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Abstract The highly conserved part of the nucleotide-
binding domain of the hsp70 gene family was amplified from
the soil diplopod Tachypodoiulus niger (Julidae, Diplopoda).
Genomic DNA yielded 701, 549 and 540 bp sequences,
whereas cDNA from heat shocked animals produced only
one distinct fragment of 543 bp. The sequences could be
classified as a 70 kDa heat shock protein (hsp70), the corre-
sponding 70 kDa heat shock cognate (hsc70) and a glucose-
related hsp70 homologue (grp78). Comparisons of genomic
and cDNA sequences of hsc70 identified two introns within
the consensus sequence. Generally, stress-70expression levels
were low, which hampered successful RT-PCR and subse-
quent subcloning. Following experimental heat shock, how-
ever, the spliced hsc70 was amplified predominantly, instead
of its inducible homologue hsp70. This finding suggests that
microevolution in this soil-dwelling arthropod is directed
towards low constitutive stress-70 levels and that the capacity
for stress-70 induction presumably is limited. hsc70, albeit
having introns, apparently is inducible and contributes to the
stress-70 response.
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Introduction

The heat shock response is a general cellular mechanism that
helps to protect organisms from the harmful effects of expo-
sure to various kinds of environmental stress (Lindquist
1986). It is essentially based on an increased expression of
inducible heat shock proteins (hsps), also designated as stress
proteins. By binding to uncoiled and thus denatured polypep-
tide chains, they prevent them from aggregation and assist in
the proper refolding of misfolded proteins (Gething and
Sambrook 1992; Mayer and Bukau 2005). In addition to the
stress inducible hsp70, the constitutively expressed heat shock
cognates (hscs) also play an important role under unstressed
conditions (Bukau and Horwich 1998; Richter et al. 2010).

The significance of hsps within the cellular stress re-
sponse and their ability to integrate overall adverse effects
on protein integrity also make them informative biomarkers
for tracking environmental pollution (Sanders 1990; De
Pomerai 1996; Kammenga et al. 2000; Nadeau et al.
2001). Among the numerous classes of stress proteins, the
stress-70 (hsp70) family is in this respect far best investigat-
ed. The potential of stress-70 proteins as biomarkers in
physiological ecology and ecotoxicology arises from (1)
their induction by the presence of damaged and malfolded
proteins (Edington et al. 1989), which may occur as a result
of proteotoxicity, (2) their induced expression as a response
to a wide variety of stressors (Tomanek and Sanford 2003;
Clark and Peck 2009) including heavy metals, UV light,
xenobiotics and even multiple interacting toxic substances
(Sanders 1993), as well as (3) their occurrence in literally all
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eukaryotic organisms along with their high degree of se-
quence conservation (Morris et al. 2013). Both the abun-
dance of stress-70 mRNA and the accumulation of stress-70
proteins can be employed for measuring the organisms’
response to environmental stress at different levels of sensi-
tivity to either concentration and/or time of exposure to
pollutants (Köhler et al. 1998). However, depending on the
particular traits, tissue function and developmental stage of
the species in question, as well as, of course, the type of
stressor and the tolerance towards it variations in the basal
stress-70 level and the induction of hsp70 are to be expected
(e.g. Eckwert and Köhler 1997; Arts et al. 2004). Particu-
larly, the interdependency between adaptations to stressful
environmental conditions and the constitutive hsp70 expres-
sion and the potential for induction of hsp70 may be com-
plex and variable according to the ecophysiological context.
The species under study may also differ in stress tolerance
and/or adaptation to rather stable environments (Kültz
2003). Indeed, for each species and ecological context, the
benefits of protection by the stress response need to be
balanced against the associated trade-offs, notably in terms
of metabolic costs (Sørensen et al. 2003). The costs and
benefits of the complex heat shock response may best be
addressed by simultaneous analyses of gene expression and
the corresponding protein levels, as well as the contribution
of different isoforms to the overall stress-70 response
(Morris et al. 2013).

Despite their great potential as biomarker of environmental
pollution little is known about stress-70 proteins in soil inver-
tebrates (Köhler et al. 1992; Kammenga et al. 2000). Diplo-
pods, for example, are hardly studied (Zanger et al. 1996)
although they contribute significantly to the detritivorous soil
fauna, which reduces litter and thereby, helps to further de-
compose organic matter bymicroorganisms. Any perturbation
of the soil biota by pollution may affect decomposition pro-
cesses and nutrient cycles (Sylvain and Wall 2011). Albeit an
ever growing number of sequences in GenBank and research
work using hsp70 gene expression as a molecular marker in
nematodes (Guisbert et al. 2013), lumbricides (Chen et al.
2011), slugs and snails (Köhler et al. 1998; Reuner et al.
2008), and collembolans (Bahrndorff et al. 2009; Waagner
et al. 2012) information about stress genes of the soil fauna is
still relatively scarce.

The premise to any quantitative stress gene expression
study is the availability of at least a partial hsp70 sequence.
Accordingly, the objective of this study was to characterize the
nucleotide sequence of a highly conserved region of the
70 kDa heat shock protein in the diplopod species
Tachypodoiulus niger (Leach 1815) (Julidae).

The approach employs degenerate primers targeting a con-
served region of the hsp70 family genes (Bahrndorff et al.
2009) that were developed previously for the netted slug
Deroceras reticulatum (Köhler et al. 1998).

Results and discussion

Previously designed oligonucleotides for polymerase chain
reaction (PCR) amplification of hsp70 in the netted slug
D. reticulatum (Köhler et al. 1998) were applied for the
amplification of hsp70 targets of the millipede T. niger either
from genomic DNA (gDNA) or from reverse transcribed
mRNA. Depending on the template DNA, twomajor products
of different length were obtained. The longer product ampli-
fied exclusively from gDNA consisted of 701 bp (excluding
primers), the shorter PCR product of 543 (excluding primers)
was obtained from cDNA of heat-shocked individuals. Minor
PCR products corresponding to the shorter sequences could
also be obtained as faint or very faint bands after electropho-
resis when targeting cDNA of untreated individuals or gDNA,
respectively (Table 1, Fig. 1). DNA sequencing revealed (1)
two genomic sequences of 701 and 549 bp that subsequent
BLAST searches suggested as being the hsc70 gene for the
longer sequence and as hsp70 for the shorter one; (2) a short
cDNA sequence with high similarity to the 70 kDa heat shock
cognate and (3) another short cDNA sequence identified as the
gene coding for glucose regulated protein grp78 (Table 1).
The respective DNA sequences can be retrieved from
EMBL/GenBank (accession numbers are provided in Table 1).
On the one hand, these results confirm the universal applica-
bility of these degenerate oligonucleotides (see also Schill
et al. 2004; Reuner et al. 2008). Particularly, the targeted,
highly conserved consensus region codes for the N-terminal
nucleotide-binding domain of the hsp70 proteins (Conserved
Domain Database, http://www.ncbi.nlm.nih.gov/Structure/
cdd/cdd.shtml; (Marcheler-Bauer et al. 2011), which
regulates chaperone activity by ATP hydrolysis (Wisniewska
et al. 2010). This domain is considered to be less variable than
the also well-conserved peptide-binding domain (Reddy et al.
2010). On the other hand, the degenerate primers amplify
various isoforms, and thus, primers specific to the different
isoforms need to be designed on the basis of the sequences
obtained with degenerate primers (e.g. as in Bahrndorff et al.
2009).

The deduced amino acid sequences of the T. niger hsp70s
(Fig. 2) were aligned to hsp70 sequences from 18 other
species retrieved from GenBank (Fig. 3). The network
obtained with a neighbour joining analysis illustrates the
basic split into two major groups of sequences (Fig. 3). The
cytoplasmic hsp70 and hsc70 sequences are found in one
group, while the grp78 sequences of the endoplasmic retic-
ulum form a separate clade. The obtained network reflect
that there is even on the level of just a short 188 AA
alignment sufficient distinction for discriminating between
cognate and inducible forms of hsp70 and other members of
the family, such as grp78.

The hsc70 gene represented the major PCR product when
targeting gDNA with high stringency. When lowering the
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annealing temperature, the shorter 549 bp fragment corre-
sponding to hsp70 could also be obtained, but only as a faint
band. A PCR product of similar size was amplified from
cDNA, but this required a specific induction of the hsp70gene
family by experimental heat shock. In fact, reverse transcrip-
tion of hsp70mRNA may be difficult to obtain if the number
of transcripts to produce sufficient amount of cDNA is low.
Accordingly, RT-PCR of the constitutive expression of hsp70/
hsc70 appeared to be rather low. Only after heat shock a
considerable gene expression was effectuated that resulted in
a PCR product of similarly strong intensity as the one of the
positive control DnaK. Intriguingly, from this cDNA product
obtained from heat-shocked animals, the inducible isoform of
hsp70 could not be amplified by PCR, but an intron-free
cognate gene transcript was always obtained instead. Just as
the longer 701 bp sequence, this 543 bp cDNA product almost
perfectly matched cognates of the hsp70 family. Moreover,
both fragments showed 99.8 % sequence identity when

removing two putative indels of 81 and 77 bp. In fact, multiple
sequence alignment provided evidence for at least one intron
in the hsc70 gene of T. niger. However, consensus sequences
for the 5′ and 3′ splice sites according to Mount (Mount 1982)
were found at positions 10–17 and 89–95 defining a first
intron, and at positions 369–377 and possibly 444–450 defin-
ing a second intron. The canonical GT-AG 5′ and 3′ splice
junctions render the presence of two introns plausible as does
the alignment with sequences from other soil invertebrates
obtained using the same methodology. The two indels togeth-
er account for most of the length differences between the two
PCR products, which therefore most likely represent the same
hsc70 gene.

Historically stress-inducible hsp70s were distinguished
from their constitutively expressed hsc70 homologues. In
contrast to the stress-induced hsps, cognates are known to
contain introns (e.g. Snutch et al. 1988; La Rosa et al. 1990).
Mammalian hsc70, for example, contains eight introns (Hunt

Table 1 PCR products of the nucleotide binding domain of the partial hsc70 and hsp70 genes in the diplopod Tachypodoiulus niger

Accession no. Sequence similarity Degenerate primers Template PCR product
(bp)

AM502906 hsc70 Fw: 5′ATYAAYGARCCIACKGCIGCIGCWATTGCITATGG3′

Rev: 5′GAYGARGCWGTTGCITAYGGIGCWGCIGTICARGC3′
mRNA 543

AM502907 gDNA 701

AM502908 hsp70 gDNA 549

AM502909 grp78 gDNA 540

Animals were collected from a beech forest stand, kept at 16 °C at a 12 h/12 h light/dark photoperiod in transparent plastic boxes and fed with partially
decayed leaves of the Common Hazel (Corylus avellana). Heat shock was carried out in a heating cabinet for 1 h at 30 °C followed by 15 min at 40 °C.
Total genomic DNA (gDNA) was isolated after removal of the alimentary tract using a modified method of Zhang and Hewitt (Zhang and Hewitt 1998).
The total RNA was isolated using an invertebrate RNA isolation kit (Peqlab, Erlangen, Germany). A reverse transcription was carried out with
SuperScript® II RT and oligo(dT)12–18-primer (Invitrogen Life Technologies, Darmstadt, Germany). Degenerate primers and PCR programs (3 min at
94 °C, 35 cycles of 1 min at 94 °C, 1min at 56 °C and 1.5min at 72 °C followed by a final 10min at 72 °C) were adopted fromKöhler et al. (Köhler et al.
1998) and slightly modified when necessary. PCR products were purified by agarose gel electrophoresis and subsequently cloned into the pCR4-TOPO-
vector (Invitrogen, Groningen, The Netherlands). The plasmid DNA was isolated from positive clones with the E.Z.N.A. plasmid miniprep kit II
(Peqlab). A custom sequencing was carried out in both directions and confirmed twice by Seqlab, Sequencing Laboratories (Göttingen, Germany). The
BLASTsearches (Altschul et al. 1990) were used for sequence identification. Alignments of the hsp70sequences were carried out using ALIGNprogram
(Smith and Waterman 1981)

Fig. 1 a PCR products of Tachypodoiulus niger revealing a fragment of
about 760 bp derived from genomic DNA (gDNA) and a prominent
product of about 610 bp for transcripts derived from previously heat
shocked animals (cDNA-hs). A faint band was also obtained from tran-
scripts of animals that had not been subjected to heat shock (cDNA).M=

100 bp DNA-ladder. The prokaryotic hsp70 homologue DnaK+ (plasmid
pUHE21-2Δ12fd) was used as a positive control (DnaK); b predicted
intron/exon structure of the nucleotide-binding domain of the partial
hsc70 and hsp70 genes in the diplopod T. niger
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et al. 1999; Daugaard et al. 2007). However, the number and
distribution of introns reported in the literature is highly

variable as is the inducibility of the respective genes. For a
number of plant model-organisms, the nucleotide binding

Fig. 2 Alignment of the three partial nucleotide sequences from the
stress-70 gene nucleotide-binding region for hsc70 (AM502906,
AM502907), hsp70 (AM502908) and grp78 (AM502909) of
Tachypodoiulus niger. Asterisks indicate (1) homology between hsc70

mRNA and hsc70gDNA and (2) homology over all sequences (* identity
over all four and : over three sequences); bold letters indicate splice
sequences after Mount (1982)
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domain is interrupted by a single intron only, the position of
which appears to be conserved (Reddy et al. 2010). In various
animal taxa, such as, for example, decapod crustaceans, in-
sects and fish, introns of different size were found in the 5′
UTR, in the nucleotide binding and in the peptide binding
domain (e.g. Ali et al. 2003; Karouna-Renier et al. 2003; Jiao
et al. 2004; Leignel et al. 2007; Ming et al. 2010). Also
intronless hsc70 were reported (Liu et al. 2004). Hence, the
presence of two introns in the partial sequence belonging to
the nucleotide-binding domain is conceivable, and more in-
tervening sequences are likely to be present in the entire hsc70
gene.

Heat shock typically induces intronless hsp70. In T. niger,
however, severe temporary heat shock appeared to induce
considerable expression of the stress-70 cognate since hsc70
was the only product obtained with RT-PCR. We thus con-
clude that the intron-containing cognate form represents the

stoichiometrically most important stress-70 gene in T. niger
under these experimental heat shock conditions, although it
needs to be acknowledged that degenerate primers are not apt
to distinguish between the different isoforms. This appears
intriguing because it would contradict the concept of intron-
containing chaperones not being induced by stress conditions
such as elevated temperature, heavy metal exposure or the
impact of chemicals (Yost and Lindquist 1988). This hypoth-
esis is mainly based on the notion that splicing of pre-mRNA
itself is sensitive to stress (e.g. Bond 1988; Winter et al. 1988;
Yost and Lindquist 1988). Accordingly, processing of the
mature hsps may be impaired under stress conditions, thus
leading to non-functional hsps, which in turn would hamper
an effective stress response. In contrast, intron-free genes can
be rapidly expressed, which is a prerequisite for an efficient
response to exogenous stress (Feder and Krebs 1998). Despite
such theoretical considerations, cognate stress genes that can

Fig. 3 Neighbour-joining network illustrating the clustering of hsp70
family sequences. The predicted protein sequences of 18 hsp70s homo-
logues that mostly represent model organisms (Caenorhabditis elegans:
hsp70 [NP_492485], hsc70 [NP_503068], grp78 [NP_495536]; Drosoph-
ila melanogaster: hsp70 [NP_731651], hsc70 [NP_524356], grp78
[NP_727563]; Fenneropenaeus chinensis: hsp70 [ACN38704], hsc70
[AAW71958], grp78 [ABM92447]; Takifugu rubripes: hsp70
[CAA69894], hsc70 [XP_003966054], grp78 [XP_003965205]; and Ho-
mo sapiens: hsp70 [AAD21816], hsc70 [NP_006588], grp78

[NP_005338]) were compiled in a 188 AA long alignment with the
predicted protein sequences from Tachypodoiulus niger (hsp70
[CAM7362], hsc70 [CAM73262], grp78 [CAM73265]). Analyses were
carried out using MEGA 5.2.1 (Tamura et al. 2011). The network is based
on the number of sequence differences with pairwise deletion of gaps, and
bootstrap support was estimated from 1000 replicates. The bootstrap
support was estimated from 100 replicates; only values ≥50 are indicated.
The mitochondrial hsp70 from Arabidopsis thaliana [NP_195504] served
as an out-group. (Accession numbers in brackets.)
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be induced by heat shock were reported earlier (Rochester
et al. 1986; Muller et al. 1992; Sconzo et al. 1992; Marcucci
et al. 1995). A critical issue may be seen in the definition of
induction, which varies in the literature and may range from a
three to a hundred times increase in expression (Sorger 1991).
Furthermore, variable numbers of hsp70 genes have been
reported, ranging from a handful of hsp70s to a couple of
dozens in plants or invertebrates. Presumably, gene duplica-
tions allow for generally higher expression levels and may
enable a fine-tuned regulation of specific isoforms that may
respond to a particular stress by specific response elements in
the promoter region (e.g. Zhang et al., 2012). Thus, the num-
ber of hsp70 copies and the variability in isoforms may ac-
count for different levels of inducibility depending on the
particular species in question and in response to specific
environmental stressors. Eventually, this could reflect differ-
ent evolutionary strategies and adaptation to the specific eco-
logical context. Species occurring in variable environments
may have evolved a higher potential for induction (Feder and
Krebs 1998) than those colonizing more stable habitats
(reviewed in Clark and Peck 2009; Coleman et al. 1995).
The latter may also be true for the diplopod T. niger, a member
of the soil fauna that prefers a woodland habitat, characterised
by only minor temperature variation in the upper soil hori-
zons. It is well known that these animals avoid higher tem-
peratures by moving into deeper soil horizons or into the inner
parts of decayed wooden trunks, where they meet their tem-
perature optimum. Accordingly, selection for specialised,
highly inducible isoforms might have been weak.

Conclusions

The potential of gene expression as a highly sensitive bio-
marker has beenwidely discussed and successfully applied for
stress-70 genes (e.g. Köhler et al. 1998; Schill et al. 2004;
Reuner et al. 2008; Bahrndorff et al. 2009). Degenerate
primers targeting the highly conserved nucleotide-binding
domain of the hsp70 gene proved useful in amplifying stress
protein genes in various animal taxa and subsequent determi-
nation of hsp70 nucleotide sequences. This is particularly
useful for non-model organisms for which little or no genetic
information is available. The obtained consensus region may
then serve as a basis for further analysis of the hsp70 family
sequences in the respective species by RACE-PCR. Subse-
quently, primer pairs for highly specific stress gene probes can
be constructed and employed in real-time RT-qPCR. By ex-
amining the inducibility of different homologues, the stress
response may be examined in a differentiated manner thereby
better reflecting its complexity. Eventually, the ecophysiolog-
ical context of a particular species needs to be taken into
consideration with regard to its ability for the stress-70 re-
sponse, as, apparently, the characteristics of induction are

highly dependent on the species and the stress conditions it
encounters in its environment.
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