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Abstract

Background—While frequently assessed in trials and clinical practice, hemodynamic response

to therapy has never been validated as a surrogate endpoint for clinical events in pulmonary

arterial hypertension (PAH).

Methods and Results—We performed a patient-level pooled analysis of four randomized

placebo-controlled trials to determine if treatment-induced changes in hemodynamic values at 12

weeks accounted for the relationship between treatment assignment and the probability of early

clinical events (death, lung transplantation, atrial septostomy, PAH hospitalization, withdrawal for

clinical worsening, escalation in PAH therapy). We included 1119 subjects with PAH. The median

(interquartile range) age was 48 (37 – 59), and 23% were men. 656 (59%) received active therapy

(101 [15%] iloprost, 118 [18%] sitaxsentan, 204 [31%] sildenafil, and 233 [36%] subcutaneous

treprostinil). Active treatment significantly lowered right atrial pressure (RAP), mean pulmonary
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artery pressure (mPAP), and pulmonary vascular resistance and increased cardiac output and index

(p < 0.01 for all). Changes in hemodynamic values (except for RAP and mPAP) were significantly

associated with the risk of a clinical event (p ≤ 0.01 for all). While active treatment approximately

halved the odds of a clinical event compared to placebo (p < 0.001), changes in hemodynamics

accounted for only 1.2 – 13.9% of the overall treatment effect.

Conclusions—Treatment-induced changes in hemodynamics at 12 weeks only partially explain

the impact of therapy on the probability of early clinical events in PAH. These findings suggest

that resting hemodynamics are not valid surrogate endpoints for short-term events in PAH clinical

trials.
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INTRODUCTION

Hemodynamic measures such as right atrial pressure (RAP), mean pulmonary artery

pressure (mPAP), and cardiac index (CI) are the cornerstones of diagnosis and risk

assessment in pulmonary arterial hypertension (PAH).1–3 As such, hemodynamics often

serve as primary or secondary endpoints in Phase II trials of investigational PAH therapies

as a signal for efficacy.4–8 While the United States Food and Drug Administration (FDA)

does not consider hemodynamics as adequate surrogate or primary endpoints, many Phase

III trials of currently approved PAH treatments have included hemodynamics as secondary

endpoints.9–16 Given the absence of other well-established surrogate endpoints in PAH, the

validation of hemodynamic markers as surrogate endpoints in PAH would be critical to

improving the efficiency of drug evaluation.

Contrary to conventional wisdom, a recent study-level meta-analysis suggested that changes

in hemodynamic measures with PAH therapy might not predict clinical events.17 The

objective of our study was to determine whether changes in RAP, mPAP, cardiac output

(CO), CI, and pulmonary vascular resistance (PVR) are valid surrogate endpoints in PAH

clinical trials using a mediator analytic approach with patient-level data, the “gold standard”

approach to synthesizing data across trials.18, 19 We pooled individual-level data from four

randomized placebo-controlled trials submitted to the FDA for drug approval. We

hypothesized that changes in hemodynamics at 12 weeks (adjusted for measures at baseline)

would account for a significant portion of the relationship between treatment assignment and

the odds of a clinical event, validating hemodynamics as surrogate endpoints in PAH.

METHODS

Study Population

We used de-identified individual patient data from placebo-controlled randomized trials of

targeted PAH therapies submitted to the United States FDA through 2008. Eleven trials

(ARIES-1 & -2, Bosentan-351, BREATHE-1, AIR, AIR II, SUPER, STRIDE-1, -2, and -4,

and the subcutaneous treprostinil trial) comparing six active therapies (ambrisentan,

bosentan, iloprost, sildenafil, sitaxsentan, and subcutaneous treprostinil, respectively) to
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placebo were considered. Details of these trials are provided elsewhere, but all had similar

inclusion criteria and data collection processes.10–15, 20–23

We included patients from Phase III trials which collected baseline and 12-week

hemodynamic values. We excluded patients with missing baseline hemodynamics and one

study (PHIRST) because some subjects in this trial had been treated with background

bosentan therapy.24 ARIES 1&2, BREATHE-1, STRIDE-2 and -4 were excluded because

these trials did not assess hemodynamics at 12 weeks; Bosentan-351 and AIR II were

excluded because they were small or not Phase III trials. The final study population included

patients from four trials (AIR, SUPER, STRIDE-1, and subcutaneous treprostinil) of four

therapies (iloprost, sildenafil, sitaxsentan, and subcutaneous treprostinil, respectively).

Clinical Events

Clinical events included the first occurrence of any of the following prior to the end of the

randomized portion of the trials: death, lung transplantation, atrial septostomy,

hospitalization due to worsening PAH, withdrawal for clinical worsening, or escalation in

PAH therapy. We did not include change in six-minute walk distance (6MWD) as a clinical

event in the primary analysis, because it has not been established as a patient-centered

outcome and is itself an imperfect surrogate for clinical outcomes in PAH.25, 26 Sensitivity

analyses including a decrement in 6MWD in the composite endpoint were performed

(described below).

Hemodynamics

Hemodynamic values at baseline and at 12 weeks as reported to the FDA were used to

calculate the absolute change in RAP (ΔRAP), mPAP (ΔmPAP), CO (ΔCO), CI (ΔCI), and

PVR (ΔPVR). In addition to traditional hemodynamic measures, we included pulmonary

artery (PA) compliance, calculated as follows: (CO/heart rate)/(systolic PAP – diastolic

PAP).27–29 Subjects missing baseline hemodynamic values were excluded from all analyses

(N = 20 for RAP, N = 4 for mPAP, N = 18 for CO, N = 60 for PVR, total N excluded = 102

[9%]).

Statistical Analysis

Continuous variables were expressed as median (interquartile range) and categorical

variables were expressed as percentages. We employed a mediator analysis which is the

preferred approach to validating potential surrogate endpoints.30, 31 Treatment assignment

was designated as either active treatment or placebo. Regression analysis was used to

evaluate four hypotheses. The rejection of all four null hypotheses was required to deem the

change in a given hemodynamic measure a valid surrogate endpoint. The four alternative

hypotheses included:

1. Treatment assignment has a significant effect on change in hemodynamics (ΔRAP,

ΔmPAP, ΔCO, ΔCI, ΔPVR and ΔPA compliance) at 12-weeks;

2. Change in hemodynamics (ΔRAP, ΔmPAP, ΔCO, ΔCI, ΔPVR and ΔPA

compliance) has a significant association with the odds of a clinical event;

3. Treatment assignment has a significant effect on the odds of a clinical event;
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4. The effect of treatment assignment on the odds of a clinical event is attenuated

when change in a given hemodynamic parameter (ΔRAP, ΔmPAP, ΔCO, ΔCI,

ΔPVR and ΔPA compliance) is added to the model.

Logistic or linear regression was used for binary or continuous outcomes, respectively. All

models were adjusted for the given hemodynamic measure at baseline and study.

Following the tests for mediation, we determined the proportion of the treatment effect

(PTE) explained by ΔRAP, ΔmPAP, ΔCO, ΔCI, ΔPVR and ΔPA compliance,

respectively.32, 33 Generalized linear modeling with a logit link was used to determine the

effect estimate for treatment assignment and log odds of a clinical event, adjusted for

baseline hemodynamic value and study. ΔRAP, ΔmPAP, ΔCO, ΔCI, ΔPVR and ΔPA

compliance were then individually added to the initial models, such that the change in the

effect estimates between baseline and those containing the hemodynamic mediator provided

the amount of variability in clinical events explained by a change in the mediator at 12

weeks. Estimates of percent change were obtained for each resampled dataset, and the

standard deviation of the estimates across 1000 resampled datasets were used as the standard

error.34

A number of sensitivity and subset analyses were performed. First, the clinical event

definition was expanded to include a 15% decrement in 6MWD during the randomized

portion of the trials (in addition to death, lung transplantation, atrial septostomy,

hospitalization due to worsening PAH, withdrawal for clinical worsening, or escalation in

PAH therapy). Those missing 12-week 6MWD values were counted as having had an event.

Second, we tested whether achieving certain established thresholds of hemodynamic

improvement (i.e., CI > 2 L/min/m2 or > 3 L/min/m2, reduction in PVR > 30% at 12 weeks),

using absolute values of hemodynamics (rather than the change values), and nonparametric

modeling (using local smoothers) revealed alternative hemodynamic cutpoints which

performed better as surrogates.1, 3, 35 Third, we adjusted our primary analysis for New York

Heart Association (NYHA) functional class. Fourth, we included subset analyses limiting

our study population to those with idiopathic PAH, connective tissue disease (CTD) and

congenital heart disease associated PAH, respectively, as well as to the subset of patients

who achieved a 12 week 6MWD of > 380 m, which is suggested as a treatment target in

recent consensus guidelines.35, 36 Finally, for the AIR study, we substituted hemodynamic

values 60 minutes post-iloprost inhalation (as opposed to those pre-inhalation for the main

analysis) to calculate the change in hemodynamics.

Multiple imputation was used to derive missing 12-week hemodynamic values (N = 104

[9%] for RAP, N = 100 [9%] for mPAP, N = 100 for CO [9%], N = 134 [12%] for PVR).37

Age, sex, race, height, weight, diagnosis (idiopathic, CTD, human immunodeficiency virus

infection/anorexigen use, or congenital heart disease), baseline 6MWD, baseline

hemodynamic parameter, NYHA functional class, warfarin use, and baseline sodium level

were included as predictors in the imputation models for the missing 12-week hemodynamic

values. All analyses were performed using SAS version 9.2 and R, version 2.14.1. Statistical

significance was defined as p < 0.05.
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This study was determined to be exempt by the Institutional Review Board of the University

of Pennsylvania (approval #818239). All co-authors had access to study data, take

responsibility for the analysis, and have contributed to manuscript preparation and the

decision to submit for publication.

RESULTS

The final study sample included 1119 patients from four trials (AIR, SUPER, STRIDE-1,

and subcutaneous treprostinil) of four therapies (iloprost [N = 202, 18%], sildenafil [N =

269, 24%], sitaxsentan [N = 178, 16%], and subcutaneous treprostinil [N = 470, 42%],

respectively). Characteristics of the study population and those receiving active treatment (N

= 656, 59%) or placebo (N = 463, 41%) are shown in Table 1. The median age was 48

(range 37 – 59) years and 23% were men. Six hundred and thirty seven patients (60%) had

idiopathic PAH, 247 (23%) had CTD associated PAH, and 482 (45%) were NYHA

functional class III or IV. Demographics, anthropometrics, diagnoses, baseline 6MWD and

baseline hemodynamics were similarly balanced by treatment allocation (as would be

expected with randomization). A total of 110 patients (10%) had a clinical event between

baseline and 12 weeks. Hospitalization for worsening PAH (N = 70) and premature

withdrawal (N = 35) constituted the majority of these events; 29 deaths occurred during the

12 week randomized portion of the trials.

The results for the four criteria necessary to establish changes in selected hemodynamic

indices as mediators in the relationship between treatment allocation and clinical events are

presented in Tables 2–4. Assignment to active treatment significantly reduced RAP, mPAP,

and PVR and increased CO, CI, and PA compliance (Criterion #1; Table 2). Second, the

relationship between the change in a given hemodynamic value at 12 weeks and the odds of

a clinical event was tested (Criterion #2; Table 3). Decrease in PVR and increases in CO and

CI were associated with significant reductions in the odds of a clinical event. Effect

estimates appear small as they refer to the odds of a clinical event per 1 unit increase in the

hemodynamic measure (e.g., odds ratio [OR] 1.07 for every 1 Wood unit increase in PVR,

95% CI 1.02 – 1.12, p = 0.006). No corresponding relationship was identified between

ΔmPAP and ΔPA compliance and outcomes. Third, we assessed whether treatment

allocation impacted the odds of a clinical event at 12 weeks in subjects with available

respective hemodynamic measures. In all cases, active treatment substantially reduced the

odds of a clinical event compared to placebo (ORs ranged from 0.43 – 0.49) (P < 0.001 for

all) (Criterion #3; Table 4).

Fourth, we assessed the change in the treatment ORs for clinical events after adjustment for

the change in a given hemodynamic value at 12 weeks (Criterion #4; Table 4). There were

no appreciable changes in the treatment ORs after serially accounting for ΔRAP, ΔmPAP,

ΔCO, ΔCI, ΔPVR, and ΔPA compliance. For example, the OR for the relationship between

treatment assignment and a clinical event only changed from 0.47 (95% CI 0.30 – 0.72) to

0.52 (95% CI 0.33 – 0.81) once ΔPVR was included in the model, suggesting that ΔPVR

does not account for (or mediate) the effect of treatment on short-term clinical events in

PAH. The fourth criterion was not met for any hemodynamic measure. Therefore, rejection
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of the null hypotheses was not possible, suggesting that no hemodynamic measure appeared

to be a valid surrogate.

We next quantified the proportion of the treatment effect (PTE) explained by the

hemodynamic change values (Figure 1). These mediators accounted for little (ΔCO, ΔCI,

ΔPVR) to none (ΔRAP, ΔmPAP, ΔPA compliance) of the treatment effect. At most, ΔCI and

ΔPVR accounted for 11.7% and 13.9% of the impact of treatment on clinical outcomes,

well-below the proposed cutoff of 50–75% necessary to declare a surrogate valid.32

Sensitivity and Subset Analyses

The results were unchanged when a 15% decrement in 6MWD was included in the

definition of a clinical event (Table 5). The ORs shown for Criterion #4 were not

substantially attenuated with inclusion of the hemodynamic measures compared to the

models for Criterion #3. While the PTEs were generally greater than in the main analysis

(e.g., ΔPVR accounted for 26.9% of the treatment-clinical event relationship), they were still

well below 50%, suggesting the hemodynamic change values were not acting as mediators.

Similarly, analyses using predefined thresholds to indicate hemodynamic improvement,

absolute values of hemodynamics (rather than change values), cutpoints derived from

nonparametric modeling, and adjustment for NYHA functional class did not improve the

performance of hemodynamics as surrogates (data not shown). Subset analysis including

only idiopathic patients (N = 637) yielded results similar to our primary analysis

(Supplemental Table 1). In the small subgroups of patients with CTD, congenital heart

disease, and those patients who achieved a 6MWD > 380 m at 12 weeks (N = 469), findings

were also unchanged although the estimates were imprecise due to a very low number of

events (N = 21, 11, and 9 events, respectively) (data not shown). We repeated our analysis

substituting hemodynamic values 60 minutes post-iloprost inhalation (in patients from the

AIR study) in order to calculate the change values and the results were nearly identical

(Supplemental Table 2).

DISCUSSION

Based on this large pooled analysis of patient-level data we are unable to conclude that

treatment induced changes in resting hemodynamics are valid surrogate endpoints for short-

term outcomes in PAH. While 1) active treatment was significantly associated with modest

improvement in hemodynamics at 12 weeks, 2) changes in some hemodynamics were

significantly associated with the odds of clinical events, and 3) treatment assignment

considerably reduced the odds of a clinical event, the relationship between treatment and

clinical events was not mediated or “explained” by treatment-induced changes in these

values. This held true in multiple secondary analyses which included the incorporation of

6MWD decrement into the clinical event definition and the restriction of the study sample to

patients with idiopathic PAH.

The use of hemodynamic measures as surrogate endpoints in PAH clinical trials is

appealing, given that these measures may in theory be standardized, are widely available,

and are integral to our understanding and definition of PAH.38, 39 Observational studies have

consistently shown associations between hemodynamics (especially those that pertain to
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right heart function, such as CO) and event-free survival (as seen in this study); however,

such observational data are not sufficient to validate potential surrogates.1, 2, 40 Changes in

hemodynamics with PAH treatment predict outcome, but the specific measures of import

have been inconsistent across studies (e.g., mPAP and CI versus a reduction in PVR).2, 3 A

useful surrogate endpoint should be reliable, valid, and account for most of the impact of a

therapy on the ultimate clinical endpoint in multiple studies and settings.38

Our study demonstrates that treatment-induced changes in hemodynamics do not account for

the treatment-associated reduction in events at 12 weeks, calling into question traditional

assumptions about the mechanisms that underpin the effects of targeted PAH therapy on

clinical outcomes. Treatment-associated changes in hemodynamics have been reported to be

rather modest in short-term Phase III trials in PAH. In a randomized clinical trial of

epoprostenol, the difference in the mean change for PVR between treatment and placebo

groups was −4.9 Wood units (95% confidence interval −7.6 – −2.3 Wood units), for

example.9

A recent study-level meta-analysis by Savarese and colleagues yielded similar results.17

Assignment to active treatment was associated with hemodynamic improvements and

significantly reduced the odds of the composite outcome (OR 0.3, 95% confidence interval

0.3 – 0.5). However, there was no association between hemodynamic changes and the

composite outcome at the study-level.17 This null finding could be explained by the analytic

methods employed, as meta-analyses at the study-level are less robust and may suffer from

aggregation bias (known as the ecological fallacy).18, 19 We have used patient-level data and

the currently accepted approach to establishing surrogacy and found that short-term

improvements in hemodynamics actually contribute very little (at most 13.9% for ΔPVR in

our primary analysis) to the impact of treatment on early clinical events. It has been

proposed that a valid surrogate endpoint should explain between 50 – 75% of the exposure-

outcome relationship of interest.32

There are several possible explanations for these findings. Effective PAH therapies may act

via heretofore unmeasured (or insufficiently measured) physiologic pathways to impact on

outcome. For example, effects on the systemic circulation or other organ systems rather than

changes in the pulmonary vasculature could contribute substantially to therapeutic benefit.41

Treatment could also affect right ventricular (RV) loading conditions in complex ways not

adequately captured by invasive central measurements at rest. Small observational studies

have used cardiac magnetic resonance imaging (MRI) to study the effects of PAH therapy

on RV structure and function, and one has shown worsening RV performance is associated

with poor outcomes independent of improvements in PVR.42–44 While it may not be feasible

to incorporate cardiac MRI in a large-scale fashion in PAH clinical trials, other RV

biomarkers may prove to be better surrogates. Advanced or novel RV imaging techniques,

such as speckle-tracking Doppler and positron emission tomography, have been linked to

clinical deterioration and RV metabolic changes in PAH, respectively, although more work

is needed to establish clear correlations between these measures, PAH treatment response,

and outcomes.45–48 While brain natriuretic peptide (BNP) is an easily obtained and reliable

measure of RV strain, a recent study of changes in plasma BNP after treatment failed to

discriminate two year survival in patients with PAH.49 Although we incorporated a measure
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of PA compliance in our study, there may be more sophisticated and comprehensive

measures of the cardiopulmonary interaction which prove to be valid surrogates in PAH.

While short-term hemodynamic response may be a poor surrogate for short-term clinical

events, these results may not apply to trials of longer duration. It is possible that changes in

hemodynamics following longer-term therapy are adequate surrogates for long-term

outcomes. We are not able to answer this question, since essentially all clinical trials

including hemodynamic measures had a placebo-controlled period of only a few months

(and long-term open labeled extension studies are not sufficient for the required analyses).

Larger, time-to-event trials incorporating composite clinical outcomes have only recently

been conducted in PAH NCT01106014, NCT01178073).50 While treatment-induced

changes in hemodynamics were not adequate surrogates in patients without treatment at

baseline, the validity in patients with background treatment, combination therapy, or in

patients evaluated or reassessed sequentially is unknown.

This study has some limitations. The patient-level data were limited by design of the

individual trials. Since the FDA accepts changes in short-term intermediate endpoints

(6MWD) for registration, these Phase III trials were not surprisingly of short duration,

limiting our conclusions regarding surrogacy for long-term outcomes. The exclusion of

those subjects with missing baseline values could result in selection bias, however those

excluded (< 10%) were similar to those in the final study sample, making this less likely.

The imputation of 12-week hemodynamic values (at most 12% for PVR) may have been an

additional source of bias. Four Phase III trials (of 11 in the dataset) included treatment naïve

patients and had repeat hemodynamics available, although > 1000 patients were included as

were all major therapeutic classes (i.e., prostacyclin analogues, endothelin receptor

antagonists [ERA], and phosphodiesterase type 5 inhibitors), increasing generalizability.

The ERA sitaxsentan was shown to be efficacious in STRIDE-1 and other trials, but was

withdrawn from the market for hepatic toxicity. Sitaxsentan was the only ERA with follow-

up hemodynamics in a Phase III trial.20 While two of the trials included, AIR and the

subcutaneous treprostinil trial, met their respective primary endpoints for efficacy, effect

sizes were smaller in these trials as compared to Phase III trials for other targeted PAH

therapies.10, 11 An additional subset analysis including only the SUPER and STRIDE-1

trials did not alter our results, although precision was limited due to smaller sample size and

lower event rate (data not shown). The results could differ with other treatments, in patients

receiving background therapy, or for trials performed in other geographic regions or eras.

Last, it is unknown whether the validity of hemodynamic measures would be enhanced by

employing highly standardized measurement techniques and/or by capturing serial or

dynamic (e.g., exercise or composite) values.

Treatment-induced changes in pulmonary hemodynamics measured at rest are not valid

surrogates for short-term clinical outcomes in PAH trials. While active treatment was

associated with significant hemodynamic improvement, this response to therapy mediates

very little of the treatment effect on key clinical endpoints at 12 weeks. The impact of

longer-term therapy on hemodynamics and the validity of these changes over time remain

unknown. Future work should focus on validating commonly accepted surrogates in PAH
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prior to their incorporation into advanced phase trials, and on defining more robust and

dynamic measures of disease burden in PAH.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Proportion of the treatment effect explained by change in hemodynamics. ΔRAP=change in

right atrial pressure; ΔmPAP=change in mean pulmonary artery pressure; ΔCO=change in

cardiac output; ΔCI=change in cardiac index; ΔPVR=change in pulmonary vascular

resistance; ΔPA compliance=change in pulmonary artery compliance; CI=confidence

interval
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Table 1

Characteristics of study participants

Characteristic Overall (n = 1119) Active treatment (n=656) Placebo (n=463)

Age, years 48 (37–59) 47 (36–58) 49 (37–59)

Male, n (%) 255 (23) 145 (22) 110 (24)

Race, n (%)

 White 943 (85) 553 (86) 390 (85)

 Black 42 (4) 27 (4) 15 (3)

 Other 134 (12) 76 (12) 58 (13)

Height, cm 163 (157–170) 163 (157–170) 163 (157–170)

Weight, kg 70.0 (59.1–81.5) 69.1 (58.0–81.4) 70.0 (60.3–81.6)

BMI, kg/m2 25.9 (22.5–30.0) 25.7 (22.2–29.8) 26.0 (22.8–30.3)

PAH diagnosis, n (%)

 Idiopathic 637 (60) 374 (60) 263 (60)

 Connective tissue disease 247 (23) 147 (24) 100 (23)

 HIV/anorexigen use 10 (1) 5 (1) 5 (1)

 Congenital heart disease 169 (16) 98 (16) 71 (16)

NYHA functional classification, n (%)

 I/II 599 (55) 326 (51) 273 (62)

 III/IV 482 (45) 312 (49) 170 (38)

Baseline hemodynamics

 RAP, mm Hg 8.0 (5.0–12.0) 8.0 (5.0–12.0) 8.0 (5.0–12.0)

 mPAP, mm Hg 55.0 (46.0–65.0) 55.0 (46.0–64.0) 56.0 (47.0–67.0)

 Cardiac output, L/min 3.8 (3.1–4.8) 3.8 (3.2–4.9) 3.8 (3.1–4.6)

 Cardiac index, L/min/m2 2.1 (1.8–2.6) 2.2 (1.8–2.8) 2.1 (1.8–2.5)

 PCWP, mm Hg 9.0 (6.0–11.0) 9.0 (6.0–11.0) 9.0 (6.0–12.0)

 PVR, Wood units 11.9 (8.4–16.8) 11.6 (7.9–16.5) 12.4 (8.9–17.0)

 PA compliance, mL/mmHg 0.93 (0.68–1.33) 0.95 (0.71–1.40) 0.88 (0.65–1.23)

Sodium, mEq/L 140 (138–142) 140 (138–142) 140 (138–142)

Warfarin use, n (%) 582 (63) 338 (61) 244 (67)

Baseline 6MWD, m 352 (281–409) 355 (288–408) 348 (273–410)

Study, n (%)

 AIR 202 (18) 101 (15) 101 (22)

 SUPER 269 (24) 204 (31) 65 (14)

 STRIDE-1 178 (16) 118 (18) 60 (13)

 Treprostinil 470 (42) 233 (36) 237 (51)

Summaries provided as median (Q1–Q3) unless otherwise indicated by n (%). BMI=body mass index; HIV=human immunodeficiency virus;
NYHA=New York Heart Association; RAP=right atrial pressure; PAP=pulmonary artery pressure; PCWP=pulmonary capillary wedge pressure;
PVR=pulmonary vascular resistance; PA=pulmonary artery; AIR=Aerosolized Iloprost Randomized; STRIDE=Sitaxsentan To Relieve Impaired
Exercise; SUPER=Sildenafil Use in Pulmonary Hypertension.
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Table 2

Treatment assignment has a significant effect on change in hemodynamics at 12 weeks (Criterion #1)

Hemodynamic measure Mean difference between treatment and placebo 95% CI P value

ΔRAP −1.2 mm Hg −1.8, −0.6 < 0.001

ΔmPAP −2.4 mm Hg −3.4, −1.3 0.003

ΔCO 0.37 L/min 0.24, 0.50 < 0.001

ΔCI 0.22 L/min/m2 0.14, 0.29 < 0.001

ΔPVR −2.1 Wood units −2.7, −1.5 < 0.001

ΔPA compliance 0.15 mL/mm Hg 0.09, 0.21 < 0.001

All models include adjustment for baseline hemodynamic value and study. CI=confidence interval; ΔRAP=change in right atrial pressure;
ΔmPAP=change in mean pulmonary artery pressure; ΔCO=change in cardiac output; ΔCI=change in cardiac index; ΔPVR=change in pulmonary
vascular resistance; ΔPA compliance=change in pulmonary artery compliance.
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Table 3

Change in hemodynamics has a significant association with the odds of a clinical event (Criterion #2)

Hemodynamic measure OR clinical event per 1 unit increase of hemodynamic measure 95% CI P value

ΔRAP 1.04 0.99, 1.09 0.124

ΔmPAP 1.01 0.98, 1.04 0.524

ΔCO 0.70 0.53, 0.93 0.011

ΔCI 0.54 0.33, 0.89 0.013

ΔPVR 1.07 1.02, 1.12 0.006

ΔPA compliance 0.67 0.21, 2.12 0.798

All models include adjustment for baseline hemodynamic value and study. OR=odds ratio; CI=confidence interval; ΔRAP=change in right atrial
pressure; ΔmPAP=change in mean pulmonary artery pressure; ΔCO=change in cardiac output; ΔCI=change in cardiac index; ΔPVR=change in
pulmonary vascular resistance; ΔPA compliance=change in pulmonary artery compliance.
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