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Abstract
AIM: To investigate the combined chemotherapeutic 
effects of celecoxib when used with 5-FU in vitro . 

METHODS: Two human colon cancer cell lines (HCT-15 
and HT-29) were treated with 5-FU and celecoxib, alone 
and in combination. The effects of each drug were 
evaluated using the MTT [3- (4, 5-dimethylthiazol-2-yl)-2, 
5-diphenyltetrazolium bromide] assay, flow cytometry, 
and western blotting.

RESULTS: 5-FU and ce lecox ib showed a dose-
dependent cytotoxic effect. When treated with 10-3 
mol/L 5-FU (IC50) and celecoxib with its concentration 
ranging from 10-8 mol/L to 10-4 mol/L of celecoxib, 
cel ls showed reduced cytotoxic effect than 5-FU  
(10-3 mol/L) alone. Flow cytometry showed that celecoxib 
attenuated 5-FU induced accumulation of cells at subG1 
phase. Western blot analyses for caspase-3 and poly 
(ADP-ribose) polymerase (PARP) cleavage showed that 
celecoxib attenuated 5-FU induced apoptosis. Western 
blot analyses for cell cycle molecules showed that G2/M 
arrest might be possible cause of 5-FU induced apoptosis 
and celecoxib attenuated 5-FU induced apoptosis via  
blocking of cell cycle progression to the G2/M phase, 
causing an accumulation of cells at the G1/S phase. 

CONCLUSION: We found that celecoxib attenuated 
cytotoxic effect of 5-FU. Celecoxib might act via  inhibition 
of cell cycle progression, thus preventing apoptosis 
induced by 5-FU. 
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INTRODUCTION
Colorectal cancer is the second leading cause of  cancer 
death in the United States[1]. Despite advances in medical 
practices and chemotherapeutic protocols, survival rates 
in cases of  colorectal cancer have changed little over 
the last 20 years. In the treatment of  colorectal cancer, 
5-fluorouracil (5-FU), a potent inhibitor of  thymidylate 
synthesis during DNA synthesis, is one of  the most 
commonly used chemotherapeutic agents, but the overall 
response rate is only around 15% when used in adjuvant 
chemotherapy[2]. 5-FU is also used to treat various cancers, 
but results are not satisfactory. To increase the response 
rate, 5-FU is usually used in combination with other drugs, 
such as cyclophosphamide and methotrexate (breast 
cancer)[3], cisplatin (head and neck cancer)[4], or leucovorin 
(colorectal cancer)[5,6]. 5-FU has also been tested in 
combination chemotherapy with other drugs, which act via 
different mechanisms[7-9]. 

Thun et al[10] suggested that NSAIDs reduce the risk 
of  colorectal cancer, and several investigators tested 
the application of  NSAIDs as a new chemopreventive 
agent[11,12]. Celecoxib, a cyclooxygenase-2 (COX-2) specific 
inhibitor known to have antiproliferative effects on 
colorectal cancer[13,14], was also tested as a chemotherapeutic 
agent[15]. Milas et al[16] combined radiation therapy with a 
COX-2 inhibitor in a mouse cancer model, and observed 
an enhanced therapeutic response. In a recent clinical 
trial that incorporated the use of  celecoxib as a combined 
chemotherapeutic drug, Altorki et al[17] tested celecoxib as 
a combined chemotherapeutic agent with paclitaxel and 
carboplatin on the early-stage non-small cell lung cancer. 
In their report, celecoxib showed additive or synergistic 
effect. 

In this paper, we tested celecoxib as a possible 
candidate for combined chemotherapeutic agent to be used 
with 5-FU in the treatment of  colorectal cancer. Thus, we 
treated HCT-15 and HT-29 human colon cancer cell lines 



with 5-FU and celecoxib and assessed their effects by MTT 
[3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium 
bromide] assay, flow cytometry and western blotting. 

MATERIALS AND METHODS
Cell culture
The HCT-15 and HT-29 human colon cancer cel l 
lines were purchased from the American Type Culture 
Collection (ATCC, Rockville, MD) and cultured in 
RPMI1640 medium supplemented with 10% fetal bovine 
serum (FBS) at 37℃ in a 5% CO2 atmosphere. To examine 
the effects of  5-FU and celecoxib alone, the cells were 
treated with 10-6 mol/L, 10-5 mol/L, 10-4 mol/L, 10-3 mol/L, 
and 10-2 mol/L 5-FU and celecoxib for 24 h, respectively. 
To address the effects of  5-FU and celecoxib co-
treatment, various concentrations of  celecoxib were added 
immediately after treating cells with 10-3 mol/L 5-FU. 

MTT assay
The MTT assay was performed as previously described[18]. 
In brief, HCT-15 and HT-29 human colon cancer cells 
were cultured in a 24-well plate (Corning Inc., Corning, 
NY) at a density of  5 × 104 cells per well. The cells were 
then treated with varying concentrations of  5-FU, or 
celecoxib, or both drugs. After 48 h, the cells were washed 
and treated with MTT. Plates were incubated in the dark 
for 4 h, and the absorbances were measured at 570 nm 
using a microtiter plate reader (Bio-Tek, Winooski, VT). 
To determine cell viability, percent viability was calculated 
as [(absorbance of  drug-treated) sample/(control 
absorbance)] × 100. 

Flow cytometry 
Apoptosis detection and analysis of  cell cycle distribution 
were perfor med by f low cytometr y, as descr ibed 
previously[19,20]. Briefly, cells were incubated for 24 h in a 
medium without FBS to synchronize the cell cycle. Cells 
were then treated for 48 h in the medium containing 10% 
FBS with celecoxib, 5-FU or both, respectively. Cells 
were harvested by trypsinization, washed twice with PBS, 
incubated with 0.125% Triton X-100, and stained with 
propidium iodide (PI) in PBS containing 0.2 mg/mL 
RNase A. Stained cells were analyzed using a FACS calibur 
(Becton Dickinson, San Jose, CA, USA). For each sample, 
cells were counted until the count reached 10 000 cells in a 
predefined G1-gate. The percentages of  cells in the subG1, 
G0/G1, S, and G2/M phases were determined using the 
CELLQUEST software. 

Western blotting 
Cells were incubated for 48 h with 10-5 mol/L celecoxib, 
10-3 mol/L 5-FU or both drugs. Cells were harvested 
in cold phosphate-buffered saline (PBS), collected by 
centrifugation, resuspended in a homogenizing buffer 
(50 mmol/L Tris-HCl, pH 7.5; 150 mmol/L NaCl;  
1 mmol/L EDTA; 0.1 mmol/L phenylmethylsulfonyl 
fluoride (PMSF); and 10 µg/ml of  each of  aprotinin, 
leupeptin, and pepstatin), and sonicated on ice. Protein 
concentrations of  the homogenates were determined 
using the bicinochoninic acid (BCA) method (Pierce). 

Homogenates were diluted to a final concentration of  
2 mg/ml with 2X reducing stop buffer (0.25 mol/L Tris-
HCl, pH 6.8, 5 mmol/L EDTA, 5 mmol/L EGTA, 25 
mmol/L dithiothreitol, 2% SDS, and 10% glycerol with 
bromophenol blue as the tracking dye). Samples (50 µg 
of  protein) were resolved on SDS-polyacrylamide gels, 
and transferred to nitrocellulose. Blots were blocked in 
5% nonfat dried milk in TBST (20 mmol/L Tris-HCl, pH 
7.6, 137 mmol/L NaCl, 0.1% Tween 20) for 1 h at room 
temperature. Blots were then incubated with the respective 
primary antibodies directed against poly(ADP-ribose) 
polymerase (PARP) (1:1000, Cell Signaling Technology), 
active caspase-3 (1:1000, Cell Signaling Technology), 
cdk1 (1:1000, Neomarkers), cdk2 (1:1000, Neomarkers), 
cyclin A (1:1000, Neomarkers), and cyclin B (1:1000, 
Neomarkers), in the same buffer overnight at 4℃. The 
membranes were then washed three times with TBST and 
incubated with HRP-conjugated goat anti-mouse IgG 
(1:2000) monoclonal antibody or with HRP- conjugated 
goat anti-rabbit IgG (1:2000) polyclonal antibody for 2 h 
at room temperature. The membranes were then rinsed 
three times for 30 min with TBST, four times quickly 
with distilled water, and developed using the enhanced 
chemiluminescence method (ECL) (Amersham).

Reagents 
Cell culture reagents were purchased from Gibco (Carlsbad, 
CA). Celecoxib was obtained as a generous gift from Dr. 
JH Chung (Kyung Hee Univ) and 5-FU was obtained from 
Sigma (St. Louis, MO). The stock solution of  celecoxib 
was prepared by dissolving it in DMSO (Sigma). All other 
chemicals were purchased from Sigma unless otherwise 
stated. 

RESULTS
MTT assay 
To investigate the effects of  5-FU and celecoxib in isolation, 
various concentrations of  5-FU or celecoxib were added 
to HCT-15 or HT-29 cells. When treated with 10-6 mol/L, 
10-5 mol/L, 10-4 mol/L, 10-3 mol/L or 10-2 mol/L 5-FU, 
the viabilities of  HCT-15 cells were 83.6% ± 2.9%, 65.0% 
± 4.1%, 69.9% ± 1.3%, 53.6% ± 3.6%, and 21.6% ± 
3.7%, respectively. In HT-29 cells, the viabilities of  cells 
for the same concentrations were 89.0% ± 2.0%, 83.8% ± 
1.8%, 65.3% ± 4.7%, 43.1% ± 2.7%, and 24.5% ± 1.2%, 
respectively (Figure 1). 

When treated with 10-7 mol/L, 10-6 mol/L, 10-5 mol/L, 
10-4 mol/L, or 10-3 mol/L celecoxib, the viabilities of  
HCT-15 cells were 89.37% ± 3.7%, 85.0% ± 7.8%, 76.4% 
± 5.2%, 61.2% ± 3.3%, and 19.1% ± 2.0%, respectively, 
and of  HT-29 cells were 95.6% ± 6.7%, 90.2% ± 4.6%, 
78.9% ± 3.3%, 51.1% ± 2.7%, and 19.1% ± 0.8%, 
respectively (Figure 2). 

Based on the MTT results, we opted for 10-3 mol/L 
5-FU to be used as the drug-treated standard. Therefore, 
cells were treated with 10-3 mol/L 5-FU and various 
concentrations of  celecoxib. Cells treated with celecoxib 
ranging in the concentration of  10-8 mol/L to 10-4 mol/L 
showed antagonistic effects on the 10-3 mol/L 5-FU-
treated cells. But 10-3 mol/L celecoxib showed synergistic 
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effects (data not shown) (Figure 3). 

Flow cytometry 
We analyzed cell cycle distributions by flow cytometry 
to investigate the effects of  5-FU, celecoxib, or co-
treatment of  both drugs. In HCT-15 cells, 5-FU induced 
accumulation of  cells at subG1 phase with 10-3 mol/L 
5-FU. When treated with 10-3 mol/L 5-FU and 10-7 mol/L 
or 10-6 mol/L celecoxib, the cell population in the subG1 
phase was reduced (Figure 4). These results show that 
celecoxib attenuates the cell death induced by 5-FU (SubG1 
phase fraction; 43.33% in 10-3 mol/L 5-FU, and 3.88 and 
4.18% in 5-FU with 10-7 mol/L or 10-6 mol/L celecoxib, 
respectively). However, at higher celecoxib concentrations 
cell death was increased by 5-FU treatment (data not 
shown). In HT-29 cells, co-treatment of  celecoxib reduced 
the accumulation of  cells at subG1 phase (SubG1 phase 
fraction; 68.27% in 10-3 mol/L 5-FU, and 8.29, 9.66, and 
9.68% in 5-FU with 10-7 mol/L, 10-6 mol/L, or 10-5 mol/L 
celecoxib, respectively) (Figure 4, Table 1). 

Western blotting 
MTT-based cytotoxicity assays and flow cytometry showed 
that treatment with celecoxib attenuated 5-FU-induced 
cytotoxicity. So we examined caspase-3 expression and 
PARP cleavage, as markers of  apoptosis. PARP is a 112-kDa 
nuclear protein that is cleaved specifically by activated 
caspase-3 and -6 into 89-kDa and 29-kDa apoptotic 

fragments. 5-FU induced caspase-3 expression and PARP 
cleavage but celecoxib attenuated these changes and thus 
prevented the apoptosis of  colon cancer cells (Figure 5). 

We also investigated the expressions of  several cell 
cycle-regulatory molecules. Cell cycle progression is 
mediated by cyclins and Cdks. Cdk1 with cyclin A and 
B modulates the G2/M transition and cdk2 with cyclin 
E controls the G0/G1 transition. We found that the 
expressions of  cdk1, cyclin A and cyclin B were increased 
in the 5-FU only treated group and celecoxib attenuated 
the expressions of  these molecules. Cdk2 was found to 
be elevated in all celecoxib treated groups. These results 
indicated that cell cycle progression is inhibited by 
celecoxib, and that this might be a cause of  its antagonistic 
effect. We also performed another set of  experiments at a 
5-FU concentration of  10-4 mol/L (data not shown). The 
results were similar to those above results. 
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Figure 1  Viability of colon cancer cells treated with 5-FU and celecoxib. Cell 
viability was determined by MTT assay. Cell viabilities at various concentrations 
of 5-FU (A) and celecoxib (B) were evaluated using a cell viability index (%), 
which was defined as: (mean absorbance in the test group/mean absorbance in 
the control group) x 100. Black bars represent HCT-15 cells and white bars HT-29 
cells. Results are mean ± SE. 

Figure 2  Combinatorial chemotherapy of HCT-15 or HT-29 human colon 
cancer cells with 5-FU and/or celecoxib. Cells were treated with 10-3 mol/L 5-FU,  
10-5 mol/L celecoxib, or both. Cell viability was determined by the MTT assay, and 
expressed as the cell viability index (%) defined as: (mean absorbance in the test 
group/mean absorbance in the control group) × 100. Results are mean ± SE. aP < 
0.05 vs Both.
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Table 1  Cell cycle distribution of HCT-15 and HT-29 cells 
after treatment with various concentrations of 5-FU, celecoxib 
and 5-FU and celecoxib 

HCT-15 SubG1 (%) G0/G1 (%) S (%) G2/M (%) 

Control   2.75 51.94 14.61 30.90
5-FU 10-6 mol/L   2.49 37.35 18.93 41.40

10-5 mol/L   2.97   0.91 11.25 84.96
10-4 mol/L   2.77   0.26 27.09 70.13
10-3 mol/L 43.33 15.93 20.54 20.55

Celecoxib 10-7 mol/L   1.95 42.00 17.54 38.87
10-6 mol/L   4.14 58.80 15.85 21.60
10-5 mol/L   1.70 37.45 15.96 45.32
10-4 mol/L 31.99   7.45 33.10 27.67

5-FU 
(10-3  mol/L)
& Celecoxib

10-7 mol/L   3.88   0.46 14.48 81.43
10-6 mol/L   4.18   0.56 32.86 62.73
10-5 mol/L 40.46   6.95 28.35 24.55

HT-29 SubG1 (%) G0/G1 (%) S (%) G2/M (%) 
Control   2.12 60.49   4.62 32.84
5-FU 10-6 mol/L   8.92 73.77   3.73 13.85

10-5 mol/L   17.51 62.56   3.13 17.13
10-4 mol/L 37.70 47.87   3.63 10.87
10-3 mol/L 68.27 25.69   1.68   4.61

Celecoxib 10-7 mol/L   8.29 62.37   6.11 23.53
10-6 mol/L   9.66 60.02   7.24 23.29
10-5 mol/L   9.68 60.69   6.39 23.44
10-4 mol/L 26.10 54.30   4.02 15.76

5-FU 
(10-3  mol/L) 
& Celecoxib

10-7 mol/L 18.78 69.39   1.89   9.99
10-6 mol/L 36.15 46.46   3.16 14.35
10-5 mol/L 43.34 41.34   2.74 12.61



DISCUSSION
Although 5-FU is currently the first-line agent for 
colorectal cancer, the overall response rate to 5-FU in 
adjuvant treatment is less than 15%[2]. This lack of  an 
acceptable response has stimulated intensive development 
effort to develop new cancer drugs and upon new 
combined regimens in colorectal cancer treatment. Many 

efforts have been made to combine 5-FU with second-
line agents such as, cisplatin, interferon, leucovorin, 
methotrexate, N-phosphonoacetyl-L-aspartate (PALA) 
and uridine[21]. However, results have not been satisfactory. 
Recently, a combined celecoxib/radiation therapy showed 
an improved response in a mouse tumor model[16]. The 
first combined celecoxib with paclitaxel and carboplatin 
clinical chemotherapeutic trial was successful[17]. In their 
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study, celecoxib was given concomitantly with paclitaxel 
and carboplatin to non-small-cell lung cancer patients 
preoperatively. The results obtained were very promising. 

In the present study, we examined the effect of  
celecoxib on 5-FU-induced cell death in two human colon 
cancer lines. Interestingly, the MTT assay showed that 
celecoxib antagonized the cytotoxic effect of  10-3 mol/L 
5-FU. So we investigated the mechanism underlying this 
antagonism by flow cytometry and western blot. First, we 
focused apoptosis signal and cell cycle regulation. By flow 
cytometry, 5-FU treatment increased cell accumulation 
at subG1 phase, which indicate apoptosis in these cells. 
Celecoxib decreased apoptotic cells at subG1 phase. In 
western blot analyses, antagonistic effect of  celecoxib was 
proved. Co-treatment of  celecoxib with 5-FU attenuated 
the caspase-3 expression and PARP cleavage. These results 
well correspondence with flow cytometry data. 

It is reported that down-regulation of  cyclin B1 
expression is observed after treatment of  celecoxib and 
p21 is up-regulated[22]. These changes were not dependent 
on p53. HCT-15 and HT-29 cells have mutant p53. 
Mutated p53 is often expressed in variety of  human 
tumors and contribute to malignant process by loss of  
tumor suppressor function and gain of  novel functions 
that enhance transformed properties of  cells[23]. Swamy  
et al[24] reported that celecoxib increases nuclear localization 
of  active p53. The treatment of  celecoxib in HCT-15 
and HT-29 cells might involve inhibition of  function of  
mutated p53. 

Although we examined the cell cycle distribution 
by flow cytometry, these results cannot fully explain 
involvement of  cell cycle arrest as a mechanism of  
antagonistic action of  celecoxib. So we also studied the 
cell cycle regulatory protein expressions. In western blot 
analyses, cyclin A, cyclin B and cdk1 expressions were 
increased, which indicates that cell cycle progression was 
arrested at the G2/M phase. Celecoxib treatment inhibited 
cell cycle progression at the G2/M phase, and reduced 
the expressions of  cyclin A, cyclin B and cdk1, but the 
expression of  cdk2, which regulates the G1/S transition, 
was increased. Our results are similar to study by Peng et 
al[25]. According to the studies by Peng et al[25], celecoxib 
down-regulated the expression of  CDK2 and CDK4 
expression in HT-29 cells. Although we do not conduct 
on the experiment of  CDK4, the results from CDK2 was 

similar to their study. 
In this study, we investigated whether celecoxib 

has the potential to be used with 5-FU as a combined 
chemotherapeutic agent for the treatment of  colorectal 
cancer. However, unfortunately, celecoxib was found to 
antagonize the effect of  5-FU in human colon cancer cells. 
Although our results are based on an in vitro study and 
sometimes in vitro data does not correspond with results 
in vivo results, the results of  the present study indicate that 
celecoxib cannot be used with a cell cycle-arresting agents 
like 5-FU. Further studies are needed to clarify our results 
and studies in clinical setting focusing on the usefulness of  
celecoxib as a combined chemotherapeutic agent are also 
needed. 
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Methods’. Co-treatment with celecoxib attenuated the caspase-3 expression and 
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Figure 5  Western blotting of cell cycle-regulatory molecules. A: Control; B: 10-3 
mol/L 5-FU; C: 10-5 mol/L Celecoxib; D: 5-FU (10-3 mol/L ) and celecoxib (10-5 mol/
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A, cyclin B, and cdk2 were performed as described in ‘Materials and Methods’. 
Celecoxib reduced G2/M phase accumulation, and increased the G1/S phase 
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