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Abstract

Background—Young children with brain tumors are often treated with high-dose chemotherapy

after surgery to avoid brain tissue injury associated with irradiation. The effects of systemic

chemotherapy on healthy brain tissue in this population, however, are unclear. Our objective was

to compare gray and white matter integrity using MRI procedures in children with brain tumors

(n=7, mean age 8.3 years), treated with surgery and high-dose chemotherapy followed by

autologous hematopoietic cell rescue (AuHCR) an average of 5.4 years earlier, to age- and gender-

matched healthy controls (n=9, mean age 9.3 years).

Methods—Diffusion tensor imaging data were collected to evaluate tissue integrity throughout

the brain, as measured by mean diffusivity (MD), a marker of glial, neuronal, and axonal status,

and fractional anisotropy (FA), an index of axonal health. Individual MD and FA maps were

calculated, normalized, smoothed, and compared between groups using analysis of covariance,

with age and sex as covariates.

Results—Higher mean diffusivity values, indicative of injury, emerged in patients compared

with controls (p<0.05, corrected for multiple comparisons), and were especially apparent in the

central thalamus, external capsule, putamen, globus pallidus and pons. Reduced FA values in

some regions did not reach significance after correction for multiple comparisons.

Conclusions—Children treated with surgery and high-dose chemotherapy with AuHCR for

brain tumors an average of 5.4 years earlier show alterations in white and gray matter in multiple

brain areas distant from the tumor site, raising the possibility for long-term consequences of the

tumor or treatment.
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Introduction

Brain tumors are the second most common type of cancer in children, and over 20,000

children were diagnosed with brain tumors in the US between 2004 and 2008 [1]. Survival

rates vary, depending upon type and location of tumor, and averaging 66% to 70% [1].

Despite successful treatment, survivors often show detrimental neurocognitive consequences

years later, contributing to lower employment rates, continued dependency on parents, and

social isolation [2]. Several sources of neural pathology may underlie those consequences,

including the presence of the tumor and subsequent hydrocephalus, surgical intervention, or

treatment, including chemotherapy and/or cranial irradiation. Most patients will undergo

surgical resection of the tumor prior to further treatment with chemotherapy and/or cranial

irradiation. The relationship between neurocognitive deficits and cranial irradiation has been

so strongly supported [3-5] that many young children under 6 years of age are treated on

protocols without irradiation [6, 7]. Less is known about the potential detrimental

consequences of systemic chemotherapy on healthy neural tissue in this population.

High-dose, marrow-ablative chemotherapy with autologous hematopoietic cell rescue

(AuHCR) is a frontline treatment for brain tumors in very young children and believed to be

less damaging than radiation therapy [6, 8]. There is evidence that chemotherapy leads to

long-term brain tissue damage, including white [9] and gray matter loss [10], and

neurocognitive deficits in children with acute lymphoblastic leukemia (ALL) [9, 11, 12];

however, in addition to systemic chemotherapy, these children received intrathecal

chemotherapy with methotrexate (MTX) and/or cytosine arabinoside, drugs known to be

neurotoxic, especially via instillation into cerebrospinal fluid (CSF). Certain

chemotherapeutic agents are toxic to oligodendrocytes [13], hippocampal cells [14], and

cerebellar granule cells. In fact, in vitro models have demonstrated that some chemotherapy

agents are more toxic to neural progenitor cells than to cancer cells [13, 15, 16]. Thus,

although considered less toxic to brain cells than radiation therapy, chemotherapy may also

be associated with brain tissue injury.

Several quantitative MRI procedures are sensitive to brain injury or brain changes. Among

those, diffusion tensor imaging techniques provide indices of diffusion of water between

tissues. Measures derived from the diffusion tensor, such as mean diffusivity (MD), can

assess cellular and fiber injury across gray and white matter, while fractional anisotropy

(FA) is sensitive to changes in axonal integrity in white matter. For example, significantly

lower FA values, suggesting white matter damage, appear in brain regions of survivors of

ALL and medulloblastoma treated with chemotherapy and cranial irradiation [10, 17].

However, reports of DTI studies in the population of children with brain tumors treated with

surgery and high-dose chemotherapy with AuHCR are lacking.

The purpose of this study was to examine DTI, MD and FA values in childhood survivors of

brain tumors treated with surgery and high-dose chemotherapy with AuHCR, compared to
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age and gender matched healthy controls. We tested the hypotheses that FA would be

decreased, indicating loss of tissue and diminished fiber integrity, and that MD would be

increased, indicating long-term cellular and fiber injury in patients with brain tumors

previously treated with surgery and systemic high-dose chemotherapy with AuHCR, when

compared to age and gender matched controls.

Materials and Methods

Study Design

A two-group comparative cross-sectional design was used to compare FA and MD values

throughout the brain between seven pediatric brain tumor patients and nine matched healthy

controls. The UCLA Institutional Review Board and the Children's Hospital Los Angeles

(CHLA) Committee for Clinical Investigations approved the study, and informed consent

was obtained from parents of all subjects. Assent was obtained from subjects 7 years of age

and older.

Sample & Setting

Sixteen childhood brain tumor survivors who met the following inclusion criteria were

identified by the pediatric neuro-oncology team at CHLA: 1) a history of brain tumor with

no current evidence of disease; 2) prior treatment on a chemotherapy-only regimen followed

by AuHCR; 3) age between 5 and 13 years at time of enrollment; 4) off-therapy for at least 6

months; and 5) speaking either English or Spanish. Exclusion criteria were 1) residual

disease; 2) history of cranial irradiation; 3) concurrent diagnosis of neurofibromatosis or

other serious neurological anomaly; 4) history of prolonged posterior fossa syndrome

postoperatively (longer than one week); and 5) presence of a pacemaker or other implanted

metal device (precluding MRI).

Information about the study was mailed to families of all eligible subjects, and parents were

instructed to return a postcard if interested in enrolling. Twelve families (75%) responded.

Five were ultimately excluded because of: the presence of residual tumor (1 patient); a

congenital brain malformation (1): a supratentorial primitive neuroectodermal tumor

(PNET) with possibility of tumor location at that site interfering with DTI interpretation (1);

and families unable to travel for data collection (2 patients). Six enrolled patients had

posterior fossa tumors (medulloblastoma) located in the cerebellum, and one had an intra-

ventricular tumor (choroid plexus carcinoma).

For the comparison group, nine healthy controls were recruited from children of staff at the

institution. Inclusion criteria for this convenience sample were 1) fluency in English or

Spanish, 2) current age between 5 and 13 years, and 3) the ability to complete a 30-minute

MRI without sedation. Exclusion criteria were 1) any neurological abnormality including

past history of head trauma, seizures, or autism, 2) learning disability, hyperactivity or

attention deficit disorder, or 3) presence of dental braces or other metal appliances in the

body.
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Measures

Magnetic resonance imaging data were collected over 14 months using a 3.0 Tesla Philips

Achieva MRI scanner. High-resolution T1- and T2-weighted and DTI images were collected

on patients, while only T1-weighted and DTI images were obtained on controls to minimize

time spent in the scanner for these young children without sedation. DTI images were

collected using an 8-channel phased-array head coil with spin-echo echo-planar sequence

[repetition time (TR)=8,000 ms, echo-time (TE)=55 ms, field of view (FOV)=260 × 260

mm, slice thickness=1.9 mm], with a 144 × 144 matrix size, 80 axial slices and no interslice

gap. Diffusion-weighted images were collected in 12 directions for each slice, with a

maximum b value of 1000 s/mm2. A single excitation was used. High resolution T1-

weighted images were obtained with a voxel size of 1.0 × 1.0 × 1.6 mm and 136 × 136

matrix; FOV 26 cm; with the same parameters previously listed.

High-resolution T1- and T2-weighted images were used for anatomical localization and

visual assessment.

Procedures

Families were asked to arrive one hour before MRI registration time to complete the

informed consent and/or assent process in a private conference room. The MRI protocol

lasted one hour for patients, including pre- and post-contrast images for clinical surveillance

purposes in addition to DTI scans. For controls, the MRI protocol took 30 minutes to

complete. Five patients received propofol anesthesia for the MRI, as was standard for their

routine scans, and the remaining 2 patients and 9 controls utilized MRI-compatible movie

goggles for distraction during the scan. All children were able to complete the study.

After assessment by a neuroradiologist, images were de-identified and coded for analysis.

Data Analysis

Demographic data were processed using the Statistical Package for Social Sciences, version

17 (SPSS, IBM Corp.). The MRI data were processed using Statistical Parametric Mapping,

version 8 (SPM8) and custom MATLAB software. After conversion from DICOM to NIFTI

format, each subject's anatomical T1 images were segmented into gray matter, white matter

and CSF using the unified segmentation procedure [18]. The procedure also calculated

spatial normalization parameters for warping images into standard Montreal Neurological

Institute (MNI) template space.

Diffusion tensor imaging scans were analyzed with the SPM8 Diffusion Toolbox. The

diffusion tensor was calculated at each voxel, from which whole-brain maps of FA and MD

were derived. The b0 images from the DTI series were co-registered to T1 anatomical scans,

and indices were spatially normalized using T1 parameters. Normalized FA and MD images

were smoothed with a 10 mm Gaussian filter, and analyzed with a voxel-based approach in

SPM8. Voxel-based morphometry [19] was used to define regional differences in MD and

FA values between patients and controls, using an ANCOVA model at each voxel, and with

corrections for multiple comparisons across voxels.
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Because of the presence of a right hippocampal glioma and history of ventricular tumor in

one patient, the analyses were run a second time excluding that patient.

Results

Sample Characteristics

Seven pediatric brain tumor patients (mean age 8.3 years ± 3.01, range 5 to13 years) and

nine matched healthy controls (mean age 9.3 years ± 2.56, range 6 to 13 years) were

included in these analyses. Four of the seven patients (55%) had either no hydrocephalus or

mild hydrocephalus at diagnosis. Each patient underwent one surgical resection of the

tumor. Initial presentation, length of time off-treatment, and health status of patients at the

time of study are included in Table 1. No patient had previously received either cranial or

craniospinal irradiation, or had received either intraventricular or intrathecal chemotherapy

as part of their tumor management. The patient and control groups were similar in age,

gender and race, but significantly different in level of parental education (Table 2).

Global Brain Assessment

Anatomical scans (T1-weighted, T2-weighted, FLAIR) were evaluated by a pediatric

neuroradiologist for clinical abnormalities, and in patients, for recurrent disease. Although

no patient had recurrence of the primary brain tumor, one patient had a previously diagnosed

second brain tumor (stable low-grade glioma of the right hippocampus), and another had a

midline arterio-venous malformation (AVM) that had been noted on previous scans. Neither

of those areas showed significant regional changes in our analyses, and the analysis was run

again without the patient with the history of choroid plexus carcinoma with subsequent

hippocampal glioma, with no significant difference in findings. No controls had abnormal

findings.

Regional Analysis

With age and sex as covariates, DTI analyses showed that while there was a trend toward

lower FA in the patient group, there were no areas of significant difference in FA values

between patients and controls, at the threshold of p<0.05, with family-wise error correction.

However, at the same threshold (p<0.05, with stringent family-wise error correction for

multiple comparisons), there were multiple areas of significantly higher MD in the patient

versus the control group (Figure 1). These findings reflect a very large effect size, indicative

of significant chronic injury (t statistic threshold = 8.05). Brain regions showing increased

MD were widespread, and most were located far from the tumor sites. Altered values in the

cerebellum were expected, due to history of tumor and surgery; thus, those values will not

be discussed as significant findings. Mean diffusivity was similarly increased throughout the

cerebral white matter, principally involving long and short association fibers (subcortical u

fibers, arcuate fasciculus, cingulum, superior and inferior longitudinal fasciculi), external

and extreme capsules, and centrum semiovale. Gray matter nuclei with increased MD

included the medial and lateral nuclei of the globus pallidus, putamena, claustrum, and

central thalamus, including the inter-thalamic adhesion. The insular cortex and medial pons

also demonstrated significantly higher MD.
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Discussion

This study examined DTI values (MD and FA) in survivors of childhood brain tumors

treated with surgery and high-dose chemotherapy with AuHCR, without cranial irradiation,

compared to age and gender matched controls. We found that MD was globally and

regionally higher in the patient group, and no significant differences in FA were observed.

Areas of increased MD appeared in widespread regions throughout the brain in patients,

compared to healthy controls.

Parental education, an indicator of socioeconomic status (SES), significantly differed

between the patient and control groups. Imaging studies have not shown a difference in

overall gray and white matter volumes related to SES, but larger volumes in the hippocampi,

amygdala and a portion of the left temporal gyrus were observed in higher SES subjects

[20]. In addition, educational level was a significant predictor of FA in the superior

longitudinal fasciculus and cingulum [21] in older adolescents. These are two white matter

areas where we found elevated MD in patients, but no significant difference in FA between

patients and controls. Neural structural differences related to SES are complex, so this

important variable should be noted.

Mean diffusivity is a measure of molecular motion through tissue, and reflects the quality of

intercellular barriers. Changes in cell size, shape and integrity will result in altered MD and

increases, indicating a reduction in barriers, are interpreted as a generalized marker of

structural injury [22-24]. Higher MD values occur in areas with edema, loss of axons, and

demyelination, typically signifying chronic structural injury [23]. Fractional anisotropy,

which may denote structural integrity and degree of alignment within fiber tracts, shows

comparatively low values in areas with reduced tissue organization [22, 25], including

axonal damage [26]. Thus, the observed differences in DTI indices likely reflect

pathological changes, but are not specific to any one type of pathology.

The lack of significant differences in FA in children after brain tumor treatment is contrary

to what is reported in the literature. Children with posterior fossa pilocytic astrocytoma

treated with surgery alone demonstrated significantly lower FA in the cerebellum, callosal

and frontal areas, and corona radiata, than healthy controls. Those with medulloblastoma

treated with surgery followed by chemotherapy and cranial irradiation showed significantly

lower FA in the cerebellum, frontal and callosal areas [17]. The authors of that study

attributed their findings to two possibilities: the effect of hydrocephalus, or neuronal

projection damage to the frontal areas from cerebellar surgery.

In our small sample, 45% of patients had moderate hydrocephalus at diagnosis, and 86% had

undergone cerebellar surgery. It has been reported that the structures most likely to display

DTI value differences related to hydrocephalus, specifically lower FA, are the genu of the

corpus callosum and posterior limb of the internal capsule [27]. These low FA values in

large part return to normal after hydrocephalus or brain compression resolves with shunting

or other surgical intervention [28, 29] [30], and MD did not significantly differ in any areas

in patients with hydrocephalus, as compared to controls [30]. In this study, there was no

indication of tissue change in the corpus callosum or internal capsule. The patients were 2.5
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– 11.4 years after acute presentation, and those whose hydrocephalus was not resolved with

tumor debulking were shunted at that time. Therefore, it is unlikely that our findings are

related to hydrocephalus, but perhaps to cerebellar surgery and/or chemotherapy. In complex

diseases such as brain tumors, it is common to observe a combination of brain tissue injury

such as demyelination, axonal loss, and gliosis, and DTI findings cannot distinguish between

these pathologies [24].

Our findings of widespread tissue change, especially injury to key deep midline cortical

structures indicated by elevated MD, merit further exploration. There appeared to be a

pattern of structural alterations, most notably in deep cortical brain structures (thalamus,

caudate, putamen, globus pallidus) that exert major influences on other brain regions [31],

serving as essential pathways in the transmission of information between brainstem,

cerebellum and thalamus to frontal and other cortical areas [31-33]. It is unclear whether this

pattern is present in children with posterior fossa brain tumors treated with surgery alone, or

with the addition of cranial irradiation. These alterations may have long-term neurocognitive

implications, such as difficulties with processing speed, memory and executive functioning.

In addition to cognitive deficits, injury to basal ganglia structures may result in movement

disorders and other physical disabilities [34, 35]. Two patients in this study had

chemotherapy-related hearing loss, and two had residual physical disabilities (ataxia and

hemiparesis) (Table 1).

The majority of patients in this study (6 of 7, or 86%) attended regular classes at school at

the time of study, and had average- to above-average grades. One child, who displayed some

language and other developmental delays at diagnosis, and who had also been off-therapy

the longest (11.4 years), was the most physically and cognitively disabled, attending special

education classes. This child was also the youngest at diagnosis (14 months of age). It is

known that cranial irradiation in very young children is detrimental to long-term cognitive

outcome, and that cognitive scores continue to decline in the years following radiation

treatment [36]. Less is known about the neurocognitive effects of systemic chemotherapy in

the very young, which may be less toxic than irradiation [37], but still a contributing factor

to deficits in executive functioning [38]. One study of outcome of children with brain tumors

treated with high-dose chemotherapy found no significant association with age at diagnosis

and neuropsychological outcome; however, there was a significant inverse relationship

between time since diagnosis and full-scale IQ [39]. There is not enough evidence at this

point to determine whether neurocognitive decline may continue in the years after

chemotherapy in young children. In this study, it is not possible to know whether the

patients have successfully compensated thus far for deep cortical brain tissue changes, or

whether they may have mild memory or processing dysfunction that is not yet apparent, but

might become more prevalent in later years of middle and high school. The specific

relationship between major structural brain changes and biobehavioral impact is complex,

and remains unknown.

Elevated MD in the specific structures noted may possibly be related to iron overload. This

population of children treated with high-dose chemotherapy is at-risk for iron overload as a

consequence of multiple blood transfusions. In the elderly, iron deposits are commonly

found in the caudate, putamen, and globus pallidus, which results in significantly higher FA
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and MD in these regions [40]. While ferritin level was not a variable in this study, a

retrospective analysis found that only 2 of the 8 patients had ferritin levels reported, and of

those, one was normal and one was notably high. It is conceivable that iron in these

structures contributed to the findings of high MD without significantly lower FA.

Diffusion tensor indices based on high directional data should be studied further, since those

indices are sensitive to other pathologies, and the FA data here are inconsistent with the

literature. Our limited DTI protocol may have resulted in a less reliable FA measure (see

Limitations).

Since these data are cross-sectional, it is not possible to determine when the brain alterations

first developed in these children. Changes may have occurred at the time of treatment,

during the period up to 11 years subsequent to treatment, or alternatively, structural

differences in patients as compared to controls may have been present prior to surgery.

When compared to DTI studies in children with brain tumors who received cranial

irradiation, again, the literature refers to findings of decreased FA [17, 41, 42] [43], and MD

is apparently not measured. In adults, after 50-55 Gy cranial irradiation, areas of elevated

MD seen initially after treatment returned to baseline 8 months later [44].

Patients in this study were young at diagnosis (14-55 months of age), and time off-therapy

and age at study were more varied. Inclusion criteria for age was 5-13 years, because

completing an MRI without sedation necessitated healthy controls be at least 5 years of age,

and we sought to avoid pubertal brain changes by having 13 as the upper age limit (the

oldest females were 9 and pre-pubertal). Patterns of cortical thickness change during

childhood and adolescence, with subcortical brain development likely accelerating with

puberty [45]. Other changes noted during maturation of children from 0-10 years include a

decrease in water diffusion and increased anisotropy [25]. Although patients and controls

were age- and gender-matched, results should be interpreted with caution due to this

variability.

Limitations

Limitations include small sample size and the cross-sectional design. The limited sample

size resulted from numerous exclusion criteria necessary to limit variability as much as

possible, as well as difficulties in recall of earlier patients. Despite this limitation, the major

findings showed a very large effect size. Another limitation of the study was the inclusion of

one patient with a ventricular tumor and a second temporal glioma, and one patient with a

midline AVM. However, the significant results of elevated MD reported here were found in

areas distant from these abnormalities, and a separate analysis excluding the patient with the

hippocampal glioma demonstrated the same results as those including that patient. Five of

the seven patients, but no controls, received propofol anesthesia during their MRI scans.

Although it is theoretically possible that anesthesia altered diffusion findings, there are no

reports of such effects in the literature.

The 12-direction DTI protocol may have been a limitation, but was feasible, given the time

limitations of keeping a child in the scanner. More directions would be preferable, but the

MD index, in particular, can be reliably measured with modest numbers of directions, since
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that measure is an average, and does not rely on distinguishing directional differences. In

contrast, FA may likely be more impacted by the low number of directions in this study

[46]. However, other pediatric oncology studies using DTI protocols with 6-16 directions

demonstrated significant FA findings related to cognition [21, 47], and to effects of

chemotherapy and/or cranial irradiation [48, 49]. Mean diffusivity was not measured in

these studies. In addition, comparison of diffusion-weighting schemes using 6-30 directions

demonstrated clinically insignificant differences in FA and MD indices between protocols

[50].

Conclusion

Patients treated with surgery and myelo-ablative chemotherapy with AuHCR for a brain

tumor showed indications of neural injury several years later. While this study included a

small number of patients, few studies are available to determine the effects of surgery and

high-dose, including marrow-ablative, systemic chemotherapy on the brain. The injury and

cell loss noted here may be attributable to chemotherapy, to general pathological changes

associated with cerebellar lesions and to surgery, or to a combination of all factors. Larger,

longitudinal studies will ultimately be needed to confirm these findings, with the inclusion

of patients who had posterior fossa tumors treated with surgery alone acting as controls for

those treated additionally with chemotherapy.

The number of children with brain tumors treated with chemotherapy alone, without cranial

irradiation, has been relatively small, and there is little information about the effects of such

treatment on the young brain. As more children are treated in this manner to avoid or delay

cranial irradiation, careful monitoring of brain structure will help determine long-term

consequences of this treatment approach. Clinicians should be aware that surgery followed

by high-dose chemotherapy with AuHCR has potential long-term consequences to brain

structure, although these are likely less than those associated with radiotherapy. Furthering

our understanding of the impact of systemic chemotherapy on the brain in children will

enable the provision of accurate information to parents who are consenting to treatment, and

potentially assist in identifying those children in need of early neurocognitive and

developmental intervention.
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Figure 1.
Highlighted areas represent regions of significantly increased mean diffusivity in patients as

compared to controls: a) globus pallidus, b) putamen, c) thalamus, d) medial pons, e) insula,

f) cerebellum. The areas are concentrated in the subsulcal white matter, the insula, basal

ganglia and central thalami
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Table 2

Characteristics of Patients and Controls

Patients n = 7 Controls n = 9 P

Age at study Gender 8.33 years 9.30 years .54

3 male 6 male .52

4 female 3 female

Race 6 Caucasian 6 Caucasian .34

1 non-Caucasian (Asian) 3 non-Caucasian (1 Asian, 2 African American)

Highest Parental Education 1 some high school 5 college degree .04

1 high school diploma 4 graduate degree

2 community college

2 college degree

1 graduate degree
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