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Abstract. In recent years, there has been increasing interest in the development of medical decision-
support tools, including dashboard systems. Dashboard systems are software packages that integrate
information and calculations about therapeutics from multiple components into a single interface for use
in the clinical environment. Given the high cost of medical care, and the increasing need to demonstrate
positive clinical outcomes for reimbursement, dashboard systems may become an important tool for
improving patient outcome, improving clinical efficiency and containing healthcare costs. Similarly the
costs associated with drug development are also rising. The use of model-based drug development
(MBDD) has been proposed as a tool to streamline this process, facilitating the selection of appropriate
doses and making informed go/no-go decisions. However, complete implementation of MBDD has not
always been successful owing to a variety of factors, including the resources required to provide timely
modeling and simulation updates. The application of dashboard systems in drug development reduces the
resource requirement and may expedite updating models as new data are collected, allowing modeling
results to be available in a timely fashion. In this paper, we present some background information on
dashboard systems and propose the use of these systems both in the clinic and during drug development.
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INTRODUCTION

Personalized medicine identifies patient characteristics
predictive of therapeutic response and uses this information
to optimize doses to each patient based on these character-
istics (1). Examples of patient characteristics enabling treat-
ment individualization include age, weight, organ (e.g.,
hepatic) function and various biomarkers (e.g., genomic).
Personalized medicine aligns well with population pharmaco-
kinetic and pharmacodynamic (PK/PD) modeling (2), which
also focuses on identification of predictive factors in drug
exposure and/or response. PK/PD modeling is also central to
model-based drug development (MBDD).

Utilization of biomarkers for patient care has been limited
by the lack of decision-support tools integrating biomarker data
with other patient specific information to generate treatment
recommendations (3). PK/PD modeling enables integration of
multiple patient characteristics in a drug-specific decision-
support framework, and has been combined with web-based
applications providing a user-friendly interface, or “dashboard”
for evaluating patient data, updating PK/PD models, and
summarizing/visualizing data and model predictions (4).
Dashboard systems may offer improved means of tailoring
treatment for individual patients, particularly for drugs with
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highly variable exposure or narrow therapeutic windows.
Applications similar in concept to dashboards, where clinical
trial data are integrated with PK/PD models, may be advanta-
geous as platforms for facilitating implementation of MBDD
and informing decisions. Dashboard systems can be used to
manage and monitor studies implementing adaptive dosing
designs to achieving specific exposure or response. This paper
reviews the potential of dashboard systems in patient care and
drug development.

CURRENT DOSING PARADIGMS
Flat Dosing

In “flat” dosing, all patients receive the same dose.
However, variability in response can arise from pharmacokinet-
ic or pharmacodynamic differences such as genetic subpopula-
tions that rapidly clear a drug, or are more sensitive to its effects.
If factors such as weight affect clearance, then small patients will
be over-dosed and high weight patients will be under-dosed
using this paradigm. Figure 1 depicts the relationship between
administered dose and exposure with several dose regimens.
When a covariate such as weight affects clearance, exposure can
be highly variable with flat dosing. Flat dosing is often a
response to difficulties in developing, marketing and safely
using a medication with multiple dose strengths.

Adjustment for Body Size

Dosing is commonly based on body size. However,
dosing based on milligrams per kilogram often results in

1550-7416/14/0500-0925/0 © 2014 American Association of Pharmaceutical Scientists



926 Mould et al.

700 3500

600 3000

——Flat Dose
Weight Base Dose

500 PR 2500 ----Stratified Dose
® P —— Individualized Dose
3 -
2 e e
8 400 - 3 2000
8 27 g
2 3
g P g
2 300 ~ 2 1500
£ -~ a
£ wonession s
° =
< e )

200 7 ——Flat Dose 1000

Lo T Weight Base Dose
100 Stratified Dose 500
~ - Individualized Dose
0 0
20 40 60 80 100 120 20 40 60 80 100 120

Weight (kg) Weight (kg)

Fig. 1. Example of differences between patient exposure following different dose metrics. In this figure, several dose metrics are tested, a flat
dose, weight-based dose (mg/kg), stratified dosing and individualized dosing. The underlying clearance model was CL=0.29x (weight/70)*7>.
Panel A is the administered dose for each regimen. Panel B is the associated patient exposure. Because clearance is related to weight, the
exposure is very high with a flat dose regimen. However, dosing based on milligrams per kilogram assumes a linear relationship between
clearance and weight, which is incorrect. Thus, low weight patients have much lower exposure than high weight patients. With stratified dosing,
the exposure is more consistent over the range of weights examined. As might be expected, individualized dosing provides consistent exposure

across all weights

sub-therapeutic exposures in low weight patients (Fig. 1),
particularly in pediatric patients (5,6) because the relationship
between drug clearance and weight (if it exists) is rarely
linear or simple (7). This finding has been confirmed for many
compounds, including infliximab (8,9). The US FDA pro-
duced a guidance document on dose selection for FTTH
studies (10) suggesting initial dose selection based on
bodyweight (e.g., mg/kg) to scale exposure seen in nonclinical
studies to safe levels in humans. While this document is not
specifically aimed at providing guidance for dose selection,
many monoclonal antibodies (MADbs) use milligrams per
kilogram dosing. A recent review (11) found that only 3 of
26 marketed MAbs had clearance linearly related to weight; 8
were dosed on a milligrams per kilogram basis and 2 of these
had no weight effect identified on clearance.

Doses based on body surface area (BSA) are similarly
problematic; although this is approach is common in oncology.
Compared to weight-based dosing, BSA-based dosing assumes
somewhat less influence of body size on kinetics. Egorin
published a review on BSA-based dosing for antineoplastic
agents (12). The variability in exposure with this dosing
approach is not always improved over milligrams per kilogram.

Stratified Dosing

Stratified dosing employs flat doses administered over
specified ranges of body weight, which often helps ensure
appropriate exposure when body size impacts clearance, and
may be particularly relevant for pediatric patients (6). This
approach has the benefit of reducing the over- and under-
dosing seen with flat dosing and dosing based on body size.

Adaptive Dosing

Adaptive dosing (titration) uses doses that are increased
or decreased based on observed effect. Some compounds

such as epoetin (a biologic agent used to treat anemia) are
dosed based on specific hemoglobin measurement. The dose
algorithm is complex, and although the approach works well
to control hemoglobin, the complexity of the dose strategy
can give rise to dose errors and adjustment takes time to
determine. Computer-based dose support improves the per-
centage of patients staying within the target range of hemo-
globin often with lower doses than manual adjustment
provided (13), and increased staff efficiency without negatively
impacting safety (14). Computer-guided dosing may substan-
tially improve patient management and clinical efficiency.

DEFINITION OF DASHBOARD SYSTEMS

Automobile dashboards organize and present informa-
tion in simple, interpretable formats. Similarly, software
packages that integrate information and calculations about
therapeutics from multiple components into a single display
for clinical use are referred to as dashboards. For example,
patient management dashboards might obtain information
from electronic medical records, laboratories, clinicians and
patients themselves and present it as though arising from the
same source. Hewlett Packard developed the first dashboard
system, a tool for customizing Windows desktops (15).

“Dose calculators” have been in existence since the late
1950s, although most of these early systems calculated radiolog-
ical doses (16). One of the earlier dashboard systems in clinical
use focused on pediatric antineoplastic dosing (4) and the
number of dashboard systems has grown over time. Until
recently, computational needs of individualized dosing limited
its utility in practice. The application of Bayesian forecasting has
been shown to result in therapeutic improvements, for example
the number of patients whose trough phenytoin levels were
within target range was higher with Bayesian forecasting (63.6%
of troughs), compared with conventional dose adjustment
(34.0%) (17). Most dashboard systems available for clinical use
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deal with aminoglycoside antibiotics and warfarin, although there
is one (Knowledgebase) dealing with pediatric oncology dosing.
A list of some dashboard systems is provided in Table I.

We will not cover regulatory aspects of dashboards.
Related topics that will not be covered are emergence of
computerized Clinical Decision Support systems (25,26) and
implementation of electronic medical records systems (27).

Relationship to Population Models

Therapeutic dashboard systems are generally built
around population models (2). The population model em-
bodies the current state of knowledge about the kinetics (or
dynamics) of a drug and is comprised of three components:

1. The structural model (e.g., a one-compartment phar-
macokinetic model) providing a (ideally) mechanistic
description the time-course of measured response.

2. Stochastic models quantitating the distribution of unex-
plained variability in an observed population such as
between-subject variability or residual variability.

3. Covariate models quantitating the influence of ex-
plainable factors including demographics or disease
on individual response.

Dashboard systems are user-friendly programs for
accessing models for simulations of kinetics (or dynamics)
for an individual patient, with the predictions of the model
refined using information about the individual patient. The
greater the size and diversity of the database used to
construct the underlying model, the greater the chance that
the model will be able to return useful and accurate individual
patient predictions. However, the often untested assumption
is that a particular population model will continue to describe
data from a patient into the future, and that the model
captures all important sources of variability (both explainable
and unexplainable). When the underlying patient condition
changes, model predictions may contain substantial errors.
For example, while a pharmacokinetic model may have been
appropriate for a patient in the past, following a cardiac
infarct (major reductions in cardiac output and drug clear-
ance) forecast concentrations are likely to be substantially
under-estimated.

INDIVIDUALIZED FORECASTS

Individual data can refine population model predictions
for a patient in two ways: Covariate relationships identified
during model building or Bayes updating based on individual
data. Figure 2 illustrates how both methods work together to
improve individual patent forecasting.

Covariates

Covariates (e.g., patient factors) modify the value of a
model parameter (e.g., CL, V) depending on the value of the
covariate (Fig. 2). The inclusion of covariate relationships in a
model generally implies that covariates provide a better fit of
the data and that parameter BSV is reduced. This effectively
converts unexplainable to explainable variability at the
population level; reducing parameter uncertainty for individ-
ual patients for whom covariate values are known.

Table I. Overview of Some Current Dashboard Systems

Bayesian

Bayesian

Bayesian

Website

Drugs

Use

Dose

forecasting averaging

updating

Software

http://lapk.org.bestdose.php

Aminoglycosides, digoxin

Aminoglycosides

PK only

Yes to target exposure
Yes to target AUC
Yes, to an AUC

Yes to an AUC

Yes No

Yes

MM-USC*PACK BestDose (18)

APK systems (18)
Abbottbase (19)
Drugcalc (20)

http://www.rxkinetics.com/apk.html

NA

Simple PK only

PK only
PK only

No

Yes

Aminoglycosides

Yes No

Yes

http://www.testandcalc.com/

Aminoglycosides

No No

Yes

drugcalc/index.asp

NA

PK only
PK only

No No Yes to an AUC
Yes

No

Dosecalc (21)

http://www.mwpharm.nl/main.htm
http://pkb.chop.edu/index.php

180 drug models

Yes No

Yes

MW/Pharm (22)
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http://www.firstdose.org/

Amikacin and vancomycin
Gentamycin, enoxaparin

No Yes No Yes PK only
PK only

NZ FirstDose Dashboard (23)

TClIworks (19)

http://www.tciworks.info/

No No No

Yes

and user supplied

Any

NA

PK and PD

Yes, multiple

Yes

Yes

Yes

Baysient Dose Evaluation

system (24)

Note that this is a listing of only several dashboard systems. For a complete review of system performance see (18)
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Depending on the drug and data used to build the model, the
contribution of covariates to reductions in unexplainable
variability can vary from nothing (i.e., no covariates found),
to substantial. When no covariates are found, this may imply
that the factors causing variability between patients were not
possible to measure, or were not available during analysis.

Bayes Update of Models with Individual Data

Most software packages for individualizing therapy
utilize Bayesian methods to help predict individual re-
sponses to varying treatments. Bayesian inference is a
method in which Bayes’ rule is used to update the
probability estimate for a hypothesis as additional data
are obtained. From a Bayes perspective, the interpretation
of a data point is seen to have contributions from the truth (the
underlying process, described by a model), error (intra-
individual, inter-individual, inter-study, residual etc.) and prior
knowledge.

data = truth + error + prior knowledge. (1)

Typically, software packages utilize a combination of one
or more: Bayesian updating, Bayesian forecasting and
Bayesian model averaging.

Bayes Updating

Bayesian updating is important for dynamic analysis
of data collected over time and is a special case of curve-
fitting, with its own objective function to compare data,
prior values and model predictions. Bayes Theorem
balances the contribution of new data and prior parameter
values in estimating the new “updated” model parameters.
A single data point in an individual is given less weight
during fitting if it deviates substantially from what has
happened before, and given more weight as additional
data points support the finding. Similarly, parameter values
are given less weight if they deviate substantially from the
prior parameter values inherent in the population model
(Fig. 2).

Bayes’ rule can be applied iteratively. After observing
data, the resulting posterior value can then be treated as a
prior, and a new posterior probability computed from the
next set of new evidence. This procedure is termed
Bayesian updating or “Bayesian learning” (28).

Bayes Model Averaging

Bayesian model averaging (29) offers a systematic
method for checking the robustness of one’s results to
alternative models. The standard practice of selecting a single
model from some class of models and then making inferences
based on this model ignores model uncertainty and can not
only impair predictive performance but may overestimate the
strength of evidence. Bayesian model averaging allows model
uncertainty to be incorporated into inference. The idea
behind Bayesian model averaging is to make inferences
based on a weighted average over a model space including
several models. While model averaging is usually conducted

Mould ef al.

during initial model development, it can be implemented
using a “mixture of models” or “indescribable model”
approach where the software determines the most likely
model for a given patient during Bayesian updating (30). This
approach accounts for model uncertainty in predictions and
parameter estimates. Thus, resulting estimates incorporate
model uncertainty and may better reflect the true uncertainty
in parameter estimates.

Bayes Forecasting

Bayesian forecasting (31) uses updated individual pa-
rameters to predict the likely exposure and response that a
specific patient will exhibit with varying proposed dose
regimens based on individual parameter estimates obtained
via Bayesian model averaging and/or Bayesian updating.
However, when the software does not have the capacity to do
Bayesian updating then forecasts are based on patient
covariates, which is generally less precise.

BASIC CONCEPTS IN BAYES ESTIMATION

Bayes’ Theorem allows manipulation of conditional
probability. Figure 3 illustrates the concept of conditional
probabilities using an example where 1,000 patients were
tested for whether they had Single Nucleotide Polymorphism
(S) or were wild-type (W). They were also tested for positive
(P) or negative (N) response to a drug. The conditional
probability that a patient would not respond to the drug (N)
given that the patient is known to carry SNP1 (S) has the
notation Pr(NIS) where Pr denotes a probability. Pr(NIS) can
be calculated (Fig. 3) as the joint probability Pr(N&S) divided
by the marginal probability Pr(S). Bayes Theorem allows the
calculation of Pr(NIS) if the reverse conditional probability
that a patient has SNP1 given they are a non-responder,
Pr(SIN), is known.

Pr(N‘S) - Pr(S‘N) « Pr(N)/Pr(S) .

Posterior = Likelihood x Prior/Data

We wish to forecast the probability that a new patient
will have a negative response to the drug. If we have no
information about the patient, our prior probability is the
probability of a negative response if the SNP status is
unknown is Pr(N)=0.08 (8%). However, if we test and
have new data that the patient carries SNP1, the
probability of this being the case, Pr(S)=0.05 (5%). The updated
estimate of the probability that the patient will have a
negative response is the conditional probability Pr(NIS).
Bayes Theorem requires knowledge of the likelihood, Pr(SIN),
however, this is Pr(S&N)/Pr(N) and is therefore 0.03/0.08=
0.375. Using Eq. 2:

Pr(N‘S) — 0.375 x 0.08/0.05 = 0.6 (3)
The forecast probability of a negative response for the

patient has moved from a prior (before adding data) value of
8% to a posterior (after the data) value of 60%. One piece of
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Probability Density of Clearance

A. No individual data

B. Covariate data

C. Covariate + 1 observation
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— 60 kg
—90kg
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Relative Probability Density

D. Covariate + 3 observations
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E. Covariate + 6 observations
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Clearance (L/h)

Fig. 2. An example of the contribution of individual data to Bayes forecasts. The example uses a simple one parameter, one covariate model
for the steady-state drug concentration (Cy) of a chronically administered drug: Cy=DoseRate/(CLx(WT/70)*7). CL is a log-normally
distributed population parameter with a population value of 2 L/h and a between-subject variability of 25%. WT is a covariate for body weight
affecting CL via an allometric relationship, where the standard body weight is 70 kg. DoseRate is the average steady-state dose rate—set at
10 mg/h, proportional residual error for the model was 20%. We wish to forecast the clearance of the drug (so that individual Cy can be
estimated). Panel A shows the probability densities for CL for the case where no individual information is known about the patient (densities
are normalized to the same peak value for clarity). There are a variety of possible distributions for CL, depending on the unknown body weight
of the patient. Panel B shows the distribution of CL with covariate data. The patient has a weight of 60 kg, eliminating other candidate
distribution curves. Panel C shows the distribution of CL with covariate data and a single observation of C in the patient (Cg, was found to be
4 mg/L, lower than the expected value of 5.6 mg/L for a 60 kg subject). The distribution has therefore moved to the right, reflecting higher
individual clearance and has become narrower, reflecting more certainty about the individual value of CL. Panels D and E show the
distribution of CL with covariate data and 3 and 6 observations of Cg in the patient. Note that as more individual data are available, the
uncertainty in the distribution of CL reduces (i.e., the distributions are narrower)

individual data (genotype) substantially changed expectations
for this patient.

Figure 3 shows discrete data summarized as probabilities.
For continuous data (e.g., drug concentrations) probabilities
are replaced with probability densities. Probability density
reflects the chance that a given number comes from a given
distribution, and is easily calculated using functions in
common computer software (e.g., dnorm in R, NORMDIST
in Excel). For example, for a normal distribution with a mean
of 2 and a standard deviation of 0.5, the probability density of
an observed value of 1 is from the distribution is 0.108, of 2 is

0.798 and of 3 is 0.108. Hence, an observed value of two is
very likely to be from the distribution, while one and three
are less so. An observed value of 5 has a probability density
of 1x10°%, which is very unlikely to arise from the
distribution.

Probability densities are a fundamental part of the Bayes
objective function used for Bayes forecasting with population
models. An objective function returns a single number that
summarizes the difference between model predictions and
data (2). Generally, the objective function is structured so that
lower numbers implies better fit, and a curve-fitting process is
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used to find a set of parameter values for an individual that
gives the lowest objective function value for a particular data
set. For Bayes forecasting, the objective function takes a
modified form of Bayes Formula:

4

Posterior o< Likelihood x Prior

The Posterior reflects the overall probability density that
a model is true after observing some data, and is what we
seek to optimize. Note the Data term of Eq. 2 is a constant in
the fitting process, and can be neglected for the purpose of
optimization. The objective function therefore has two
distinct components. Using a PK model as an example:

The Likelihood reflects the overall probability density of
a set of observed concentrations in an individual given a
distribution representing the model predicted concentrations
with residual error. It is calculated from the product of
probability densities for each observed data point.

The Prior reflects the overall probability density for a
particular set of parameter values given the prior distri-
butions of the parameters in the population. It is
calculated from the product of probability densities for the
current parameter value from a distribution representing the
population variability of the parameter (inherent in the
population model).

The different contributions of the Likelihood and the
Prior to the objective function are explored in Fig. 4.
Factors favoring the Prior in the objective function
include: few data points, high residual error and low
population variability. Factors favoring the Data include:
many data points, low residual error and high population
variability.

Counts (1000 subjects)

SNP1 Wildtype
Positive 20 900 920 _
Negative 30 50 80 )
50 950

Joint and Marginal Probabilities

SNP1 Wildtype Marginal
Positive 0.02 0.9 0.9200
Negative 0.03 0.05 0.0800
Marginal 0.05 0.95
Conditional Probabilities given Genotype
Pr(P|S) 0.4 Pr(P|W) 095 _
Pr(N|S) 0.6 Pr(N|W) 005
Conditional ProbaIilities given Response
Pr(S|P) 0.022 Pr(W|P) 098 _
Pr(S|N) 0.375 Pr(W|N) 0.63
Pr(N|S) = Pr(S|N)*Pr(N)/PH(S) 0.6
Pr(S|N) =Pr(N|S)*Pr(S)/Pr(N) 0.375

Mould et al.

POTENTIAL BENEFITS AND OUTSTANDING
PROBLEMS

Forecasting software such as USC*PACK and MW/
PHARM have been available as personal computer software
for some years (32). Increased interest and utilization of
dashboard systems may be driven by the concurrence of
opportunities for expanding forecasting beyond therapeutic
drug monitoring, the wider adoption of applications on smart
phones and tablets, electronic patient records, cloud comput-
ing and user-friendly web-based interfaces for powerful data
analysis software (33).

Applications in Drug Development

Drug development costs have escalated dramatically in
recent years (34) and new therapeutic drug approvals have
declined (35). These findings suggest a need for more efficient
approaches to drug development. The Critical Path
Opportunities document released by the US Food and Drug
Administration (FDA) in 2006 supported the use of modeling
and simulation to evaluate clinical trial designs, as well as the
use of innovative trial designs (36).

MBDD develops, evaluates, and utilizes models describ-
ing pharmacokinetics, pharmacodynamics and disease pro-
gression to facilitate quantitative decision-making during drug
development. Among the key components of MBDD are
improved, innovative trial designs, establishment of quantita-
tive decision criteria, and assessment of trial performance
metrics relative to these criteria (37). Although implementa-
tion of MBDD has increased rapidly, significant hurdles
remain to widespread acceptance of MBDD in industry,

SNP1 Wildtype
Positive Count(S&P) Count(W&P) | Count(P)
Negative Count(S&N) Count(W&N) |Count(N)
Count(S) Count(W)
Probability = Count/1000
Joint SNP1 Wildtype Marginal
Positive Pr(S&P) Pr(W&P) Prob(P)
Negative Pr(S&N) Pr(W&N) Prob(N)
Marginal Pr(S) Pr(w)

Conditional Probability = Joint Probability/Marginal Probability
Pr(S&P)/Pr(S) Pr(W&P)/Pr(W)
Pr(S&N)/Pr(S) Pr(W&N)/Pr(W)

Conditional Probability = Joint Probability/Marginal Probability
Pr(S&P)/Pr(P) Pr(W&P)/Pr(P)
Pr(S&N)/Pr(N) Pr(W&N)/Pr(N)

Bayes Formulaconvertsone
conditional prob

ability toanother

Fig. 3. Conditional probabilities and Bayes theorem. One thousand patients were tested for the presence of a particular SNP (possible values
are SNP1 present (S) or wild-type (W)) and were also tested for response to a drug (possible values are positive response (P) or negative
response (N)). A two-way table of the counts for each of the four possible outcomes is converted to the joint and marginal probabilities (Pr) by
dividing by the total number of subjects. There are two types of conditional probabilities—the conditional probability of a drug response given
the genotype is known, and the conditional probability of the genotype given the drug response is known. Bayes formula allows the conversion

between the two types of conditional probability
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including the need for timely availability of model-based
analyses, improved communication of results and greater
alignment with project teams and stakeholders (38).

Applications similar in concept to dashboard systems,
where PK/PD models and clinical trial data are integrated for
seamless model updates and visualization for better and faster
decision-making, could be envisioned as valuable tools for
more successful implementation of MBDD. Drug develop-
ment dashboard systems may be utilized in a manner similar
to that in clinical practice when individualization of dose is
required during a clinical trial, based on the design or
objectives of the trial. Such trial designs may include adaptive
designs where models are used to forecast the likely outcome
of dosing a specific patient with a given dose, and the dose
adjusted according to pre-specified criteria, such as a target
concentration (concentration-controlled) or a target effect
(effect-controlled). Individual dose adjustments to achieve
safe and efficacious exposure are also needed for drugs with
narrow therapeutic indices requiring therapeutic drug moni-
toring and have been in use since the early 1990s (39). The
ability to accurately adjust a patient’s dose to achieve a
specified endpoint could substantially shorten the period of
time needed to identify appropriate doses for further clinical
evaluation.

Innovative designs for clinical trials in patients prior to
Phase 3 have included interim analyses to enable improved

Likelihood of data given model

Individual
data 1l /‘ sd = sigma
pdl
A
1.1 2
T
=
> data2 r\ sd = sigma
2
] pd2
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;E 4 5.8
8 4
2
S
data 3

82 10
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decisions either at the level of the trial, drug, or portfolio. Types
of trial-level decisions at interim analyses may include (1)
stopping for futility if low probability of success is predicted
based on interim data, (2) stopping if target response is achieved
at interim, and (3) adaptive changes to the trial, such as number
of subjects, number of dose groups, and duration of treatment,
to increase the probability of success (40). These evaluations
need to be made in a timely manner, since continuation of the
trial is dependent on well-informed decisions. Dashboard-type
platforms that access trial data from the clinical database in
specified formats for running or updating models, and visualiz-
ing outputs, have the potential to facilitate rapid modeling inputs
during interim analyses. Additionally, dashboard systems may
facilitate review of modeling results and decisions by indepen-
dent data monitoring committees that are usually composed of
non-modelers. In double-blind trials, such a committee is
typically utilized for data review and communication with the
blinded study team.

There are considerations that must be given for implemen-
tation of adaptive designs. The FDA classifies adaptive designs
into well-understood designs (e.g., the typical group sequential
design) and less well-understood designs (e.g., the adaptive dose
finding and two-stage phase I/IT (or II/IIT) seamless adaptive
designs) (41). Although adaptive designs offer flexibility, high
flexibility may result in the study being classed as a less well
understood design. With such studies, statistical inference is

Prior
Population

parameter 1 '\ sd = Clymega
cL pda

parameter 2
\Y

parameter3 /‘ sd = KA;mega

KA pdé

0.3 0.5

negativell o« -1*(log(pd1)+log(pd2)+log(pd3)+log(pd4)+log(pd5)+log(pd6))

Fig. 4. Maximum likelihood estimation for Bayes forecasting. A population pharmacokinetic model with three population parameters (CL, V,
and KA) is available for a drug. Three concentration data points are available in a patient given the drug. In Bayes forecasting, a curve-fitting
algorithm tries various individual values of CL, V, and KA for the patient to find the minimum value of the Bayes objective function. There are
two components of the objective function—one that expresses the difference between the model predicted concentration and the observed
concentration data (left column) and one that expresses the difference between the population values of CL, V, and KA and the current model
estimate for the individual parameters (right column). The plots show the probability density distribution for each case (assuming a normal
distribution). For the left column, each distribution is centered on the model predicted concentration and has variability described by sigma, the
residual variability of the population model. The probability density for each observed data point is calculated—the better the fit of the data,
the closer each data point is the center of the distribution. For the right column, each distribution is centered on the population parameter value
and has variability described by omega, the previously observed variability of the parameter within the population. The probability density for
current individual parameter values is calculated—the closer each individual parameter value is to the center of their distribution, the more the
patient is considered to be consistent with the previously observed population. The objective function is derived from the product of all the
probability density values shown. For computational convenience, the objective function is the negative log likelihood as shown
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often difficult to obtain, leading to the use of adaptive designs in
early “learning” (e.g., Phase 1 and 2) trials rather than in later
“confirming” (e.g., Phase 3) studies. For example, consider a
Phase I dose escalation study to evaluate a new antineoplastic
agent where the primary objective is to determine the maximum
tolerated dose for subsequent trials. In this scenario, there are
two choices for dose escalation: an algorithm-based traditional
dose escalation rule (TER) design and a model-based continual
re-assessment method (CRM) design. While CRM designs
typically utilize traditional statistical models of dose and toxicity
to step through a pre-determined dose range, they can also be
linked via dashboard systems to select doses based on PK/PD
models, emulating existing dashboard systems in clinical use (4).
In the CRM trial design, the next enrolled patient will be
assigned to the dose that is close to the estimated MTD from
updated models, which incorporates the individual patient’s
demographic, pharmacokinetic, and pharmacodynamic infor-
mation. Such dashboard driven CRM designs can incorporate
dose escalation/de-escalation and stopping rules which are
updated as more information is gathered.

The acceptance of MBDD as a viable development tool
has spread, but has never been fully implemented due in part
to lack of familiarity with modeling, ineffective communica-
tion of modeling results, limited resources, and timelines
necessary to complete modeling and simulation activities

Mould et al.

(42,43). However, dashboard systems allow non-modelers to
utilize previously developed models, enhancing their utility
during a clinical trial and improving familiarity with modeling.
Data from dashboard systems can be downloaded in formats
that are appropriate for modeling packages, reducing re-
source requirements for formatting and cleaning data,
allowing earlier initiation of modeling and simulation, and
timely delivery of updated results for upcoming protocols.
When integrated with electronic case report forms and
laboratory databases, dashboards represent an efficient
means of integrating and utilizing ongoing trial data to select
appropriate doses with minimal effort on the part of the
clinical study staff.

Drug development dashboard systems would have to be
designed to preserve study blinding, and algorithms for dose
changes would also have to be developed with the same goal.
Thus, dashboard systems used during drug development
would be fundamentally different from those used in clinical
practice. These systems would also be expected to be updated
as information is accrued about the drug, refining dose
recommendations and to allow tracking of important bio-
markers and disease metrics. In addition, dashboard systems
can be designed to include applications for internal decision
making as well as applications for dosing at clinical study
sites. The former could include more complex elements, such
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as stochastic models (e.g., models that include between and
within subject variability) and probabilistic outputs to track
the feasibility of the drug achieving a particular outcome,
while the latter would be simpler and similar to clinical
dashboards.

The use of dashboard systems allows implementation of
MBDD by the project team, and when applied to adaptive
designs, allows for correction of erroneous assumptions, rapid
selection of promising doses, and use of emerging
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information. MBDD has been proposed as a means to
shorten drug development time. The use of dashboard
systems should allow smoother integration of MBDD into
drug development and coupled with adaptive design methods,
provide tools to proactively modify trials, avoiding testing
ineffective or unsafe doses. An advantage of using dashboard
systems in clinical study sites may be fewer dosing and data
errors, and may be particularly relevant for pediatric studies,
where doses are often based on covariates.
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For new drugs developed prospectively where therapeu- clearance but the documentation required for regulatory
tic drug monitoring is expected to be necessary, a dashboard review is similar to documentation needed for validation
system could potentially be co-developed with the drug and and is part of any quality lifecycle management for software.
implemented in practice post-approval as a companion Lastly, dashboard systems developed by the manufacturer
medical device to ensure safe and effective dosing in patients may be helpful as a central resource that could be updated
post-marketing. Such systems would require regulatory and shared by all health care providers.
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Applications in Clinical Use

A Pharmacokinetic System—Infliximab

The treatment of inflammatory bowel diseases (IBD)
with infliximab provides an example of a drug that could
benefit from a dashboard system. Factors known to impact on
the PK/PD, and hence, safety and efficacy of infliximab,
include body weight, concomitant use of immunosuppressive
drugs (e.g., methotrexate) which affect clearance and de-
crease probability of anti-drug antibodies (ADA) formation,
the degree of systemic inflammation which can be reflected by
the serum albumin concentration, C-Reactive Protein (CRP)
TNF, and disease severity and type (44). Collectively, these
factors account for part of the differences in PK and clinical
efficacy observed after standard dosing. A population phar-
macokinetic model for infliximab in IBD has been developed
by Xu et al. (8) where patient weight, sex, albumin and ADA
status were identified as important covariates.

The management of IBD patients typically initially uses
standard infliximab dose regimens with modification by clinical
presentation and measured infliximab concentrations in plasma.
Doses are given intravenously 2-8 weeks apart. Recent findings
have shown that infliximab concentrations measured immedi-
ately before the next dose (trough concentration) have special
significance. In steroid-resistant ulcerative colitis patients (45),
infliximab trough concentrations above the threshold of assay
detection were associated with higher remission rates (from 15 to
69%), endoscopic improvement and less surgical intervention.
Therefore, successful management of IBD may be attributed to
maintaining trough concentrations above a target. While this task
is complicated by changes in patient disease status which has a
feedback effect on infliximab concentrations, it is a classical
pharmacokinetic problem which is readily addressed in the
research setting. However, to date this technology has been
unavailable to physicians in clinical practice.

A prototype dashboard system for infliximab implementing
the population model of Xu er al (8) has been developed.
Figure 5 shows dashboard output tracking the time-course of key
covariates, allowing a clinician to see trends. Figure 6 shows the
time-course of observed and forecast infliximab concentrations
based on a Bayes updated model using all observed infliximab
concentrations. A separate plot shows key trough concentrations
and a nominal threshold trough concentration. The dashboard
system allows clinicians to simulate proposed doses of infliximab
ensuring trough concentrations stay above the target.

In addition to maintaining therapeutically effective con-
centrations, the associated expectation is that outcomes will
improve, allowing more patients to achieve remission. Given the
rising costs of healthcare, and the consideration of outcome-
related reimbursement (46), the use of dashboards may become
a method by which drug use, outcomes and costs are improved.

A Pharmacodynamic System—DAS28

Dashboards have potential to help clinicians interpret
individual patient pharmacodynamic data. For example, the
28-joint Disease Activity Score (DAS28) is increasingly used
to track rheumatoid arthritis (RA) activity. A common first-
line protocol for RA is “triple therapy” with methotrexate,
sulfasalazine and hydroxychloroquine where doses are

935

adjusted according to disease activity and intolerance
(47,48). Early DAS28 reductions are associated with long-
term joint preservation and reduced disability (49) such that
effective disease control shortly after diagnosis results in long-
term retardation of disease progression (50,51). If initial
therapy fails, biological agents are typically introduced (52).
The DAS28 trajectory during triple therapy could be
described using an empirical population model based on data
from 263 early RA patients (53). DAS28 typically showed an
immediate exponential drop from baseline to a new value over a
year or more of treatment (Fig. 7). The model showed good
predictive performance (Fig. 7), but had considerable BSV in rate
and extent of DAS28 change, and high residual error. The model
therefore embodies prior population knowledge about the
DAS28 trajectory with triple therapy, but shows patient trajectory
can range between rapid, substantial improvement to slow
worsening of symptoms. The clinical challenge is to accurately
identify patients who respond slowly and/or poorly to triple
therapy so that other treatments can be utilized. The high residual
variability in DAS28 suggests a potential risk of basing decisions
on “noise” rather than true changes in disease status, suggesting
decision making based on one observation is inappropriate. Two
prior DAS28 may reveal more of a pattern for the patient, but
when and how often should DAS28 be evaluated? Bayesian
forecasting has the potential to address some of these questions in
a research setting, and the potential to be implemented in a
dashboard system as a means to forecast disease trajectory
measured by DAS28 for individual patients. As more DAS28
data become available, the accuracy of Bayes forecasts improves,
but not all individual data are equal. Table II summarizes a
simulation study investigating forecasting accuracy of the DAS28
model. The relationship between true and Bayes predicted
change in DAS28 from baseline at 60 weeks is summarized by
the R* value for the regression of true versus predicted value.
With no individual data, the Bayes forecast is poor (Schedule 1,
R*>=3%) while with the impractical scenario of weekly DAS28
the forecast is excellent (Schedule 2, R*=90%). The forecast has
little improvement if only individual baseline (Time=0) data are
available (Schedule 3, R*=5%). There is marginal improvement
by adding more DAS28 observations, but observation timing is

Table II. Improved Forecasting of DAS28 Trajectory with Individual Data

No. of R? 60 week change

DAS28 DAS28 in DAS28 true
observation schedule scores versus predicted (%)
Schedule 1. None 0 3
Schedule 2. Weeks 0-60 61 90

at weekly intervals
Schedule 3. Week 0 1 5
Schedule 4. Weeks 0, 3 2 10
Schedule 5. Weeks 0, 3, 6 3 11
Schedule 6. Weeks 0, 12, 26 3 43

A simulation study where Bayesian forecasting was used to predict
the DAS28 after 60 weeks of triple therapy for each patient (n=
9996). The prior was the population model of Wojciechowski (53),
while various observation schedules for individual DAS28 data were
examined, ranging from O to 61 observations for each patient. The
relationship between true and Bayes predicted change in DAS28
from baseline at 60 weeks is summarized by the R? value for the
regression of true versus predicted value
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important. Three observations within 6 weeks of treatment show
marginal improvements in the forecast (Schedule 5, R*=11%),
but three observations within 26 weeks of treatment substantially
improved the forecast 60 week DAS28 (Schedule 6, R*=43%).

These initial findings illustrate the substantial body of work
needed before PD forecasting becomes practical as a clinical
tool. Robust, validated disease metrics and population models
are needed, as well as a clear understanding of how they can be
used in dashboard systems (e.g., optimal collection of individual
data) to maximally benefit both clinicians and patients.

CONCLUSIONS

The concept of dashboard systems for therapeutics is
intuitively appealing with potential benefits ranging from im-
proved efficacy and safety to improving clinical efficiency.
However, development, validation and implementation of dash-
boards are challenging. They are expensive to develop, and who
should bear this cost? To what extent do their benefits and
disadvantages need to be defined to appease clinicians, patients,
pharmaceutical and insurance companies and regulators? Is using
a randomized clinical trial to support every version of every
dashboard system for every drug scientifically necessary? It has
been argued that benefits of some interventions are self-evident
without formal evidence, as has been highlighted in a light-hearted
meta-analysis of parachutes (54). The difficulties in defining costs
and benefits for software-based devices are further illustrated by
Target Controlled Infusion pumps for the intravenous anesthetic
propofol which, while not approved for commercial use in the
USA, have been widely adopted elsewhere (55). Despite
challenges, research and commercialization of dashboards is
ongoing motivated by the belief that current dose strategies for
many therapeutics can be improved, benefitting patients.
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