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INTRODUCTION
Hepatocellular carcinoma (HCC) is one of  the malignant 
diseases with a high incidence and mortality in the world, 
which is often diagnosed at an advanced stage when 
most potentially curative therapies such as resection, 
transplantation or percutaneous and transar terial 
interventions are of  limited efficacy[1-4]. It is accepted 
that there is no satisfactory treatment available for 
patients with HCC and chemotherapy has been extremely 
disappointing[5-7]. The poor prognosis of  patients with 
HCC and the lack of  satisfactory therapy for advanced 
cases indicate a need for more effective therapeutic 
options. Recent insights into the biology of  HCC suggest 
that certain pathways and molecular alterations are likely 
to play essential roles in HCC development by promoting 
cell growth and survival. Dysregulation of  growth factors, 
receptors and their downstream signaling pathway 
components represent a central pro-tumorigenic principle 
in human hepatocarcinogenesis. 

Growth factors and the downstream signaling system 
are often overexpressed in tumors, and become the 
target of  their treatment. It has been reported that MK, 
a heparin-binding growth factor or cytokine, is usually 
overexpressed in various malignant tumors, such as lung, 
breast, esophageal, gastric, colorectal, liver, pancreatic, 
ovarian, urinary bladder, prostatic, cerebral and renal 
malignancies[8-16], whereas in normal adult tissues, MK is 
low or undetectable[2,16]. Midkine (MK) can promote the 
growth, survival, and migration of  various target cells[17]. 
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Abstract
AIM: To evaluate the effect of combined antisense 
ol igonucleotides targeting midkine (MK-AS) and 
chemotherapeutic drugs [cisplatin(DDP), 5-fluorouracil 
(5-FU) and adriamycin (ADM)] on inhibition of HepG2 
cell proliferation, and to analyze the efficacy of MK-AS 
used in combined ADM in in situ  human hepatocellular 
carcinoma (HCC) model.

METHODS: HepG2 cells were treated with MK-AS 
and/or chemotherapeutic drugs mediated by Lipofectin, 
and cell growth activity was determined by MTS assay. 
An in situ  HCC model was used in this experiment. MK-
AS, ADM and MK-AS + ADM were given intravenously 
for 20 d, respectively. The animal body weight and their 
tumor weight were measured to assess the effect of the 
combined therapy in vivo . 

RESULTS: Combined treatment with MK-AS reduced 
the IC50 of DDP, 5-FU and ADM in HepG2 cells. MK-AS 
significantly increased the inhibition rate of DDP, 5-FU 
and ADM. Additionally, synergism (Q 1.15) occurred 
at a lower concentration of ADM, 5-FU and DDP with 
combined MK-AS. Combined treatment with MK-AS 
and ADM resulted in the more growth inhibition on in 
situ  human HCC model compared with treatment with 
chemotherapeutic drugs alone.

CONCLUSION: MK-AS increases the chemosensitivity 
in HepG2 cells and in situ  human HCC model, and the 
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The level of  midkine expression correlates negatively 
with the patients’ prognosis. It is reported that antisense 
oligo (DNA) targeting MK suppresses the growth of  
tumors in nude mice[18,19]. Addtionally, siRNA or antisense 
oligo (DNA) targeting against MK inhibits neointima 
formation[20] and renal injury after ischemia[21]. All of  these 
studies suggested that midkine may play an important role 
in carcinogenesis, development and metastasis of  tumors, 
and that it could serve as a novel tumor marker.

A novel approach to cancer therapy is the integration 
of  new cytotoxic agents with multiple selective inhibitors 
of  relevant signaling pathways. Such a strategy indicates 
that it may be possible to use agents that cooperate at low 
doses and/or through simple administration modalities 
to increase tumor targeting and patient compliance and 
reduce toxicity. We intend to explore the potential of  
the antisense targeting against MK (MK-AS) combined 
with chemotherapeutic drugs (ADM, DDP and 5-FU) in 
inhibition of  HCC growth.

MATERIALS AND METHODS
Oligonucleotides synthesis and drugs 
Antisense phosphorothioate ol igonucleotide (5’- 
CCCCGGGCCGCCCTTCTTCA-3’) were synthesized 
by an Applied Biosystems Model 391 DNA synthesizer 
on solid supports using Oligo Pilot Ⅱ DNA (Amersham-
Pharmacia, Piscataway, NJ, USA) and purified by HPLC 
Prep 4000 (Waters Delta, USA) with SOURCE 15Q 
(Amersham-Pharmacia, USA). Chemotherapeutic drugs 
(DDP, 5-FU and ADM) were purchased from the Shanghai 
Donghaipu Pharmaceuticals Company (Shanghai, China). 

Cell culture conditions
Human HCC cell (HepG2) was obtained from the Cancer 
Institute, Chinese Academy of  Medical Sciences. HepG2 
cells were cultured in DMEM (GIBCO BRL, Grand 
Island, NY, USA), supplemented with 10% FCS (GIBCO 
BRL), 100 U/mL penicillin and 100 U/mL streptomycin. 
Tumor cells were kept at 37℃ in a humidified atmosphere 
containing 50 mL/L CO2.

MK-AS and chemotherapeutic treatment
3 × 103 cells were seeded in 96-well microtiter plate and 
allowed to attach overnight. MK-AS was then tranfected 
into these cells mediated by Lipofectin (Invitrogen, USA). 
After incubation for 6 h, the cultural medium was replaced 
with 100 μL of  cell culture medium with different 
chemotherapeutic drugs. The concentrations were used in 
this experiment around the IC50 of  each chemotherapeutic 
drug (DDP: 0.25, 0.5, 1, 2, 4 mg/L; 5-FU: 1.0, 2.5, 5, 10, 
20 mg/L; and ADM: 0.025, 0.05, 0.1, 0.2, 0.4 mg/L). 
Additionally, the concentrations of  each anticancer drug 
were combined with three concentrations of  MK-AS (0.1, 
0.2, 0.4 μmol/L) respectively. After 48 h incubation, 20 
μL of  MTS (Promega, USA) was added into each well, 
followed by a 90 min incubation at 37℃. MTS assay was 
then used to assess the cell proliferation with a Victor 1420 
Multilable Counter (WALLAC, USA). Zheng-Jun Jin’s  
methods[22] was used to analyze the combined effect (the 
antagonistic effects: Q < 0.85; the additive effect: 0.85 ≤ 

Q < 1.15; and the synergistic effects: Q ≥ 1.15).

Analysis of combined effects 
The Balb/c nude mice (virgin female) used in these 
experiments were obtained from the Academy of  Military 
Medical Sciences (Beijing, China). The human HCC 
model used in this experiment was described previously[23]. 
Briefly, the HCM-Y89 tumor was cut into 1 mm × 1 mm
× 1 mm tissues, and implanted into the liver of  mice. Two 
days after development of  in situ HCC models, mice were 
injected intravenously with saline (saline alone used as 
control), MK-AS of  50 mg/kg per day and/or ADM of  
10 mg/kg per day for 20 d. The body weight and general 
physical status of  the animals were recorded daily. Mice 
were killed at different time points by cervical dislocation 
and the tumors were removed and weighed. 

Western blotting and RT-PCR 
The total RNA was extracted and RT-PCR reaction was 
performed using an RT-PCR kit (Promega, Madison, WI, 
USA). PCR products were analyzed using 2.0% agarose gel 
and visualized by ethidium bromide staining. For Western-
blotting, the tumor tissues were lysed with lysis buffer 
(50 mmol/L Tris-HCl, pH 7.4, 0.5 mmol/L EDTA, 0.5% 
NP40, and 150 mmol/L NaCl) in the presence of  protease 
inhibitors. The lysates were then centrifuged at 15 000 ×g 
for 15 min to remove debris. Protein samples (60 μg) were 
separated by 12% SDS-PAGE gel and transferred onto 
PVDF membranes (Hybond-polyvinylidene difluoride 
membranes, Amersham Biosciences). The reactive band 
was visualized with an ECL-plus Detection Kit (Amersham 
Biosciences, Piscataway, NJ) and scanned by Gel Doc 1000 
(Bio-Rad CA, USA). β-actin was used as a control. 

Statistical analysis
Data were expressed as means ± SD, statistical analysis was 
carried out using Student’s t test (two tailed), and P < 0.05 
indicates statistical significance.

RESULTS
MK-AS transfer increases the cytotoxicity of DDP, 5-Fu 
and ADM in HepG2
After transfection with MK-AS, cells were treated 
with 5-FU, ADM or DDP at different concentrations. 
Transfection of  MK-AS was found to enhance the 
cytotoxicity of  5-FU, ADM and DDP significantly. As 
shown in Figure 1A, the IC50 of  ADM alone is 0.109 mg/
L. However, combined ADM and MK-AS (0.1 μmol/L) 
decreased the IC50 from 0.109 mg/L to 0.0517 mg/L. 
Meanwhile, we also observed that 0.1 μmol/L MK-AS 
decreased the IC50 of  5-FU from 5.6147 mg/L to 2.61 
mg/L (Figure 1B), and the IC50 of  DDP from 1.048 mg/
L to 0.594 mg/L. All these results indicated that MK-AS 
transfer increased the chemosensitivity in HepG2 cells.

MK-AS synergistically interacts with chemotherapeutic 
drugs in HepG2
Furthermore, we used Zheng-Jun Jin’s method to 
analyze the antagonism, additivity or synergy of  the 
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interaction between MK-AS and the anticancer drugs in 
HepG2 cells. The Q values is presented in Figure 2. The 
synergistic effects (Q ≥ 1.15)of  chemotherapeutic drugs 
with MK-AS only occurred at lower concentrations of  
anticancer drugs. With the increase of  chemotherapeutic 
drug concentration, the additive effect(0.85 ≤ Q < 
1.15) occurred. It should to be noted that there are no 
antagonistic effects(Q < 0.85) using the combined MK-
AS with all these chemotherapeutic drugs. Meanwhile, the 
combined treatment of  ADM with MK-AS showed better 
synergistic effects than that of  the combined treatment 
with other anti-drugs. The highest Q value for the 
treatment of  ADM and MK-AS was 1.87.

Combination of MK-AS and ADM on in situ HCC xenograft 
growth
In the present study, we used an in situ HCC model in mice 
to evaluate the antitumor activity of  MK-AS in vivo. In this 
experiment, MK-AS (50 mg/kg per day), ADM (0.2 mg/kg 

per day )and saline were administered intravenously for 20 
d. Tumors were removed after the mice were killed after 
treatment for 0 d, 4 d, 8 d,12 d, 16 d or 20 d. The tumors 
were then weighed. Results showed that both ADM and 
MK-AS treatment resulted in a significant inhibition of  
tumor weight compared to saline-treated mice (Figure 3). 
However, the combination of  ADM with MK-AS showed 
a more marked inhibition effect than MK-AS or ADM 
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Figure 1  Analysis of combined effect of MK-AS and ADM (A), 5-FU (B) and DDP (C) in HepG2 cells. Each value represents the mean ± SD from triplicate determinations.
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Figure 2  Q values for combined treatment of MK-AS and ADM (A), 5- FU (B) and DDP (C) in HepG2 cells. Q values were calculated from the dose-response curves shown 
in Figure 1 and analyzed by Zheng-Jun Jin’s method.
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treatment alone. Additionally, the mean body weight of  
the mice was not significantly different between the groups 
from the beginning to the end (Figure 4), suggesting that 
all the treatment groups showed no remarkable toxicity in 
animal. 

MK-AS treatment decreased MK mRNA and protein level
We analyzed the effect of  ADM or MK-AS treatment 
in MK mRNA and protein in HepG2 cells (Figure 5). 
Results showed that MK treatment alone or combination 
with ADM significantly downregulated MK expression 
including the protein and mRNA level in in situ HCC 

model in mice. However, ADM treatment alone has little 
effect on MK expression.

DISCUSSION
MK is a heparin-binding growth factor identified as 
a product of  a retinoic acid response gene[24,25]. The 
pathophysiological effects of  MK include an enhanced 
plasminogen activity[26], oncogenic transformation of  
fibroblasts[27], antiapoptotic activity[28], and angiogenic 
activity[29]. MK and pleiotrophin (also known as the 
heparin-binding growth-associated molecule) comprise a 
family of  heparin-binding growth/differentiation factors, 
different from other heparin-binding growth factors 
such as fibroblast growth factor and hepatocyte growth 
factor[2-4]. It was reported that MK activates mitogen-
activated protein kinase pathways through inducing 
the phosphorylation of  p44/42 MAPK, subsequently 
promoting cell growth[30]. Moreover, MK also activates 
extracellular signal-regulated kinases 1 and 2, which are 
well known as signal transducers[28]. The activated MAPK 
pathway was believed to downregulate caspase-3 activity in 
neurons[30]. In addition, MK can induce phosphorylation of  
protein kinase B. The phosphorylated AKT can promote 
a series of  anti-apoptosis pathways in cells. Recently, HCC 
tumor cells were found to overexpress MK[31]. These 
findings suggest that MK could be a potential target for 
HCC therapy.

At present, although surgery and chemotherapy arealthough surgery and chemotherapy are 
effective in patients with localized tumors, the prognosis 
of  patients with advanced or metastatic tumors is not 
ideal. Therefore, novel treatment approaches to the 
cancer are urgently needed. We analyzed the combination 
of  MK-AS with chemotherapeutic drugs. The results 
showed that MK-AS transfer increased the anti-cancer 
effect of  chemotherapeutic drugs. Furthermore, we also 
observed the synergism at a lower concentration of  all 
these chemotherapeutic drugs. This result implied that 
combination of  MK-AS with chemotherapeutic drugs will 
possibly provide a more marked therapeutic effect. ADM 
is a reagent that leads to DNA break in cells. However, 
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MK-AS can inhibit MK growth factor expression. Taken 
together, we supposed that this good synergism might be 
due to the different antitumor functions.

Considering the in vitro and in vivo difference, we then 
analyzed the combination of  MK-AS with ADM in in 
situ human HCC model. Both the MK-AS and ADM 
administration showed a remarkable inhibition of  tumor 
weight. Interestingly, the combination decreased the tumor 
weight more than MK-AS or ADM treatment alone. 
Our experimental model of  HCC has some advantages 
compared with the inoculated tumor model[23]. The 
tumor originated from human HCC maintained a series 
of  characteristics of  human HCC tissues, such as AFP 
secretion and drug sensitivity. Additionally, the pathological 
evidence also suggests that this model shows various 
features in clinical HCC patients. Therefore, the results 
obtained from this model can reflect the true clinical 
picture of  patients to some degree. We also observed that 
MK-AS suppressed MK expression, including the mRNA 
and protein. However, ADM treatment showed little 
effect on MK expression, suggesting that the suppressed 
tumor effect of  MK-AS is due to the inhibition of  MK 
expression.

In summary, our results suggest that MK-AS can 
increase the therapeutic effect of  chemotherapeutic drugs 
both in vivo and in vitro. The combined ADM and MK-AS 
showed a better synergism at a low concentration, which 
will provide another possible strategy for cancer treatment. 
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