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Kidney Disease Patients
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Abstract. Quantitative prediction of the impact of chronic kidney disease (CKD) on drug disposition has
become important for the optimal design of clinical studies in patients. In this study, clinical data of 151
compounds under CKD conditions were extensively surveyed, and alterations in pharmacokinetic
parameters were evaluated. In CKD patients, the unbound hepatic intrinsic clearance decreased to a
similar extent for drugs eliminated via hepatic metabolism by cytochrome P450, UDP-glucuronosyl-
transferase, and other mechanisms. Renal clearance showed a similar decrease to glomerular filtration
rate, irrespective of the contribution of tubular secretion. The scaling factor (SF) obtained from the
interquartile range of the relative change in each parameter was applied to the well-stirred model to
predict clearance in patients. Hepatic and renal clearance could be successfully predicted for
approximately half and two-thirds, respectively, of the applied compounds, showing the high utility of
SFs. SFs were also introduced to a physiologically based pharmacokinetic (PBPK) model, and the plasma
concentration profiles of 12 model compounds with different elimination pathways were predicted for
CKD patients. The PBPK model combined with SFs provided good predictability for plasma
concentration. The developed PBPK model with information on SFs would accelerate translational
research in drug development by predicting pharmacokinetics in CKD patients.

KEY WORDS: model-based drug development; modeling and simulation; PBPK; pharmacokinetics;
renal impairment.

INTRODUCTION

Chronic kidney disease (CKD) is a worldwide public
health problem with global increase in the number of patients
(1,2). CKD is associated with multiple physiological changes
and, hence, alters the pharmacokinetics (PK) of drugs, which
could cause adverse effects (3–5). According to the survey of
new molecular entities approved from 2003 to 2007 by the US
Food and Drug Administration (FDA), half of the orally
administered compounds with altered drug disposition in
patients with renal disease were predominantly eliminated by
non-renal pathways such as hepatic metabolism or biliary
excretion (6). In 2010, the FDA issued a draft guidance
emphasizing the need to perform clinical studies on drugs that
are eliminated by non-renal mechanisms as well as the renal

route in patients with renal impairment (7). For pharmaceu-
tical industries, quantitative prediction of the impact of CKD
on drug disposition has become important for the optimal
design of clinical studies in patients including careful dosage
adjustment to avoid possible side effects.

Recently, physiologically based pharmacokinetic (PBPK)
modeling and simulation has increasingly gained importance
to provide a rational design for first-in-human studies (8).
PBPK modeling is, generally, constructed based on a bottom-
up approach, which needs a large number of input parameters
such as plasma protein binding and metabolic intrinsic
clearance (CLintH), in addition to physicochemical properties
and physiological parameters. With regard to hepatic failure,
quantitative variations in the activity or content of cyto-
chrome P450 (CYP) enzymes have been reportedly available
alongside alternation of physiological parameters, and such
information are successfully applied to PBPK models to
describe the PK in liver cirrhosis (9,10).

On the other hand, the effects of chronic renal failure
(CRF) on PK have been evaluated mainly in animal models
(11,12). Based on the accumulated evidence from in vitro and
in vivo studies, the mechanisms underlying the alternation of
PK can be explained as follows (3,4): uremic toxins such as
indoxyl sulfate, parathyroid hormone, and cytokines, all of
which are highly increased in the serum of chronic renal
failure patients, are involved in either the transcriptional or
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translational modifications or direct inhibition of CYP
enzymes or transporters. The elevated concentrations of
parathyroid hormone in chronic renal failure lead to the
down-regulation of hepatic drug-metabolizing enzymes in-
cluding CYP enzymes through activation processes like
nuclear factor-κB. Since various mechanisms are complexly
intertwined, it is difficult to quantitatively evaluate these
parameters in CKD condition, which are necessary for the
bottom-up approach, based on in vitro systems and in vivo
animal models for individual drugs.

Meanwhile, the top-down approach, which is based on
the actual changes in PK parameters derived from clinical
data, would become a useful tool to predict drug dispositions
in CKD patients by the PBPK model. Rowland et al.
quantitatively estimated the microsomal content of CYP1A2,
CYP2C8, CYP2C9, CYP2C19, and CYP3A4 enzymes in
CKD condition (13), by the back calculation of in vivo
hepatic clearance (CLH) to CLintH including the correction of
differences in plasma protein binding, and predicted the PK
of paroxetine, diltiazem, and repaglinide in patients. The
same input parameters for CYP enzyme abundance in CKD
condition were also utilized by Zhao et al., who prepared an
expanded PBPK model by incorporating the hepatic uptake
process (14). Furthermore, the simulation of the changes in
plasma concentrations of solifenacin in CKD patients
employed a factor of 0.6, which was estimated from the
difference in in vivo clearance (CL) between healthy
volunteers (HV) and CKD patients (15). Although these
PBPK models informed by the top-down approach allow
successful predictions of PK in CKD patients for certain
drugs, the reduction of CLintH or in vivo CL in CKD patients
in these models is derived from a limited number of clinical
studies.

Importantly, taking complex mechanisms into consider-
ation, a relatively large dataset encompassing an equally large
number of drugs is essentially required for the top-down
approach, and the change ratios of PK parameters obtained
from the differences between CKD patients and HV should
be applied as scaling factors (SF) to the prediction of the
plasma concentrations in the PBPK model. In the present
study, we extensively collected clinical data of CKD patients
for a variety of drugs that are non-renally and/or renally
eliminated, and the utility of the obtained SFs in the PBPK
model was evaluated by comparing the predicted and
observed changes in PK parameters and plasma concentra-
tion profiles in CKD patients.

MATERIALS AND METHODS

Data Collection

The clinical data for 151 compounds, for which PK
parameters in HV and both moderate and severe CKD
patients were available, were collected from the literature
or the PharmaPendium database (Elsevier, NY, USA;
https://www.pharmapendium.com/). Moderate and severe
CKD are generally defined by a glomerular filtration rate
(GFR); 30 to 59 mL/min/1.73 m2 for moderate and 15 to
29 mL/min/1.73 m2 for severe CKD. The collected PK
parameters were as follows: unbound fraction in plasma
(fp), fraction excreted unchanged in urine (fe), an apparent

volume of distribution at a steady state (Vss), CL, area
under the plasma concentration-time curve (AUC) after
oral dosing, and the elimination half-life (t1/2). These data
were summarized as supplemental data (Supplementary
Table S1). In silico parameters such as lipophilicity
(clogP), pH-dependent measure of lipophilicity (clogD),
and basic and acidic dissociation constants (pKa) were
calculated from structural information using CLOGP,
version 4.82 (Daylight Chemical Information Systems Inc.,
CA, USA) and Pallas, version 4.4.1 (CompuDrug Inc., AZ,
USA). The compounds were divided into acidic, basic, and
neutral classes based on the differences between the clogD
values at pH 6.5 and 7.4 (ΔclogD) as indicated by the
following equation:

ΔclogD ¼ clogDpH6:5−clogDpH7:4 ð1Þ

Compounds with positive and negative ΔclogD values
were classified as acidic and basic, respectively. Com-
pounds with ΔclogD values of zero were assumed to be
neutral. As blood to plasma concentration ratio (RB)
values of most compounds were not available from the
literature data, they were assumed to be 0.6 for acidic
compounds and 1 for the other, basic and neutral,
compounds (16–18). Unbound fraction in blood (fB) was
calculated by dividing fp by RB. The information on
hepatic elimination mechanisms including the contribution
of CYP enzymes was obtained from the literature or FDA
approval packages.

Dataset for the Evaluation and Prediction of CL Alterations

To evaluate the alteration of unbound CLintH (CLUintH)
in disease conditions, the 1st dataset was used as a training
set. The 1st dataset consists of PK data after oral adminis-
tration for 76 compounds that are mainly eliminated via the
hepatic route (fe<0.4; averaged value, 0.05). Then, the SF
for CLUintH obtained from the 1st dataset was applied to the
well-stirred model together with those for fp and renal
blood clearance (CLR), and predictabilities for CLs in CKD
conditions were confirmed using the 2nd dataset as a
validation set. The 2nd dataset, which is independent from
the 1st dataset, consists of intravenous data of 40 com-
pounds eliminated via both renal and non-renal routes
(averaged fe value, 0.50). In addition, within the 2nd
dataset, the compounds, for which plasma concentration-
time profiles were available, were used for the validation of
a PBPK model combined with the SFs in CKD patients. The
summary of 1st and 2nd datasets was shown in the
supplemental data (Supplementary Table S2).

Alterations of the PK Parameters in CKD Patients

Collected fp and Vss in patients with moderate and severe
CKD were compared with those in HV to produce the
relative percentages (RP) for each disease stage as shown in
the following equation:

RP ¼ Parameter in disease condition
Parameter in healthy condition

� 100 ð2Þ
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CLR was obtained from the literature information or
calculated from plasma CL after intravenous dosing as
shown in the following equation:

CLR ¼ CL
RB

⋅ f e ð3Þ

The CLR in patients with moderate and severe CKD was
compared with those in HV, and the RPs in each disease stage
were obtained in the same manner as fp and Vss.

For alterations in CLintH, as enough data of intravenous
PK profiles in hepatically cleared drugs were not available,
RPs were obtained from dose-normalized AUC after oral
dosing in the 1st dataset. The theory underlying this
calculation was derived from the well-stirred liver model
and shown by the following equation:

AUC=Dose ¼ Fa⋅Fg⋅Fh

CL
¼ Fa⋅Fg⋅ 1−CLH=QHð Þ

CLH⋅RB= 1− f eð Þ

¼ Fa⋅Fg⋅ 1− f eð Þ
RB

⋅
QH= QH þ CLintHð Þ

QH⋅CLintH= QH þ CLintHð Þ

¼ Fa⋅Fg⋅ 1− f eð Þ
RB⋅CLintH

ð4Þ

∴CLintH ¼ Fa⋅Fg⋅ 1− f eð Þ
RB⋅AUC=Dose

ð5Þ

where QH is the hepatic blood flow, Fa is the fraction moving
into enterocytes, Fg is the fraction escaping gut-wall elimina-
tion, and Fh is the fraction escaping hepatic elimination.
Assuming that Fa, Fg, and RB were not altered in the CKD
condition, the RP of CLintH was obtained as shown by the
following equation:

CLintH;CKD

CLintH;HV
¼

Fa⋅Fg⋅ 1− f e;CKD

� �

RB⋅AUCCKD=Dose

Fa⋅Fg⋅ 1− f e;HV

� �

RB⋅AUCHV=Dose

¼ AUCHV=Dose
AUCCKD=Dose

⋅
1− f e;CKD

1− f e;HV
ð6Þ

Finally, RPs for CLUintH were calculated using the corre-
sponding mean RP for the fp of acidic, basic, and neutral drugs
under moderate and severe CKD conditions obtained in this
study as shown in the following equation:

CLUintH;CKD

CLUintH;HV
¼ CLintH;CKD= f p;CKD

CLintH;HV= f p;HV
¼ CLintH;CKD

CLintH;HV
Mean RP for f p ð7Þ

The RPs in CLR and CLUintH were obtained from
compounds with fe values of >0.4 (mainly eliminated via the
kidney) and <0.4 (mainly eliminated via the liver), respectively.

Prediction of CL in CKD Patients

The predictabilities for CLs in CKD condition were
validated with the 2nd dataset. The SF for CLR, fp, and

CLUintH in patients with moderate and severe CKD, which
represent the relative difference under the disease condi-
tions compared to HV, was obtained as follows. The SF
for CLR was defined as the relative changes of GFR
ranges under each disease condition. Although GFR is
generally defined as a range of 15 to 30 mL/min/1.73 m2

for severe CKD, the lower limit of 10 mL/min/1.73 m2 was
used for the calculation of SF, because patients with GFR
below 15 mL/min/1.73 m2 were often included in this
survey. For HV, a GFR of 125 mL/min/1.73 m2 was used
for calculation (19). The SFs for fp and CLUintH were
assumed to be equal to the interquartile ranges of the RP
of each parameter in the disease states obtained in this
study. The parameters under disease conditions (CLR,CKD,
fp,CKD, and CLUintH,CKD) were calculated by multiplying
those under healthy conditions by the SFs.

To predict CLH under CKD conditions (CLH,CKD), the
following simple well-stirred equation incorporating fp,CKD

and CLUintH,CKD was used:

CLH;CKD ¼
QH⋅

f p;CKD

RB
⋅CLUintH;CKD

QH þ f p;CKD

RB
⋅CLUintH;CKD

ð8Þ

It was assumed that QH and RB values are not
altered under CKD conditions. By combining these
CLR,CKD and CLH,CKD, the total CL under the disease
condition (CLCKD) was predicted as expressed by the
following equation:

CLCKD ¼ CLR;CKD þ CLH;CKD
� �

⋅RB ð9Þ

Prediction of Plasma Concentrations in CKD Patients

Within the 2nd dataset, the compounds, for which
plasma concentration-time profiles after intravenous dos-
ing were available, were used for the validation of a
PBPK model combined with the SFs in CKD patients.
The structure of the PBPK model and physiological
parameters used are shown in Supplementary Fig. S1
and Supplementary Table S3, respectively. The framework
of the PBPK model had previously been reported (20),
that is, the model is composed of 11 tissue compartments
(lungs, adipose tissue, bones, brain, heart, muscles, kid-
neys, spleen, liver, skin, and small intestine), which are
linked by venous and arterial blood pools. Perfusion rate-
limited kinetics were assumed, and each tissue was
represented by a single well-stirred compartment. The
liver and kidney were considered as the elimination sites.
The principles of mass balance equations for non-elimi-
nating tissues, liver, and kidney are indicated by the
following differential equations:

dCT

dt
⋅VT ¼ QT⋅ Ca−

CT

KpT=RB

� �
ð10Þ

÷
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dCH

dt
⋅VH ¼ QH⋅Ca þQSP⋅

CSP

KpSP=RB
þQSI⋅

CSI

KpSI=RB

− QH þQSP þQSIð Þ⋅ CH

KpH=RB
−
f p
RB

⋅CLUintH⋅
CH

KpH=RB

ð11Þ

dCR

dt
⋅VR ¼ QR⋅ Ca−

CR

KpR=RB

� �
−CLR⋅Ca ð12Þ

where V is the volume, Q is the blood flow, C is the
concentration, Kp is the tissue to plasma concentration ratio,
and for subscripts, T is for tissue, a is for artery, H is for
hepatic, SP is for spleen, SI is for small intestine, and R is for
renal.

Firstly, the PBPK model was constructed using the
observed fp, CLUintH, and CLR to simulate the plasma concen-
tration-time profiles after intravenous dosing in HV. The Kp

values for HV in each tissue was calculated by the tissue
composition-based equations proposed by Rodgers et al.
(21,22), using clogP, pKa, and fp. A uniform factor obtained
from the comparison of the predicted and observed Vss was
applied to the calculated Kp values for the adjustment of PK
profiles in HV (20). The SFs for fp, CLUintH, and CLR were then
introduced to obtain the parameters under CKD conditions, and
the plasma concentrations in patients were simulated. Note that
the Kp values of CKD patients were recalculated by the same
procedure using fp,CKD.

The PK parameters (Vss, CL, and t1/2) were estimated by
the non-compartmental analysis of simulated plasma concen-
trations in both HV and patients, and RP of these parameters
in disease states were calculated. Model construction,

simulation of plasma concentrations, and non-compartmental
analysis were performed by Phoenix WinNonlin, version 6.3
(Pharsight, CA, USA).

RESULTS

Alterations of fp and Vss in CKD Patients

The RPs of fp and Vss in CKD patients compared with
HV are shown in Fig. 1 and are summarized in Table I. For
acidic and neutral compounds, the fp increased in CKD
patients with the median RP of 109 to 115% for moderate
and 134 to 135% for severe CKD, indicating that the extent
of change in the fp depended on the progression of disease.
On the contrary, the fp for basic drugs showed no significant
changes with the median RP of 99 to 104%. For the Vss, no
pronounced differences between the disease states or drug
properties were observed with the median RP of 95 to 107%.
The interquartile ranges of the RP for the obtained fp in each
class of drug presented in Table I were used as the SFs for the
prediction of CL, CLR, CLH, and PK in CKD patients. Given
that the alteration of Vss was not found under any disease
conditions and the Vss was generally determined by the fp and
physicochemical properties in PBPK models, the SF of Vss

was not taken into consideration for PK prediction.

Alteration of CLR in CKD Patients

The RPs of CLR in CKD patients compared with HVare
shown in Fig. 2 and Table II. The CLR showed a disease state-
dependent reduction with median RP of 31% for moderate

a

b

Fig. 1. RP of fp (a) and Vss (b) in moderate and severe CKD. In the boxes, the middle lines represent the median values, the
top and bottom margins represent the 75th and 25th percentiles, and the top and bottom whiskers represent the 90th and
10th percentiles. The percentages on the right of the boxes represent median values
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and 12% for severe CKD. The alterations in CLR were within
the range of change for GFR (24 to 47% for moderate and 8 to
23% for severe CKD). Compounds with lower and higher
unbound CLR (CLR/fB) than GFR, which can be considered to
be predominantly eliminated by glomerular filtration and
tubular secretion, respectively, showed similar changes in
the CLR, as determined by the median RP of 35 versus
31% for moderate and 13 versus 11% for severe CKD.
This finding indicated that the alterations in CLR can be
predicted based on the GFR regardless of the elimination
mechanism. Therefore, instead of the interquartile ranges
of the RP of CLR, the ranges of GFR to be defined in
moderate and severe CKD were applied as the SF for the
prediction of CLR and PK in CKD patients.

Alteration of CLUintH in CKD Patients

The RPs for CLUintH in CKD patients compared with
HV were obtained from the 1st dataset and are shown in
Fig. 3 and Table II. In both disease stages, a similar extent of
decrease in CLUintH was noted for CYP and UDP-glucuro-
nosyltransferase (UGT) substrates and drugs eliminated via
other mechanisms, with the median RP of 67 to 68% in
moderate and 59 to 65% in severe CKD conditions. The

change in CLUintH was unlikely dependent both on the
disease stage of CKD and the elimination mechanism in the
liver. Consequently, the median RP of CLUintH for all
examined drugs was calculated as 68% (interquartile range,
55 to 82%) in moderate and 62% (interquartile range 48 to
80%) in severe CKD, and these interquartile ranges were
used as the SFs for the following predictions of CLH and PK
in CKD patients.

Prediction of CLs in CKD Patients

The present study demonstrated that there were rela-
tively large variations in the alterations of CLR and CLH

between the examined compounds, and therefore, CLs in the
2nd dataset were predicted using SFs based on the interquar-
tile ranges analyzed for the CLUintH and fp. The SFs for CLR,
CLUintH, and fp used in the present study are summarized in
Table III. The predicted and observed mean RP of CLR,
CLH, and CL in CKD patients compared with HV and the
success rates of the prediction are shown in Table IV. The
predicted mean RPs were in good agreement with the
observed values for CLR (36 vs 43% in moderate and 16 vs
21% in severe CKD), CLH (75 vs 73% in moderate and 79 vs
69% in severe CKD) and CL (54 vs 52% in moderate and 45

Table I. Alteration of fp and Vss in Moderate and Severe CKD

Parameter CKD stage Group n

RP (%)

Median (Interquartile range) Mean (SD)

fp Moderate Basic 28 99 (84–109) 100 (23)
Acidic 13 115 (107–119) 112 (12)
Neutral 10 109 (105–118) 118 (25)

Severe Basic 26 104 (92–113) 103 (21)
Acidic 16 135 (120–151) 139 (25)
Neutral 10 134 (127–161) 147 (39)

Vss Moderate Basic 13 101 (90–121) 103 (32)
Acidic 17 103 (85–117) 104 (23)
Neutral 10 99 (92–115) 109 (26)

Severe Basic 17 95 (85–108) 99 (28)
Acidic 19 107 (94–123) 110 (27)
Neutral 12 98 (92–111) 107 (28)

CKD chronic kidney disease, RP relative percentage, fp unbound fraction in plasma, Vss volume of distribution at a steady state

Fig. 2. RP of CLR in moderate and severe CKD. In the boxes, the middle lines represent the median values, the top and
bottom margins represent the 75th and 25th percentiles, and the top and bottom whiskers represent the 90th and 10th
percentiles. The percentages on the right of the boxes represent median values
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vs 43% in severe CKD). When the range of the predicted
CLs included the observed data, the prediction was defined to
be successful. The percentages of compounds that were
successfully predicted were 66 to 70% for CLR, 47 to 48%
for CLH, and 67 to 68% for CL.

Prediction of Plasma Concentrations in CKD Patients

The plasma concentration-time profiles after intravenous
dosing of 12 model compounds in HV, moderate, and severe
CKD were simulated by the PBPK model incorporating the

Table II. Alteration of CLR and CLUintH in Moderate and Severe CKD

Parameter CKD stage Group n

RP (%)

Median (Interquartile range) Mean (SD)

CLR Moderate All drugs 25 31 (27–41) 36 (14)
CLR/fB<GFR 10 35 (30–43) 39 (12)
CLR/fB>GFR 15 31 (25–37) 34 (15)

Severe All drugs 25 12 (10–17) 14 (8)
CLR/fB<GFR 11 13 (11–17) 16 (9)
CLR/fB>GFR 14 11 (10–15) 13 (6)

CLUintH
a Moderate All drugs 64 68 (55–82) 69 (20)

CYP substrates 36 68 (56–89) 72 (22)
UGT substrates 11 67 (61–86) 69 (16)
Others 17 68 (53–76) 63 (16)

Severe All drugs 68 62 (48–80) 64 (21)
CYP substrates 42 65 (48–80) 66 (23)
UGT substrates 10 59 (47–68) 59 (16)
Others 16 60 (51–72) 63 (19)

CKD chronic kidney disease, RP relative percentage, CLR renal blood clearance, CLUintH unbound intrinsic clearance, fB unbound fraction in
blood, GFR glomerular filtration rate, UGT UDP-glucuronosyltransferase, CYP cytochrome P450
aRPs of CLUintH were obtained from the 1st dataset

Fig. 3. RP of CLUintH in moderate and severe CKD obtained from the 1st dataset. In the
boxes, the middle lines represent the median values, the top and bottom margins represent
the 75th and 25th percentiles, and the top and bottom whiskers represent the 90th and 10th
percentiles. The percentages on the right of the boxes represent median values
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SFs under the disease conditions. The predicted range and
mean observed RP for CL, Vss, and t1/2 in CKD patients are
summarized in Table V. The simulated plasma concentration-
time curves of six drugs (the best and worst predicted
compounds in each group; mainly eliminated via the renal,
non-renal, and mixed routes) are also described in Fig. 4. In
case the range of the predicted parameters included the
observed values, the compounds were classified as showing
successful prediction. For the CL prediction in CKD patients,
10 (83%) and 7 (58%) of 12 compounds were regarded to
show successful prediction in moderate and severe CKD,
respectively. The alterations of t1/2 in CKD patients were also
well-predicted by the PBPK model, accompanied with
successful predictions in 9 (75%) and 8 (67%) of 12
compounds under moderate and severe CKD conditions,
respectively.

DISCUSSION

In the present study, we extensively collected clinical
data of 151 compounds with various pharmacokinetic prop-
erties and analyzed the impact of CKD on different PK
parameters. Notably, for altered hepatic elimination, clinical
data of over 70 compounds were comprehensively analyzed.
The CLUintH of compounds that are eliminated via hepatic
metabolism by CYP, UGT, or other mechanisms decreased to
a similar extent in CKD patients as to HV. CLR showed a
similar decrease to GFR irrespective of the involvement of
tubular secretion. The RP in each parameter under different

disease conditions showed large variations, which might
involve a variety of mechanisms. Therefore, SFs based on
the interquartile range estimated by a statistical analysis of
the RP were applied to the well-stirred model to predict the
CLs in CKD patients. CLH and CLR were successfully
predicted for approximately half and two-thirds of the
compounds, respectively. Importantly, the SFs for CLUintH

obtained from the 1st dataset were validated using the
different datasets (the 2nd dataset) in the prediction of CLs.
The plasma concentration-time curves of 12 model com-
pounds in CKD patients were also well-predicted by the
application of the SFs into the PBPK model, as demonstrated
by the relatively high success rates for CL and t1/2.

During the drug development stage, a perspective
evaluation for the influence of CKD on the PK of new
molecular entities has become a critical issue for the
pharmaceutical industries. Since multiple factors are com-
plexly intertwined in the alteration of the PK under CKD
conditions, we employed the top-down approach rather than
the bottom-up approach based on in vitro and in silico data.
Some authors have proposed PBPK models incorporating the
CLUintH reduction in CKD patients based on the top-down
approach; however, these models were derived from a limited
number of clinical data (13–15). On the other hand, one
advantage of this study is that SFs based on an interquartile
range derived from a relatively large number of clinical data
are employed and would have a possibility for encompassing
widely ranging PK alterations by various mechanisms in
CKD.

Plasma protein binding is a governed factor to PK
behavior and is known to vary depending on the plasma
concentrations of the binding proteins as well as several other
factors in CKD patients such as the competition of the
binding sites by metabolites that have accumulated as a result
of reduced renal function or the denaturation of albumin
itself due to uremic toxins (23). Strougo et al. demonstrated
that the albumin plasma concentration tended to decrease,
but the median α1-acid glycoprotein level in the plasma was
1.4 times higher in patients with moderate to severe CKD
compared to the control group (15). In this study, acidic and
neutral compounds clearly exhibited an increase in fp in
patients with severe CKD probably due to a decrease in the
plasma concentration of albumin to which these classes of
compounds mainly bind (24). Regarding basic compounds, it

Table III. SFs for CLR, CLUintH, and fp for the Prediction of CL and
PK in CKD

Parameter Group Moderate CKD (%) Severe CKD (%)

CLR All drugs 24–47 8–23
CLUintH All drugs 55–82 48–80
fp Basic 84–109 92–113

Acidic 107–119 120–151
Neutral 105–118 127–161

CKD chronic kidney disease, CLR renal blood clearance, CLUintH

unbound intrinsic clearance, fp unbound fraction in plasma

Table IV. Predicted and Observed RP of CLs in CKD Patients and Success Rates of the Prediction

CKD stage Parameter n

Mean RP (%) Success rate (%)

Observed Predicted Successfully predicteda Over-predictedb Under-predictedc

Moderate CL 34 52 54 68 12 21
CLR 32 43 36 66 22 13
CLH 33 73 75 48 18 33

Severe CL 36 43 45 67 8 25
CLR 33 21 16 70 21 9
CLH 34 69 79 47 15 38

The predictabilities for CLs were evaluated using the 2nd dataset
CKD chronic kidney disease, RP relative percentage, CL clearance, CLR renal blood clearance, CLH hepatic clearance
aThe predicted range included the observed change
bThe predicted range was greater than the observed change
cThe predicted range was smaller than the observed change
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was assumed that fp would decrease if the α1-acid glycopro-
tein plasma level increases in severe CKD in theory; but in
practice, the fp of some compounds almost remained constant
or increased in moderate and severe CKD, which is probably
due to multiple mechanisms. Importantly, Vss was almost
consistent for all of the examined compounds regardless of
the increase of fp in acidic and neutral drugs possibly because
these classes of compounds have relatively small distribution
volume which is not sensitive to the alteration of plasma
protein binding.

In general, the renal tubular secretion is reportedly
known to involve various transporters including organic anion
transporters 1 (OAT1) and 3 (OAT3), organic cation
transporter 2 (OCT2), and multidrug resistance protein 2
(MRP2) (25). An animal study using CRF rats demonstrated
the alteration of hepatic and intestinal protein expression
levels of multidrug resistance 1 (MDR1) and MRP2 (4).
However, there is no literature on the up- or down-regulation
of proteins or mRNA expression levels of those transporters
in the kidneys of CKD patients. Interestingly, the impact of
CKD on glomerular filtration and on renal tubular secretion
was not different, and the RP of CLR for compounds that
undergo tubular secretion was proportional to GFR. This
finding provides insight into CLR prediction, namely that
GFR is still a dominant factor to predict CLR regarding renal
tubular secretion in addition to glomerular filtration.

Unexpectedly, the percentage reduction of CLUintH in
CKD patients relative to that in HV was not affected by the
disease progress and was within a similar range for CYP and

UGT substrates. The result was in agreement with the
findings reported by Zhang et al., who showed that there
were no significant differences in the AUC changes between
CYP and non-CYP substrates in CKD patients (6). In
addition, the RPs of CLUintH for typical substrates of
CYP1A2, CYP2C9, and CYP3A did not differ in CKD
patients except for CYP2D6 that slightly showed the lower
RP (data not shown). Rowland et al. also evaluated the RPs
for CYP1A, CYP2C9, CYP2D6, and CYP3A4 (13). The
estimated RPs were decreased by the progression of the
disease and appeared to be slightly lower than the corre-
sponding median data in our study. In hepatocytes prepared
from rats with CRF, down-regulation was found for CYP2C11
and CYP3A1/2, but not for CYP1A2 and CYP2D proteins
(26). There may be species differences in the down-regulation
of CYP enzymes between humans and rats. It has not yet
been attempted to investigate a change in UGT expression
level by the CRF condition in preclinical studies.

One of our objectives of this study was to acquire SFs
based on a relatively large amount of clinical data to develop
a universal prediction model by the top-down approach. To
increase the number of compounds, the RP for the reduction
of hepatic elimination was estimated from the oral AUC,
which was in contrast to Rowland’s method using a small
number of intravenous PK data (13). The alterations of
CLUintH under CKD conditions were evaluated assuming that
the Fa and Fg are not affected by CKD. The Fa and Fg are
controlled by passive absorption, transporter-mediated influx
and efflux, and metabolism mainly by CYP3A in humans. It

Table V. Predicted and Observed RP of CL, Vss, and t1/2 in 12 Model Compounds in CKD by the PBPK Model

Disease stage Compound fe

CL Vss t1/2

Observed Predicted Observed Predicted Observed Predicted

Moderate CKD Isepamicin 1 40 24–47 171 98–105 387 208–438
Zanamivir 0.90 38 28–52 101 101–105 234 199–363
Cefepime 0.88 37 28–53 129 99–103 307 193–350
Cidofovir 0.86 26 29–54 115 101–102 468 182–330
Enprofylline 0.82 32 31–56 74 105–113 226 185–298
Carumonam 0.78 41 32–58 117 104–110 220 185–315
Meropenem 0.77 39 32–56 111 101–102 251 175–301
Tomopenem 0.57 34 34–65 105 89–120 365 135–344
Cefotetan 0.49 46 43–73 99 101–103 193 141–236
Batanopride 0.20 94 52–84 121 96–110 121 109–179
Cyclophosphamide 0.19 71 54–87 121 104–113 188 130–191
Lidocaine 0 77 67–95 101 97–99 135 101–134

Severe CKD Isepamicin 1 20 8–23 184 98–103 944 424–1,252
Zanamivir 0.90 23 13–34 108 107–115 425 336–784
Cefepime 0.88 22 14–35 139 102–110 574 313–722
Cidofovir 0.86 11 15–37 93 103–105 842 274–641
Enprofylline 0.82 8 17–40 71 114–135 797 298–564
Carumonam 0.78 21 19–39 102 111–112 416 275–562
Meropenem 0.77 23 18–37 117 102–102 463 261–535
Tomopenem 0.57 17 24–51 78 88–110 366 170–452
Cefotetan 0.49 33 33–72 87 104–109 209 150–307
Batanopride 0.20 63 47–80 98 95–106 177 111–190
Cyclophosphamide 0.19 44 49–81 92 113–114 241 139–229
Lidocaine 0 45 65–96 88 96–97 192 99–136

Values in italic form represent successfully predicted cases
CKD chronic kidney disease, RP relative percentage, fe fraction excreted unchanged in urine, CL clearance, Vss volume of distribution at a
steady state, t1/2 elimination half-life
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has been reported that P-glycoprotein and some CYP
enzymes including CYP3A are down-regulated in the small
intestine of animal models of CRF (27,28), which leads to the
increase of Fa and Fg in the disease condition. CYP3A
substrates among our dataset were regarded as relatively high
Fh compounds, and this implied that Fg of these compounds

were also high and that the effect of the alternation of Fg on
the estimation of SF was limited. It is important to note that
the applicability of SFs derived from the oral AUC was
proven by a relatively high success rate for CL in different
datasets after intravenous dosing, which shows a minor effect
of the alterations of Fa and/or Fg on RPs’ estimation. In this

Fig. 4. Examples of plasma concentration-time simulations after intravenous dosing in HV and CKD conditions by the
PBPK model combined with SFs. The black lines represent averaged predicted curves. The gray lines represent the
predicted ranges of plasma concentrations. The gray circles are observed concentrations of each model compound. Best
(zanamivir, carumonam, batanopride) and worst (cidofovir, tomopenem, lidocaine) cases of prediction in each group of
drugs mainly eliminated via renal route, mixed route and non-renal route are presented

1026 Sayama et al.



study, however, as PK alterations of midazolam, which is
known as the typical substrate of CYP3A with a significant
intestinal first-pass metabolism (29), could not be evaluated
because both moderate and severe CKD data were not
separately available, further discussion would be needed for
the effect of the alteration of Fg in the disease conditions.

Another assumption in obtaining the SF for CLUintH is
that RB value does not change in the disease condition. Since
RB is a function of fp which increased by up to approximately
50% in neutral drugs in the disease condition, the alteration
of RB could have an impact on the determination of SF for
CLUintH. However, relatively high plasma protein binding of
drugs in the 1st dataset (averaged value of known fp, 0.11)
indicated low distribution to blood cell, and the impact of the
change of RB on SF seems to be minor. In addition, regarding
compounds that strongly bind to α1-acid glycoprotein, the
change of fp due to increased plasma binding protein level in
the disease condition would give an impact to SF for CLUintH.
Further analysis on the alteration of fp in patients would be
required for such compounds.

Some drugs are known to be mainly eliminated via
hepatic transporters such as organic anion transporting
polypeptides (OATPs) (30), but the number of such com-
pounds included in the current dataset was so limited.
Consequently, the estimated SF is unlikely to reflect a change
in the hepatic uptake activity; hence, the insufficient dataset
for the liver uptake via transporters could be one of the
reasons for the over-prediction of CL.

The PBPK model with SFs based on an interquartile
range estimated in the present study was used for the
simulation of the plasma concentration profiles of 12 model
compounds with widely ranging fe values. Consequently, the
plasma concentrations of the 12 model drugs seemed to
coincide with the observed data, and this was supported by a
relatively high accuracy of CL and t1/2, which were success-
fully predicted for 58 to 83% and 67 to 75% compounds,
respectively, in CKD patients. These data suggest the utility
of SFs with an interquartile range on PK prediction in CKD
patients of drugs eliminated by different pathways. For the
prediction of Vss, only two compounds in each moderate and
severe CKD condition were successfully predicted. Since the
prediction of Vss is based on the alteration of fp in the PBPK
model, an improved prediction method of fp in disease
condition would lead to a better predictability of Vss.

More recently, translational research, which involves the
translation of efficacy and PK data from preclinical to clinical
studies via modeling and simulation cycles, occupies an
important position in drug development (31,32). We have
proposed the tiered approach, which consists of four steps
based on modeling and simulation of PBPK models to predict
human PK from drug discovery to first-in-human studies (20).
In the last step, the measured plasma concentration profile in
HV allows us to optimize the PBPK model by the integration
of comprehensive in vitro and in vivo information. Such a
PBPK model developed through modeling and simulation
would become a key tool to evaluate intrinsic factors (age,
gender, race, disease, and genetic polymorphism) on human
PK in clinical studies. In the draft guidance, FDA recom-
mends that pharmaceutical companies conduct either “the
reduced PK study” in end-stage renal disease patients or “the
full PK study” for more detailed evaluation in mild,

moderate, and severe CKD patients to assess the possible
impact of CKD on drug disposition under development (7).
The new method with SFs derived by the top-down approach
would provide a rationale for the selection of the appropriate
study as well as dose adjustment through predicting the PK
profile in patients from that in HV and also accelerates the
implementation of model-based drug development that is
deeply associated with decision-making based on PK profile
prediction and risk assessment of toxicity.

CONCLUSION

We collected the large dataset regarding PK parameters
in CKD patients and comprehensively described large
variations in the alterations in PK parameters. Consequently,
the SFs with an interquartile range were successfully derived
from PK parameters in the disease conditions by the top-
down approach. The predictability of the PBPK model
combined with the SFs was validated using 12 model
compounds with various PK profiles. The developed PBPK
model with information on SFs would play an important role
in the translational research in drug development.
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