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Abstract
It has since long been known, from everyday experience 
as wel l as from animal and human studies, that 
psychological processes-both affective and cognitive-
exert an influence on gastrointestinal sensorimotor 
function. More specifically, a link between psychological 
factors and visceral hypersensitivity has been suggested, 
mainly based on research in functional gastrointestinal 
disorder patients. However, until recently, the exact 
nature of this putative relationship remained unclear, 
mainly due to a lack of non-invasive methods to study 
the (neurobiological) mechanisms underlying this 
relationship in non-sleeping humans. As functional brain 
imaging, introduced in visceral sensory neuroscience 
some 10 years ago, does provide a method for in vivo  study 
of brain-gut interactions, insight into the neurobiological 
mechanisms underlying visceral sensation in general and 
the influence of psychological factors more particularly, 
has rapidly grown. In this article, an overview of brain 
imaging evidence on gastrointestinal sensation will be 
given, with special emphasis on the brain mechanisms 
underlying the interaction between affective & cognitive 
processes and visceral sensation. First, the reciprocal 
neural pathways between the brain and the gut (brain-
gut axis) will be briefly outlined, including brain imaging 
evidence in healthy volunteers. Second, functional brain 
imaging studies assessing the influence of psychological 
factors on brain processing of visceral sensation in 
healthy humans wil l be discussed in more detail. 
Finally, brain imaging work investigating differences in 
brain responses to visceral distension between healthy 
volunteers and functional gastrointestinal disorder 
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patients will be highlighted.
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INTRODUCTION
It has since long been suggested that psychological 
processes may influence gastrointestinal (GI) sensory and 
motor function, both in the medical literature and by lay 
persons in everyday life. Most people seem to have at least 
some experience with changes in GI sensorimotor function 
during "stress" or emotional arousal, which may lead to 
abdominal symptoms. This knowledge or experience is 
expressed in sayings in many different languages, including 
"butterflies in the stomach" in English. In 1833, William 
Beaumont observed changes in gastric mucosa during 
emotional stress in a patient with a gastric fistula[1]. In 
1909, Sir Walter Cannon stated, based on his experiments 
in cats, that "gastric and intestinal peristalsis are stopped in 
man as they are stopped in the lower animals, by worry and 
anxiety and the major affective states"[2] (cited in[3]). These 
early observations, although obviously methodologically 
flawed by modern standards, provide nevertheless some 
indication of  a putative influence of  psychological factors 
(and thus the brain) on the gut.

This body of  old preliminary evidence has, however, 
been strengthened by more recent and methodologically 
stronger human research in both healthy volunteers and 
patients with functional gastrointestinal disorders (FGID).

I n  h e a l t h y  v o l u n t e e r s ,  v a r i o u s  f o r m s o f  
"stress"(including, among others, experimentally induced 
anxiety and acoustic stress) have been found to influence 
esophageal[4], gastric[5,6] and rectal[7,8] sensorimotor function 
and/or symptoms. For example, experimentally induced 
anxiety is associated with significantly lower gastric 
compliance and accommodation during barostat testing, as 



Van Oudenhove L et al.  Brain Imaging of GI Sensation                  				                         3439

www.wjgnet.com

well as with higher ratings for some epigastric symptoms 
during a nutrient drinking test[6]. Moreover, the magnitude 
of  visceral pain hypersensitivity after distal oesophageal 
acidification correlates with pre-study anxiety state 
scores[4].

Even more evidence is coming from studies in FGID 
patients. As a lot of  these patients are characterized 
by both visceral hypersensitivity[9-11] and psychological-
affective and cognitive-abnormalities[12-16], a link between 
both can be hypothesized. For example, in functional 
dyspepsia, an association between gastric hypersensitivity 
and neuroticism, history of  abuse and somatization 
has been reported[17,18]. Furthermore, anxiety levels at 
the moment of  barostat investigation are negatively 
correlated with gastric discomfort and pain thresholds, 
but only in the hypersensitive subgroup of  patients, 
highlighting the complexity of  this relationship in a 
heterogeneous disorder[19]. In summary, the exact nature 
of  a putative (causal?) l ink between psychological 
processes or abnormalities and visceral hypersensitivity 
remains incompletely understood. Theoretically, visceral 
hypersensitivity could result from sensitization of  
peripheral nerves or dorsal horn neurons in the spinal 
chord as well as from abnormal cortical processing-
whether or not due to psychological processes-of  normal 
afferent signals[11]. It is conceivable that both mechanisms 
could be involved, with their relative importance varying in 
different individual patients, although clear direct evidence 
for this hypothesis is lacking. In the past, the lack of  tools 
for studying brain-gut interactions in vivo, caused great 
difficulty in answering this question. 

Functional brain imaging (FBI), mainly Positron 
Emission Tomography (PET) and functional Magnetic 
Resonance Imaging (fMRI), has been introduced in 
visceral sensory neuroscience roughly 10 years ago. As 
FBG does provide a method for in vivo study of  brain-gut 
interactions, insight into the neurobiological mechanisms 
underlying visceral sensation in general and the influence 
of  psychological factors more particularly, has rapidly 
grown. The aim of  this article is to provide an overview 
of  brain imaging evidence on GI sensation, with special 
emphasis on the brain mechanisms of  the interaction 
between cognitive-affective processes and visceral 
sensation. First, the reciprocal neural pathways between 
the brain and the gut (brain-gut axis) will be briefly 
outlined, including evidence from brain imaging studies 
in healthy volunteers. Second, FBI studies assessing the 
influence of  psychological factors on brain processing 
of  visceral sensation in healthy humans will be discussed 
in more detail. Finally, brain imaging work investigating 
differences in brain response to GI distension between 
healthy volunteers and FGID patients will be highlighted. 

THE BRAIN-GUT AXIS
The bra in-gut ax is (BGA) can be def ined as the 
bidirectional "communication system" between the 
gut and the brain. It is important to note that not only 
neural (autonomic nervous system, ANS), but also 
neuroendocrine (hypothalamo-pituitary-adrenal (HPA) 
axis) and neuroimmune pathways are involved. As 

extensive reviews on the BGA have been published 
before[13,20,21], we will only give a summary here, mainly 
limited to neural pathways. 

The evidence presented is based partly on invasive 
and/or post mortem studies in animals, but mainly 
on in vivo brain imaging studies on somatic (reviewed 
in[22]) and visceral sensation and pain (reviewed in[13,23]) in 
humans. In brain imaging studies on visceral sensation 
and pain, different visceral stimulation methods have been 
used (mainly balloon distension of  some part of  the GI 
tract[24-26], but also electrical stimulation[27], acid infusion in 
the esophagus[28] and intragastric nutrient infusion[29,30] to 
mimic more physiological conditions). Moreover, different 
neuroimaging modalities (mainly PET & fMRI) and 
analysis methods have been used. Furthermore, different 
parts of  the GI tract have been stimulated, including the 
esophagus[25,31-33], the gastric fundus[24,34] and antrum[35] and 
the sigmoid-rectum[26,36,37]. Finally, different intensities of  
stimulation have been used (non-painful versus painful). 
As a consequence of  this heterogeneity, variability of  
results is relatively high, which makes it sometimes difficult 
to compare different studies. However, in healthy humans, 
the cortical "visceral sensory neuromatrix" has been 
outlined fairly consistently. Furthermore, a recent high-
resolution fMRI study has provided support for processing 
of  visceral sensory information in specific brainstem 
regions[38].

There are two important distinct systems transferring 
visceral sensory signals from the gut to the brain, the vagal 
and the spinal afferent system.

The vagal ("parasympathetic") afferent system
Vagal primary afferent neurons mainly project to the 
nucleus of  the solitary tract (NTS), from which secondary 
projections ascend to the thalamus (mostly through the 
parabrachial nucleus) and directly to brain structures 
including the hypothalamus, locus coeruleus (LC)[38]-
amygdala system and periaqueductal gray (PAG)[38], which 
are known to be involved in arousal and emotional, 
autonomic, neuroendocrine and behavioural responses. 
From the thalamus, third order neurons relay sensory 
signals from the gut to the cortical "visceral sensory 
neuromatrix", which will be described below[13,20,21,23].

The spinal ("sympathetic") afferent system 
Primary spinal visceral afferent nerves make synapse in the 
dorsal horn of  the spinal cord. Secondary neurons project 
proximally along the spinal cord through the spinoreticular, 
spinomesencephalic, spinohypothalamic and spinothalamic 
tracts [13,21,39]. The first three of  these tracts generally 
activate reflexive/unconscious/automatic responses to 
visceral sensory input (arousal, autonomic responses, 
prototype emotional and behavioural responses)[13,21,39]. 
The spinothalamic tract is the most important pathway, 
projecting to the cortex, where conscious visceral 
sensation arises. It projects to the ventral posterior lateral, 
medial dorsal and ventral medial posterior nuclei of  the 
sensory thalamus, from which tertiary neurons relay GI 
sensory signals to the somatosensory cortices (SⅠ/SⅡ), 
the cingulate cortex and the insula, respectively[13,21,39]. The 



prefrontal cortex (PFC) is probably the highest integrative 
structure processing (visceral) sensory/pain signals, 
which is also crucially involved in selecting and generating 
responses to this sensory input[40].

The cerebral cortex: the "visceral sensory/pain
neuromatrix"
The main function of  SⅠ/SⅡ ("lateral pain system") is 
to encode intensity and localisation of  (visceral) stimuli 
(sensory-discriminative pain dimension), whereas the 
cingulate cortex ("medial pain system") is mainly involved 
in the affective-motivational (pain unpleasantness, pain-
related anxiety…) and cognitive-evaluative (attention, 
anticipation…) dimensions of  pain[41-43]. However, the 
distinction between and within both systems may be less 
clear than thought[43]. Certainly, important interactions 
between both systems exist [40]. Moreover, the relative 
importance of  SⅠ/SⅡ in visceral versus somatic pain 
has been a matter of  debate, due to conflicting results 
regarding this issue[24,34,44-48].

The cingulate cortex is a multifunctional structure 
that can be divided into several anatomical and functional 
subregions, the most important in this context being[23,49,50]: 
(1) anterior cingulate cortex (ACC, sometimes described as 
"ventral ACC"), to be further subdivided in: (a) pregenual 
ACC (pACC); (b) subgenual ACC (sACC). (2) mid-
cingulate cortex (MCC), to be further subdivided in: (a) 
anterior (aMCC, sometimes described as "dorsal ACC", or 
"midACC"); (b) posterior (pMCC) parts. 

However, different ways of  subdividing the cingulate 
cor tex have been proposed and used [51,52], making 
comparisons between studies difficult and sometimes 
confusing, especially when Brodmann areas and/or 
stereotactic coordinates are not mentioned. In this paper, 
we have tried to use the cingulate subdivision proposed 
by Vogt et al[49,50] as described above consistently, because 
it is firmly grounded in converging evidence from 
cytoarchitectonic as well as functional neuroimaging 
studies, but we will also quote the name of  the cingulate 
subregion as mentioned in the original article where 
possible. There is, however, large consensus that the 
cingulate cortex, through its different subregions, is playing 
a role in encoding the affective-motivational dimension 
of  pain, in generating autonomic, emotional, behavioural 
and descending modulatory responses to (visceral) 
pain[13,39,43,49,50,53] as well as in anticipation of  or attention to 
aversive (visceral) stimuli[33,43,49,50,54-56].

The insula has been termed the "interoceptive cortex", 
where sensory information, from different modalities, 
about the internal state of  the organism is processed[47,57]. 
It is thus not a pain-specific region, although it may be 
involved in encoding sensory, but also affective dimensions 
of  pain[23,43], thus integrating visceral and somatic sensory 
input with emotional information[13,23]. Efferent output 
from the insula to the amygdala, hypothalamus, PAG and 
other brainstem regions is involved in higher order control 
of  autonomic visceromotor responses[13,23]. 

The prefrontal cortex (PFC) is a complex cortical 
region consisting of  several subdivisions. The PFC is 
believed to be mainly important in cognitive influences on 

pain as well as (secondary) pain affect[22,40]. Generally, the 
orbitofrontal cortex (OFC) integrates sensory information 
from different modal i t ies ( including information 
from visceral sources [24,48]) and encodes its affective, 
motivational, reward and hedonic valence[58]. The OFC 
also controls the choice between and the generation of  
autonomic and behavioral response patterns[59]. It has 
been shown to be a putative biological substrate of  the 
interaction between cognition on one hand (including 
placebo effect-expectation of  relief, attention-distraction, 
anticipation) and emotions and (visceral) pain on the other 
hand[51,53,60,61]. The dorsolateral prefrontal cortex (DLPFC) 
is believed to be a more purely cognitive region, involved 
in working memory and complex attention tasks [62], 
including anticipation of  and attention to (visceral) 
sensation and pain [31,43]. More specifically, the right 
ventrolateral prefrontal cortex (RVLPFC) has been shown 
to be involved in higher control of  endogenous pain 
inhibition (through connections with the PAG), whereas 
the dorsomedial prefrontal cortex (DMPFC) has been 
implicated in anticipatory and emotional responses to pain 
and pain facilitation[37,51,54].

Descending modulatory pathways
Most brain structures receiving visceral sensory/pain 
inputs project back to modulate ongoing transmission 
of  those inputs, mainly at the level of  the dorsal horn 
of  the spinal cord[21,63-65]. The ACC is believed to be the 
key cortical region involved in descending modulatory 
control, projecting to the amygdala and the PAG, another 
key pain modulatory region[38,51,63,64,66]. Thus, cognitive and 
affective factors may exert influence on pain transmission 
through the ACC[51]. The amygdala and the PAG project 
to the noradrenergic locus coeruleus, the serotonergic 
raphe nuclei and the rostrolateral ventral medulla, which 
in turn send projections to the dorsal horn of  the spinal 
cord, influencing the synaptic transmission of  sensory 
information at this level ("gate mechanism") [21 ,63 ]. 
Endogenous opioids are crucially involved in this 
system at all levels, together with other neurotransmitters 
including serotonin and noradrenalin[51,63]. Taken together, 
this descending modulatory system may be an important 
neurobiological substrate of  the influence of  psychological 
factors on pain. 

It is interesting to note, that almost all the regions 
processing (visceral) sensory information described 
above, are also crucially involved in emotional perception-
identification, generation and regulation[67-69], providing 
a neurobiological as well as a conceptual link between 
visceral sensation and emotion.

INFLUENCE OF PSYCHOLOGICAL
FACTORS ON BRAIN PROCESSING 
OF VISCERAL SENSATION IN 
HEALTHY HUMANS
Phillips et al[32] investigated neural responses to non-painful 
esophageal stimulation during negative versus neutral 
emotional context created by viewing of  standardized 
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fearful versus neutral facial expressions[70]. Activation in 
the bilateral aMCC ("dorsal ACC") and the right anterior 
insular cortex were found to be significantly higher in 
the negative emotional condition. In a second fMRI 
experiment reported in the same article, brain activation 
during non-painful esophageal distension was significantly 
higher in the left aMCC ("dorsal ACC") and the bilateral 
insula when viewing high-intensity versus low-intensity 
fearful facial expressions. Moreover, the high-intensity 
emotional condition was associated with significantly 
higher reports of  discomfort and anxiety, compared to the 
low-intensity condition.

Gregory et al [33] studied the influence of  selective 
attention (to the visceral or a visual stimulus) and 
divided attention (to both stimuli) on neural correlates 
of  non-painful esophageal balloon distension. Selective 
attention to the esophageal stimulus activated SⅠ/SⅡ 
(sensory processing) and aMCC ("mid-ACC") (cognitive 
processing), whereas selective attention to the visual 
stimulus activated visual cortex. During divided attention, 
more brain regions in the (sensory and cognitive) visceral 
sensory network were recruited, in comparison to the 
visual sensory network. This study provides evidence for 
a substantial effect of  cognitive factors as attention on 
visceral sensation. It also suggests that visceral sensory 
information may be preferentially processed in the brain 
compared to other sensory modalities.

Yaguez et al[56] looked at the brain responses during 
anticipation of  painful esophageal stimulation using a 
Pavlovian classical aversive conditioning paradigm. Three 
differently colored circles acted as conditioned stimuli (CS) 
as they were paired with painful esophageal distension, air 
puff  to the wrist and nothing (unconditioned stimuli, US). 
Neural activity was registered (using fMRI) during learning 
(pairing of  CS with their respective US), anticipation 
(pairing CS-US in only 50% of  the presentations) and 
extinction (CS presented without US). During the learning 
phase of  the esophageal pain condition, the classical 
visceral pain matrix [SⅠ/SⅡ, aMCC ("mid-ACC"), insula] 
was activated. However, similar regions were activated 
during the anticipation and extinction phase of  this 
condition, thus without the actual painful esophageal 
stimulus being delivered. Innocuous stimulation of  the 
hand by air puff  didn't show this effect. Thus, actual and 
anticipated visceral pain, both activate the visceral pain 
neuromatrix.

Taken together, these studies provide important direct 
evidence for extensive modulation of  normal sensory 
signals from the gut by psychological-both affective and 
cognitive-processes at the level of  the brain. Although this 
obviously does not necessarily implicate that symptoms 
in FGID patients can be entirely attributed to these 
processes, the hypothesis that they may play a role in at 
least some FGID patients is certainly strengthened by this 
work in healthy volunteers.

BRAIN IMAGING STUDIES ON VISCERAL 
SENSATION/PAIN IN FGID PATIENTS
Irritable Bowel Syndrome (IBS)
An extensive review of  all the brain imaging studies in 

IBS falls beyond the scope of  this article. As the older 
evidence, which has been reviewed earlier[13,23], is generally 
descriptive and methodologically less strong (no control 
for potential confounders as affective and cognitive factors, 
sex…), only a brief  summary of  this body of  literature will 
be presented here. A selection of  more recent and novel 
studies will be discussed in more detail.

It should be noted that comparing different brain 
imaging studies in IBS patients is even more difficult than 
in normal controls. Patient heterogeneity is likely to have 
an important influence on the results in FGID patients, 
especially with respect to psychosocial factors[71]. Besides, 
all the potential sources of  variability as discussed above 
in the section on healthy controls also apply to FGID 
patients.

General brain imaging findings in IBS   
However, similar brain regions were generally found 
to be activated during rectal distension in healthy 
volunteers and IBS patients (the visceral sensory/pain 
neuromatrix, as described above). However, the level/
extent of  activation differs between patients and controls, 
mainly in regions involved in processing the affective 
and cognitive dimensions of  visceral sensation/pain. In 
some studies, ACC-aMCC activity during painful rectal 
distension was higher in IBS patients, compared to healthy 
volunteers[26,36,37,72]. These differences may be explained 
by upregulation of  visceral afferent input to the brain, 
abnormal affective or cognitive responses at the brain 
level (increased anticipation, attention (hypervigilance) or 
negative affective reaction to the visceral sensory stimulus), 
or both. However, in a roughly equal number of  studies, 
lower or absent ACC-aMCC activity was found during 
rectal distension in IBS patients compared to healthy 
volunteers[71,73-76]. This can again be interpreted in several 
ways, including decreased descending antinociceptive 
response through pathways originating at the level of  the 
ACC, ceiling effects or differential sensitization of  the 
lateral versus the medial pain system in IBS.

Somatic pain sensitivity in IBS
(Brain) responses to somatic painful stimuli have also 
been studied in IBS patients, again leading to somewhat 
contradictory results. Normal[77,78], lower[79], as well as 
higher[77] somatic pain thresholds, compared to controls, 
have been reported. Although visceral pain stimuli are 
generally rated as more unpleasant compared to somatic 
pain stimuli, Verne et al [72] found equally increased 
responses in both sensory and affective regions of  the pain 
matrix for visceral and somatic pain stimuli in IBS patients 
compared to control. These findings were interpreted as 
supportive of  increased afferent sensory signalling to the 
brain in IBS. Chang et al[80], however, found an enhanced 
aMCC ("middle ACC") response to visceral stimuli only 
in IBS patients, whereas a higher activation in the same 
region was found in response to somatic stimuli only in 
fibromyalgia (FM) patients. This may be suggestive of  
stimulus-specific cognitive enhancement of  sensory input, 
rather than upregulated afferent signalling to the brain 
alone.
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Discussion of selected brain imaging studies in IBS
Naliboff  et al[36] found similar brain responses to actual and 
anticipated non-painful rectal distension in IBS patients 
and controls using H2O15-PET, providing important direct 
evidence for a role of  anticipation in the perception of  
visceral sensation. Furthermore, a decreased response 
in the sACC ("infragenual ACC"), pACC ("perigenual 
ACC"), medial and orbital PFC and the PAG was found 
in IBS patients (possibly to be interpreted as a difference 
in affective response, failure to activate descending 
antinociceptive responses or inappropriate regulation 
of  visceromotor response), whereas the aMCC ("rostral 
ACC") (involved in pain unpleasantness as well as cognitive 
influences on pain) was found to be more activated in IBS.

In a PET study, Ringel et al[71] reported lower ACC-
aMCC ("ACC") activity during rectal distension in IBS 
patients with a history of  abuse, compared to patients 
without any abuse history. However, in a more recent 
fMRI study[81] by the same group, in a larger patient sample, 
abused patients showed higher MCC ("MCC") and posterior 
cingulate activation compared to non-abused patients. 
ACC ("perigenual ACC") activation, on the contrary, was 
lower in abused patients compared to non-abused patients 
and controls. Furthermore, pain rating during distension 
correlated with MCC activation, thus paralleling the 
differences in MCC activation between abused and non-
abused patients. Despite the inconsistencies, the results 
provide direct evidence for an important influence of  
psychosocial factors on brain mechanisms of  visceral 
sensation.

Kwan et al[82] found that the perceptual responses to 
rectal stimuli are time locked to the stimulus period in 
healthy subjects but are dissociated from the duration and 
intensity of  the stimulus in IBS patients. In a subsequent 
fMRI study [75], the same authors addressed this issue 
further, reporting that "percept-related activations 
were more extensive than stimulus-related activations 
in control subjects", which they explained by "better 
temporal "fit" with the percept compared with the 
stimulus pressure curve". Furthermore, low-pressure 
rectal distension eliciting a sensation of  urge, activated 
S1 in IBS patients but not in controls, which could be 
interpreted as upregulated afferent input underlying 
visceral hypersensitivity (or "visceral allodynia", as 
stated by the authors). During high-pressure painful 
distension, the medial thalamus and the hippocampus were 
activated in IBS patients, but not in controls. The authors 
explain these somewhat unexpected findings as altered 
affective-motivational processing of  pain, although the 
hippocampus has rarely been mentioned in this context. 
Finally, lack of  activation in right anterior insula was 
found in IBS patients compared to controls during painful 
distension, interpreted by the authors as either a ceiling 
effect or a dysfunction in interoceptive processing or 
control of  visceromotor responses.

Recently, Lawal et al[83] performed an fMRI study in 
which they investigated regional brain activation during 
subliminal rectal distension, i.e. below the threshold 
for conscious perception. The total volume of  cerebral 
cortex activated was significantly higher in IBS patients 
compared to controls. The authors claimed that using 

subliminal stimuli allowed them to study brain processing 
of  visceral afferent signals independent from cognitive 
modulation, thus providing support for the hypothesis that 
visceral hypersensitivity in IBS is due to increased afferent 
signalling to the brain rather than altered processing at 
the level of  the brain. However, this assumption has 
been questioned and it has even been suggested that the 
study design maximized rather than minimized cognitive 
modulation [54]. We believe that it is indeed likely that 
cognitive and emotional modulation of  visceral afferent 
signals, and thus conscious visceral sensation, may always 
occur in awake humans[54].

In a recent H2O15-PET-study, Mayer and co-workers[37] 
found no differences in insula and aMCC ("dorsal ACC, 
dACC" or "caudal ACC") activity between IBS patients, 
ulcerative colitis (UC) patients and controls during actual 
and anticipated rectal distension, possibly suggesting that 
the brain may receive similar visceral input in the three 
groups. Interestingly, during anticipated and delivered 
rectal distension, UC patients and controls generated 
more activation in regions known to be involved in 
antinociception (right VLPFC and dorsal pons/PAG) 
compared to IBS patients. Activation in an affective 
network known to be able to inhibit the PAG (and thus 
to exert a pronociceptive influence) [left DMPFC, left 
sACC ("infragenual ACC") & bilateral pACC ("rostral 
ACC" or "ventral ACC"), left amygdala], on the contrary, 
was lower in UC patients and controls compared to the 
IBS group. Although somewhat contrary to a previous 
study [36], this result may be suggestive of  a fail ing 
antinociceptive response at the brain level in IBS, driven 
by affective factors. Finally, the antinociceptive brain 
response triggered by rectal distension in UC patients 
and controls was investigated more into detail in this 
study. The authors found a positive correlation between 
right VLPFC activation and dorsal pons/PAG activation, 
which was mediated by negative correlations between right 
VLPFC and DMPFC/ACC, which in turn was negatively 
correlated with dorsal pons/PAG activation.

The same group from UCLA recently published the 
first longitudinal H2O15-PET-study in IBS (Naliboff  et al[84]), 
in which the change in brain response to repeated anticipated 
and delivered rectal distension was studied over a period 
of  12 mo. Despite stable IBS-symptom severity and mood, 
visceral hypersensitivity to rectal distension gradually 
normalized during repeated stimulus exposure. When brain 
activation was compared between the first and the second 
scanning session, anterior insula and bilateral thalamus 
were consistently activated during rectal distension, 
which is indicative of  similar visceral input to the brain 
during both sessions. Hypothalamus and subgenual 
ACC ("infragenual ACC, iACC") were also consistently 
activated, explained by the authors as the neural substrate 
of  stable visceromotor and autonomic responses over 
time. However, pregenual ACC ("supragenual ACC") and 
MCC activity significantly decreased during distension in 
the second session, interpreted by the authors as reduced 
vigilance and/or arousal triggered by the visceral stimulus. 
Connectivity analysis confirmed the covariation of  a 
pontine/midbrain region (possibly the locus coeruleus) 
with the amygdala and the pACC-MCC regions, which 
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are part of  the hypothesized arousal network in which 
activity decreased during the second session. However, 
different use of  ACC subdivisions (in the text as well 
as in the region of  interest definitions used in the PET 
analyses) makes the comparison between ACC activation 
results from this and the previously mentioned study by 
the same group[37] somewhat difficult. For example, the 
absence of  group differences in "dACC" activation was 
interpreted as equal visceral afferent input in the three 
groups in the first study[37]. However, in the second study, 
decrease in activation in areas equivalent to the "dACC" 
("supragenual ACC" and "MCC") over time are explained 
as reduction in arousal and vigilance[84]. Furthermore, in 
the first study, the "rostral" or "ventral" ACC is seen as 
part of  an affective network involved in pain modulation, 
but it is not clear which is the equivalent ACC subregion 
in the second study[84], as the subregions are differently 
defined. Nevertheless, these studies provide the most 
interesting new insights on the relationship between 
visceral hypersensitivity and psychological factors including 
arousal, attentional phenomena and visceral-specific 
anxiety, providing strong evidence for an important role 
for these processes in the pathophysiology of  IBS.

Using H2O15-PET, Lackner et al recently showed that 
cognitive behavioural therapy (CBT) is associated with a 
reduction of  baseline activity in the right sACC and the 
left medial temporal lobe (including the amygdala) of  IBS 
patients, which was accompanied by improvements in GI 
symptoms, anxiety and worry. These brain activity changes 
are explained as the biological substrate of  reduced 
attention to visceral stimuli or visceral-specific anxiety as a 
result of  CBT in these patients[85].

Finally, another interesting recent fMRI study showed 
that the tricyclic antidepressant amitryptiline, which is 
believed to be of  clinical benefit to at least some IBS 
patients[86], reduces pain related cerebral activations in the 
pACC and the left posterior parietal cortex compared to 
placebo, but only during mental stress[87].

Functional dyspepsia (FD)
In FD, brain imaging evidence is far more sparse compared 
to IBS. To our knowledge, only one brain imaging study 
in FD has been performed, using H2O15-PET[88,89]. 
During painful gastric distension, FD patients who 
are hypersensitive to gastric distension showed similar 
activation of  bilateral sensorimotor cortex (SⅠ/SⅡ) 
compared to controls. However, intragastric pressures 
and volumes were considerably lower in patients, whereas 
pain or discomfort scores were similar, as the stimuli were 
delivered at previously determined individual discomfort 
thresholds. This may be interpreted as a biological 
mechanism underlying visceral hypersensitivity in these 
patients, although this doesn't necessarily imply that only 
heightened afferent input, and not central cognitive or 
affective processes are involved[54,89]. Furthermore, contrary 
to controls, no activation of  any cingulate subregion was 
found in FD patients, which may again be explained in 
several ways including failing descending antinociception 
and ceiling effects, as described above[89]. Interestingly, no 
activation was found during anticipation of  an undelivered 
stimulus, contrary to previous findings in IBS[36,37,84]. 

Overall, although only subjects that had previously been 
shown to be hypersensitive to gastric distension were 
included in this study, variability in brain responses was 
still high, potentially due to the variability of  the patient 
samples at the psychological level.

CONCLUSION
Functional brain imaging has provided a valuable 
method for studying the neural mechanisms underlying 
visceral sensation in awake living humans. Despite some 
inconsistencies and methodological difficulties, this 
resulted in a substantial increase in the knowledge of  these 
mechanisms, including the role of  psychological factors 
and their brain substrates. However, despite growing 
evidence for a neurobiological link between psychological 
abnormalities and visceral hypersensitivity in FGID 
patients, the answer to the question whether abnormal 
brain processing of  visceral signals in these patients is 
primarily due to abnormal afferent input to the brain 
or abnormal processing of  afferent input in the brain 
remains a matter of  debate. It is likely, however, given the 
ongoing improvement in methodology and study design, 
that functional brain imaging will continue to provide 
important new information and ultimately the answer to 
what is arguably one of  the most important questions in 
present FGID research. 
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