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Abstract Metallothioneins (MTs) are a family of low molec-
ular weight, cysteine-rich, metal-binding proteins that have a
wide range of functions in cellular homeostasis and immunity.
MTs can be induced by a variety of conditions including
metals, glucocorticoids, endotoxin, acute phase cytokines,
stress, and irradiation. In addition to their important immuno-
modulatory functions, MTs can protect essential cellular com-
partments from toxicants, serve as a reservoir of essential
heavy metals, and regulate cellular redox potential. Many of
the roles of MTs in the neuroinflammation, intestinal inflam-
mation, and stress response have been investigated and were
the subject of a session at the 6th International Congress on
Stress Proteins in Biology and Medicine in Sheffield, UK.
Like the rest of the cell stress response, there are therapeutic
opportunities that arise from an understanding of MTs, and
these proteins also provide potential insights into the world of
the heat shock protein.
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Introduction

Exposure to stressful conditions produces a spectrum of cel-
lular changes that includes de novo synthesis of a range of
different stress response proteins. The most recognized of
these proteins is the family of heat shock proteins (HSPs).
Since their discovery, they have been shown to play important
roles in cellular stress responses and in a broad range of
normal homeostatic mechanisms. These HSPs held center
stage at the 6th International Congress on Stress Proteins in
Biology and Medicine in Sheffield, UK, but another stress
response protein family was also the topic of a session at this
meeting. This protein, metallothionein (MT), has structural,
genetic, and biochemical features that are quite distinct from
the HSP families, but MT shares some striking functional
similarities with the HSPs. An understanding of MT is impor-
tant in its own right but may also lend itself to a better
understanding of how cells process and integrate stress re-
sponses, and to an appreciation of the clinical opportunities
that manipulation of stress proteins may represent. The MT
session explored the role MT plays in immune function,
neuroprotection, inflammatory colitis, and infection.

Metallothionein is an unusual protein family. Members of
this family are quite small (about 7 kDa) and very cysteine-
rich (about 33 mol%). There are four main isoforms of MT
(MT1 to 4) that are highly homologous structurally and are
also quite conserved over long evolutionary distances. The
protein is named for its ability to interact via its many thiols
with divalent heavy metal cations such as mercury, cadmium,
zinc, and copper. A variety of agents can influence the syn-
thesis of theMT proteins, including the divalent heavy metals,
reactive oxygen species, acute phase cytokines, interferon,
glucocorticoids, calcium ionophores, and phorbol esters.
While MT has traditionally been considered to be an intracel-
lular protein that can be found in both the cytoplasm and
nucleus, it is also found in a variety of extracellular spaces,
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despite the absence of a signal peptide. Molecular modeling of
theMT proteins suggests that they have structural features that
are reminiscent of those associated with proteins that are
directed to extracellular compartments by signal peptides.
Like the HSPs, the MTs have important roles to play in each
of these compartments.

In unstressed cells, the zinc and copper, which are the
essential metals normally associated with MT, are held in an
intracellular reservoir for use by metalloenzymes, by tran-
scription factors, and by other metalloproteins. In cells ex-
posed to toxic divalent heavy metals, an MT isoform can
sequester these elements and diminish the acute effects of
the metals. MT can also act as a scavenger of reactive oxygen
and nitrogen species and can regulate cellular redox potential.
Outside the cell, MT can influence cellular behaviors such as
proliferation and chemotaxis and thus potentially regulate cell
behaviors by binding to membrane receptors.

In some of the original experiments done to examine the
roles MT has in immune regulation, we immunized mice with
ovalbumin in the presence of exogenous MT (Lynes et al.
1993). The results of these experiments suggested that extra-
cellular MT could suppress the specific response to antigen
challenge and that this suppression could be blocked by
simultaneous administration of a monoclonal anti-MT anti-
body (Canpolat and Lynes 2001). Subsequent experiments
showed that targeted disruptions of the host MT1 and MT2
genes could influence the progression of infection with
Listeria monocytogenes (Emeny et al. 2009), as well as the
vigor with which an immunized animal responds to challenge
with a T-dependent antigen (Crowthers et al. 2000). Similarly,
immune activity can be enhanced by antigen challenge in the
presence of monoclonal anti-MT alone, suggesting that there
is an endogenous extracellular pool of MT that influences
immune activation (Lynes et al. 2006). Manipulation of MT
expression influences the progression of autoimmune disease,
as has been shown for collagen-induced arthritis (Youn et al.
2002) and diabetes (Yang and Cherian 1994).

Examination of the primary amino acid sequence of MT
identified motifs that are reminiscent of sequences associated
with some chemotactic cytokines. Moreover, the MT gene
cluster is located in the midst of a pair of chemokine genes,
suggesting a potential evolutionary relationship between these
genes. As a consequence, we have explored the functional
capacity of MT as a chemotactic factor. MT can initiate T cell
chemotaxis, and this chemotactic response can be blocked by
either monoclonal antibody or by cholera toxin or by pertussis
toxin (Yin et al. 2005). The action of these toxins implies that
MT interacts with a G protein-coupled receptor, but other
reports have suggested other molecular candidates that might
serve as MT receptors (Fitzgerald et al. 2007; Wolff et al.
2006).

While the most significant structural homologies are found
between mammalian MTs, this protein family has members in

species as diverse as humans and bacteria. SmtA is an MT
expressed by a number of bacterial species (Morby et al.
1993), and it has been found to have the potential for immu-
nomodulatory activities reminiscent of those established for
eukaryotic MTs. As a consequence, bacterial MTs such as
those expressed by Pseudomonas aeruginosa may serve as
virulence factors and may represent a novel target for thera-
peutic intervention during Pseudomonas infection.

Roles of metallothioneins in animal models
of neuroinflammation

Acute injury to the brain such as that caused by trauma and
stroke causes waves of gene expression in an orderly manner:
immediate-early genes, HSPs, cytokines, and adhesion mole-
cules; a number of proteases and their inhibitors; and a final
expression of remodeling and repair proteins (see (Allan and
Rothwell 2001) for review). Interleukin-6 (IL-6) is one of the
critical cytokines upregulated during brain injury and the
associated inflammatory response, and its deficiency causes
dramatic effects on the overall brain transcriptome (Poulsen
et al. 2005). Among the proteins being influenced by IL-6,
some are known to be neuroprotective, such as HSP105alpha
(Yamagishi et al. 2002), HSP70 (Giffard and Yenari 2004),
and MT1/2 (Penkowa et al. 1999). These MT isoforms are
consistently found upregulated in neurodegenerative diseases
such as Alzheimer’s disease (AD), amyotrophic lateral scle-
rosis, and multiple sclerosis, as well as following acute and
chronic brain injury where neuroinflammation and oxidative
stress are occurring (Manso et al. 2011). Besides induction by
neuroinflammatory conditions,Mt1 andMt2 are also sensitive
to psychological (immobilization) and other types of stress
that are likely mediated by glucocorticoids (Gasull et al. 1994;
Hidalgo et al. 1990).

The discovery of human MT3, which suggested its in-
volvement in the etiology of AD (Uchida et al. 1991),
prompted an interest in the roles of MTs in the brain. AD is
the most commonly diagnosed dementia worldwide, affecting
about 40 % of people older than 80 years and is clearly on the
rise (Selkoe 2012). Clinically defined by a slowly progressing
loss of cognitive functions ultimately leading to dementia and
death, the main neuropathological hallmarks of AD include
extracellular senile plaques (mainly comprised of aggregated
β-amyloid (Aβ) peptides) and intraneuronal neurofibrillary
tangles (NFTs; hyperphosphorylated forms of the
microtubule-binding protein tau) in the cortex and hippocam-
pus, together with clear signs of neuroinflammation, metal
dyshomeostasis, and oxidative stress (Kepp 2012; Selkoe
2012). To understand the putative role(s) of MTs on this
devastating disease, the use of transgenic mouse models of
AD will be critical (Wisniewski and Sigurdsson 2010). The
Tg2576 mouse model is one of the most extensively studied
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models of amyloid deposition (Hsiao et al. 1996); Tg2576
mice develop amyloid plaques at 9–12 months and display
inflammation, gliosis, oxidative stress, and impairment in
cognitive tasks. Not surprisingly, Mt1 and Mt2 were upregu-
lated in cells surrounding the amyloid plaques in these mice as
well as in other models of AD, whereas MT3 expression was
mostly unaffected (Carrasco et al. 2006). The role of these
proteins has been assessed by crossing the Tg2576 mice with
eitherMt1 andMt2 KO (Manso et al. 2012a) orMt3 KO mice
(Manso et al. 2012b) and by injecting Zn7-MT2A (Manso
et al. 2011) and Zn7-MT3 (Manso et al. 2012b). While the
exact mechanisms remain unknown, the results suggest that at
an early age (∼5 months), MTs are rather detrimental, favoring
the phenotype of the Tg2576 mice (amyloid cascade, mortal-
ity, behavioral alterations) perhaps by decreasing copper bio-
availability which would increase the formation of Aβ trimers
(Crouch et al. 2009) or prevent copper binding to prion protein
and subsequent sensitization of NMDA receptors (You et al.
2012). At an advanced age (∼14months), the effects ofMTon
the amyloid cascade are reduced, while at the same time, the
formation of plaques is favored. Likely because of the latter,
there are signs of increased reactivity of the resident immune
cells in the brain, microglia, which is known as microgliosis
(the morphology and physiology of these cells may change
dramatically upon activation, going gradually from a ramified
state in resting cells to a round morphology when fully acti-
vated). This response does not occur in all microglia but in
those surrounding the plaques. Remarkably, this occurs de-
spite the tendency of MTs to inhibit microgliosis in normal
conditions. This has been summarized in Fig. 1.

Metallothioneins as danger signals in intestinal
inflammation

Inflammatory bowel diseases (IBDs), comprising Crohn’s
Disease and ulcerative colitis, are chronic intestinal inflam-
matory pathologies of the gastrointestinal tract. They are
typical diseases of the Western countries, usually affecting
young adults (Cho 2008). Patients present recurrent symptoms
of abdominal pain, bloody diarrhea, and weight loss. Severe
ongoing mucosal inflammation can cause complications such
as strictures and fistulae, often necessitating surgery. Although
the exact etiology is unknown, it is widely accepted that IBD
occurs in genetically predisposed individuals due to an exces-
sive immune response to undefined luminal antigens, proba-
bly derived from the microbial flora. Decreased epithelial
barrier function is a hallmark of IBD and results in an in-
creased influx of bacteria into the lamina propia which subse-
quently drives the uncontrolled immune response (Blumberg
2009). Current immunosuppressive therapy is only effective
in some patients, and loss of response is frequently observed.
Consequently, the identification of innovative treatment

strategies that provide clinical remission and mucosal healing
is a primary goal in IBD research.

Intestinal homeostasis and epithelial barrier integrity is
maintained by controlled renewal and differentiation of intes-
tinal epithelial cells (IECs) (Gunther et al. 2012; Maloy and
Powrie 2011). In patients with IBD, this equilibrium is dis-
turbed, which is characterized by excessive IEC death and
excessive infiltration and activation of immune cells. During
cell death, endogenous signals are released that alert the
immune system of damage by attracting and/or activating
immune cells. These signals are called “danger signals” or
“danger-associated molecular patterns” and represent an im-
portant part of the innate immune response. However, in cases
of excessive cellular damage, danger signals may sustain
immune activation and inflammation (Matzinger 1994;
Siggers and Hackam 2011). Danger signals have been pro-
posed to contribute to IBD (Mueller 2013a); for example,
blocking high-mobility group box 1 resulted in partial sup-
pression of the immune response and disease amelioration in
murine IBD models (Yamasaki et al. 2009).

Extracellular MTs are a novel class of danger signals be-
cause they are able to attract leukocytes and influence the
immune response (Laukens et al. 2009; Lynes et al. 2006;
Yin et al. 2005). Increased serum MT levels are found in
response to stress and MT detection at inflammation sites
suggests the release of MTs in response to cellular damage
(Armario et al. 1987; Chung and West 2004; Espejo et al.
2005; Inoue et al. 2005; Penkowa et al. 2005; Wesselkamper
et al. 2006). Previous research focusing on the role of MTs in
IBD primarily considered the intracellular roles of the protein.
Results reported in the literature onMTexpression in IBD and
results of studies exploring the role of MTs in experimental
IBD models are discrepant and inconclusive (for overview,
see (Waeytens et al. 2009) and (Laukens et al. 2009)). We, and
others, have shown that MTs are induced in the colon during
the initiation of intestinal inflammation in experimental IBD
models (Al-Gindan et al. 2009; Devisscher et al. 2011). In the
healthy colon, MTs are predominantly expressed in the epi-
thelium, whereas during active colitis, high immunoreactivity
is found in the inflammatory infiltrate. We recently reported
that genetic deletion of theMt1 andMt2 genes inmice reduced
the severity of acute and chronic colitis (Devisscher et al.
2014). MT knockout mice showed a higher survival rate, less
weight loss, and less colon shortening in an acute colitis
model. The attenuated colonic inflammation in MT knockout
mice was characterized by reduced leukocyte infiltration com-
pared to wild-type mice. Interestingly, the same benefit was
achieved using a monoclonal anti-MT antibody, suggesting
that the presence of extracellular MTs participate in disease
progression. Using small animal imaging, we indirectly
showed that MTs are released in the colon during colitis.
After intravenous administration of indium-labeled anti-MT
antibodies, high signals were found in the colon during active
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colitis, whereas this was not the case in healthy animals.
Because MTs are mainly expressed in IECs, we focused on
the release of MTs from IECs in vitro. Attempts to induce MT
secretion using various inflammatory triggers and other
stressors involved in IBD were not successful. Released
MTs could only be detected in the case of IEC death and
plasma membrane damage. These endogenously released
MTs were able to attract leukocytes, and this attraction could
be abolished by the addition of anti-MT antibodies. Taken
together, these data suggest that MTs act as danger signals
during colitis and represent a novel target for reducing leuko-
cyte infiltration and inflammation in IBD patients.

Metallothionein alters the stress associated with listeriosis
and cold restraint

Exogenous (environment stresses) and endogenous (genetic
and epigenetic) parameters have combined influences on
health. Environmental stresses include biological
(pathogens), chemical, and physical/psychological stresses,

and these different types of stresses alone or in various com-
binations can affect an individual through a multitude of
different pathways, involving many different organ systems.
Our studies of environmental stressors have focused on inter-
active neuroendocrine and immune circuits. Both chemical
exposure to lead (Pb) (Kishikawa et al. 1997; Tian and
Lawrence 1995) and physical/psychological stress of cold
restraint (Emeny et al. 2007, 2009) can suppress host defenses
against bacterial infection (listeriosis) due, in part, to enhanc-
ing inflammation and oxidative stress. The increased inci-
dence of infections in the elderly are posited to relate to the
accumulation of lifetime environmental exposures, the conse-
quential or accompanying decline of reducing equivalents,
such as glutathione and other cellular thiols, and the manner
by which the exogenous and endogenous factors converge to
generate the exposome (Wild 2005). Interestingly, cold-
restraint suppression of host defenses is due to sympathetic
nervous system release of norepinephrine (Cao et al. 2002),
which induces loss of cellular thiols of immune cells leading
to reduced immunity. Inflammation and oxidative stress are
mechanistically connected with aging (Pacifici and Davies

Fig. 1 The role of MTs in the formation of plaques in the brain. MTs
have sex- and age-dependent effects on amyloidosis pathways throughout
yet unknown mechanisms. At early ages, MTs seem to promote β-
secretase activity directly (solid line) and eventually further processing
of APP indirectly (dashed lines) and are thus detrimental. In contrast, at

advanced ages, MTs decrease the amyloid cascade while promoting
increased plaque formation (and concomitant microgliosis) and changing
the Aβ1–40:Aβ1–42 ratios in cortex vs hippocampus in a sex-dependent
manner
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1991) and with the decline of regulated immune functions
(Chinn et al. 2012; Lavrovsky et al. 2000), “immuno-aging.”
Evidence of an imbalanced immune system, inflammation,
and oxidative stress with aging is apparent with increased
incidence of infections, cancers, and autoimmune diseases.
“Immuno-aging” is often associated with cardiovascular dis-
ease, type 2 diabetes, neuroendocrine immune dysfunction,
and cell senescence (Dandona et al. 2004; Mueller 2013b;
Vasto et al. 2010; Wong et al. 2012). Since MT has been
connected with both the association of cellular senescence
and aging (Mocchegiani et al. 2012) and cold exposure and
cardiovascular disease (Zhang et al. 2012), we have
researched the effects of MT expression on mouse defenses
against a L. monocytogenes (LM) infection and have assessed
whether high or low MT expression affects the loss of host
defenses when mice are stressed by cold restraint. It was not
surprising to demonstrate that higher amounts of MT im-
proved host defenses against LM (Emeny et al. 2009) since
MT acts as an antioxidant; MT can lessen DNA damage and
maintain the glutathione level even in stressed mice
(Higashimoto et al. 2013), andMT lessens the oxidative stress
and inflammation damage that occurs during streptozotocin-
induced diabetes (Tachibana et al. 2014). Maintenance of
glutathione is necessary to assist inducible nitric oxide syn-
thase activity (MacMicking et al. 1997; Murata et al. 2002)
and prevent nitric oxide (NO) uncoupling, which leads to
greater production of the reactive oxygen species superoxide
and damage to the mitochondria. The unexpected result was
that a MT deficiency improved host defenses against LM; this
might be because the intracellular condition is less hospitable
due to greater oxidative stress leading to apoptosis and/or

increase of lipid peroxides and peroxynitrite that would dam-
age both the host cells and the LM. LM infection increases the
expression of MT (∼4-fold) in the spleen and liver of wild-
type C57BL/6 (B6-WT) mice, the two organs with the largest
amounts of LM. After cold-restraint stress and LM infection,
the MT levels still increase in B6-WT mice but to 75–85 % of
the level without cold restraint. B6 mice with the MT trans-
gene (B6-MTTGN), which have a constituently high MT
level, also have increased MT levels after LM infection (4-
fold in spleen; 10-fold in liver), and unlike the B6-WT mice,
cold restraint plus LM caused a further 15–20 % increase.
Cold restraint did not inhibit host defenses of B6-MTTGN
mice; whereas, mice lacking MT (B6-MTKO), which had
improved host defenses compared to WT-B6 mice, lost their
protection after cold restraint, especially in the liver. The
beneficial influences ofMTKO andMTTGN on LM infection
do not appear to relate to differential cytokine levels; however,
LM-infected B6-WT mice had greater loss of body weight
than infected B6-MTTGN or B6-MTKO mice. The B6-
MTKO mice also had higher levels of IL-6, a cytokine that
increases with stress and sickness behavior. Very different
mechanisms are likely responsible for the improved host
defenses of the MTKO and MTTGN mice. The elevated
levels of MT in the B6-MTTGN mice may improve Th1-
mediated immunity due to availability of glutathione.
Glutathione levels have been suggested to differentially influ-
ence the development of Th1 and Th2 cells (Murata et al.
2002). Th1 activity, prevention of NO uncoupling, and main-
tenance of cellular thiols are suggested to be linked to the type
of immunity needed for defense against an intracellular path-
ogen such as LM (Fig. 2).

Fig. 2 Hypothetical scheme of
stress-induced modulation of
immunity. Biological, chemical,
and physical/psychological
stresses can independently or in
combination increase oxidative
stress leading to suppression of
type 1 immunity, which is needed
to defend against intracellular
pathogens
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Summary

MTrepresents a family of proteins with critical roles to play in
normal cellular homeostasis and in the cellular responses to
stressors. Like the HSPs, these roles span a wide spectrum of
cellular types and physiological processes. Manipulations of
the proteins’ synthesis or distribution may have critical impor-
tance in the therapeutic manipulation of a wide spectrum of
diseases and should inform our understanding of how organ-
isms manage stressful conditions.
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