus tested, including 

methicillin-susceptible and –resistant strains and vancomycin-resistant S. aureus, with MIC 

< 0.25 mg/L (Table 1). Anthracimycin was also active against clinical isolates of 

vancomycin-resistant Enterococcus faecalis. The potent Gram-positive activity was, 

however, mitigated in the presence of 20% human serum, which resulted in significant 

increases in the MIC against MRSA and methicillin-sensitive S. aureus (Table 1). Although 

this compound was active against the Gram-negative pathogen, Moraxella catarrhalis (MIC 

= 4 mg/L), other clinically-significant Gram-negatives including Klebsiella pneumoniae and 

Acinetobacter baumannii lacked anthracimycin susceptibility, with MIC >64 mg/L for these 

strains.

Anthracimycin exhibited rapid killing kinetics, with a > 4-log kill of USA300 MRSA within 

3 hours at > 5x MIC (Figure 2a). Despite these rapid killing kinetics, anthracimycin showed 

minimal post-antibiotic effects against USA300 MRSA, with re-growth occurring rapidly 

after removal of the compound (Figure 2b). Mammalian cell cytotoxicity over 72 hours 

yielded an IC50 = 70 mg/L, which is several-fold higher than the serum MIC of 16 mg/L for 

USA300 MRSA. Given the rapid killing kinetics, we investigated the effects of sub-

inhibitory concentrations of anthracimycin on USA300 MRSA. Even at 1/16x MIC 

(0.0078mg/L), anthracimycin substantially reduced the growth rate of MRSA during the first 

8 hours of its logarithmic growth phase (Figure 3a). Comparatively, the cell wall antibiotic 

vancomycin had no effect on MRSA growth at 1/2x MIC (0.78 mg/L, Figure 3a). Although 

no interactions with other commonly prescribed MRSA antibiotics including vancomycin 

and daptomycin were detected in traditional checkerboard assays, we tested anthracimycin 

for interactions with a key constituent of the host immune defense, cathelicidin antimicrobial 

peptides. For these studies MRSA was co-incubated with sub-MIC concentrations of both 

anthracimycin and the human cathelicidin LL-37, and bacterial survival was monitored at 

selected time points by plating on agar. The addition of 1/4x MIC anthracimycin reduced 

viable MRSA counts in the presence of 1/2x MIC of LL-37 compared to either 

anthracimycin or LL-37 alone (Figure 3b). Additional studies indicated that this potentiation 
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of activity was significantly mitigated in the presence of 20% human serum (data not 

shown).

Given the potent in vitro activity of anthracimycin, we investigated its mechanism of action 

in S. aureus using an optimized macromolecular synthesis assay to quantitate incorporation 

of radiolabeled precursors11. The primary effect on metabolic labeling was on [3H]-

Thymidine and [3H]-Uridine incorporation, indicating the disruption of DNA and RNA 

synthesis, respectively (Figure 4). Disruption of these pathways occurs around the MIC 

concentration, suggesting that this effect is likely related to the antibacterial mechanism of 

action. Additional secondary effects on protein synthesis were also observed at much higher 

concentrations, at least 10-fold higher than the MIC. Primary disruption of DNA and RNA 

synthesis in metabolic labeling is often associated with DNA intercalators. However, when 

anthracimycin was examined for evidence of DNA intercalation over the same concentration 

range as used in metabolic labeling, no effect on DNA migration was observed relative to 

the untreated control (relaxed plasmid). Concentrations of 128 mg/L, 1000-fold higher than 

the MIC, show no evidence of DNA intercalation (Figure 4). These data suggest that the 

disruption of DNA and RNA synthesis by anthracimycin is not due to DNA intercalation.

To ascertain potential in vivo efficacy of anthracimycin, we tested its ability to protect mice 

from MRSA-induced mortality in a peritonitis model. Female CD1 mice were first infected 

intraperitoneally with ~109 CFU of MRSA strain Sanger 252, a route and inoculum 

producing rapid bacteremia and subsequent lethality. One hour after infection, the mice were 

divided into three groups (n = 10 per group) and received a single intraperitoneal injection of 

either anthracimycin (1 or 10 mg/kg) or equivalent vehicle control; anthracimycin at these 

doses appeared to be well-tolerated by the mice. Anthracimycin at either dose injected post-

infection was sufficient to provide significant protection against mortality over seven days 

compared to infected mice treated with vehicle control alone (Figure 5). These results 

suggest that anthracimycin retained anti-MRSA activity and was also well-tolerated when 

introduced in vivo.

DISCUSSION

The dearth of new chemical entities targeting problematic pathogens such as S. aureus has 

created a vacuum in the availability of novel antibiotics to treat these multidrug-resistant 

pathogens, and new antibiotics are urgently needed. The marine environment has been 

probed for decades as a source of novel scaffolds targeting cancer; however, similar studies 

targeting infectious diseases are much less common. The purification of anthracimycin from 

a marine-derived species of Streptomycetes and initial identification of its Gram-positive 

activity prompted us to explore further the potential of this scaffold as an anti-MRSA 

compound. Our results show that anthracimycin activity extends across 14 strains of S. 

aureus tested, including USA300 strains of MRSA, vancomycin-resistant S. aureus, and 

methicillin-sensitive S. aureus. No significant Gram-negative activity was observed. Human 

serum significantly mitigated but did not completely eliminate anthracimycin activity. 

Despite this serum-induced loss of activity, a single dose of anthracimycin was still 

protective in the murine peritonitis model even when the compound was administered post-

infection. Given this initial demonstration of in vivo activity, investigation of additional 
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dosing regimens for this compound and infection models (cutaneous, pulmonary, systemic) 

is now ongoing.

Anthracimycin demonstrated rapid killing kinetics against MRSA, although the post-

antibiotic effect was quite negligible. It is possible that very little of the compound remains 

associated with the bacteria once it is removed from the media or that anthracimycin is 

highly susceptible to degradation, and future studies will address anthracimycin stability. 

Interestingly, our in vitro data suggest that anthracimycin was still able to exert effects on 

MRSA at concentrations below its MIC. We found a marked increase in lag phase when 

anthracimycin was present at 1/16x MIC; no similar effects were observed with the cell wall 

agent vancomycin up to 1/2x its MIC against MRSA. Notably, sub-MIC anthracimycin was 

able to potentiate the effects of the human cathelicidin LL-37 on MRSA growth. In these 

assays MRSA was able to grow during 24 hours in the presence of 1/2x MIC LL-37 or 1/4x 

MIC anthracimycin; however, no growth over the same time period was observed when the 

two were combined at those respective concentrations. It is possible that anthracimycin may 

act in synergy with LL-37 to hinder MRSA growth. This sensitization is not without 

precedent; for example, at well below its MIC, ampicillin has previously been shown to 

sensitize ampicillin-resistant Enterococcus to LL-37-mediated killing.12 Additional studies 

will continue to investigate anthracimycin interactions with the host immune system, 

including with other host-derived antimicrobial peptides.

In summary, our initial in vitro and in vivo studies suggest that the anthracimycin scaffold 

may serve as a viable lead for a medicinal chemistry effort to achieve a useful new MRSA 

therapeutic.
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Figure 1. Chemical structure of anthracimycin
A single crystal X-ray experiment was used to confirm the structure of anthracimycin as 

determined by combined spectroscopic methods.
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Figure 2. Kinetics of anthracimycin activity against USA300 MRSA (strain TCH1516)
(a) Time-kill kinetics of anthracimycin at 1x, 5x, 10x, or 20x its MIC (MIC = 0.125 mg/L) 

during 24 hour incubation. (Note that the data points for the 5x, 10x, and 20x MIC 

anthracimycin are superimposed on the graph.) (b) Post-antibiotic effect of anthracimycin 

against USA300 MRSA (strain TCH1516) compared to vancomycin. The post-antibiotic 

effect was measured by incubating MRSA with anthracimycin or vancomycin for one hour 

(vertical line at 0 hr on the graph) and assessing 24 hour regrowth (viable bacteria) after 

washing the bacteria to remove the antibiotics. (Note that the data points for the 1x and 10x 

MIC vancomycin are nearly superimposed on the graph.)
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Figure 3. Effects of sub-minimal inhibitory concentrations of anthracimycin on USA300 MRSA 
growth and antimicrobial peptide sensitivity
(a) Growth curves of MRSA (strain TCH1516) in the presence of vehicle or increasing sub-

minimal inhibitory concentrations of anthracimycin (MIC = 0.125 mg/L) compared to 1/2x 

or 1x MIC vancomycin (vancomycin MIC = 0.78 mg/L). Turbidity as a measure of bacterial 

growth was monitored by optical density (A600) over time in duplicate tubes. (b) Killing of 

MRSA strain TCH1516 during incubation with: vehicle (MRSA alone), 1/2x MIC LL-37 

alone, 1/4x anthracimycin alone, or 1/2x MIC LL-37 + 1/4x MIC anthracimycin. Surviving 

bacteria were enumerated by plating on agar, and the data represent mean +/- SD of 

duplicate samples.
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Figure 4. Macromolecular synthesis in the presence of increasing anthracimycin
Incorporation of radiolabeled precursors of DNA, RNA, protein and cell wall synthesis 

([3H]-Thymidine, [3H]-Uridine, [3H]-Leucine, and [3H]-N-Acetylglucosamine, respectively) 

was measured using S. aureus ATCC29213 (MSSA). DNA intercalation was examined 

using a commercially available kit. In the absence of DNA intercalation, relaxed plasmid 

migrates as a series of discrete topomers, with a characteristic ladder pattern. In contrast, 

intercalation results in a change in linking number, resulting in a change in the migration 

pattern. “SC” = supercoiled; “Rel” = relaxed.
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Figure 5. Anthracimycin protection of mice from MRSA mortality
Female CD1 mice were infected intraperitoneally (~ 109 colony-forming units per mouse) 

with MRSA strain Sanger 252 and treated intraperitoneally one hour postinfection with 

either anthracimycin (1 or 10 mg/kg) or vehicle control (n = 10 mice per group). Survival 

was monitored over 7 days. These survival data are from one representative study that was 

repeated a total of two times.
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Table 1

Minimum Inhibitory Concentration (MIC) Values

Strain MIC (mg/L)

MRSA

Sanger 252 (USA200) 0.063

TCH1516 (USA300) 0.125 (16 in 20% serum)

UAMS1182 (USA300) 0.125

ATCC33591 0.125

NRS70 (ST5) 0.08

NRS100 (ST250) 0.08

NRS192 (ST1) 0.16

VRSA-PA 0.125

VRSA-MI 0.25

Other S. aureus

UAMS1 0.125 (8 in 20% serum)

NRS77 (sequenced ST8) 0.16

NRS135 (ST8) 0.16

RN4220 0.125 (32 in 20% serum)

Newman 0.16

Non-S. aureus

Enterococcus faecalis (ATCC 51299) 0.25

E. faecalis isolate 6981 0.125

B. anthracis (Sterne) 0.03

Moraxella catarrhalis (ATCC 25238) 4

Pseudomonas aeruginosa (ATCC 27853) > 64

Klebsiella pneumoniae (ATCC 700603) > 64

Acinetobacter baumannii (ATCC 17978) > 64
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