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Abstract

With growing adoption and use, the electronic health record (EHR) represents a rich source of

clinical data that also offers many benefits for secondary use in biomedical research. Such benefits

include access to a more comprehensive medical history, cost reductions and increased efficiency

in conducting research, as well as opportunities to evaluate new and expanded populations for

sufficient statistical power. Existing work utilizing EHR data has uncovered some complexities

and considerations for their use, but more importantly has also generated practical lessons and

solutions. Given an understanding of EHR data use in cardiovascular research, expanded adoption

of this data source offers great potential to further transform the research landscape.
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Introduction

The increased adoption of electronic health records (EHRs) in recent years has spurred

potential benefits beyond clinical care, towards secondary uses such as for biomedical

research. The National Center for Health Statistics estimates that approximately 48% of

office-based physicians have a “basic” EHR system[1], with ongoing projected growth.

Legislation such as the Health Information Technology for Economic and Clinical Health

(HITECH) Act of 2009 has been a primary motivator behind this increased adoption.

Multiple national efforts have demonstrated the utility of using EHRs for biomedical

research. The electronic Medical Records and Genomics (eMERGE) network [2] is a

national consortium of ten centers across the U.S. that developed and validated 14 publicly

available EHR-based phenotype algorithms [3], with over 20 additional algorithms in

development, to facilitate genome-wide association studies (GWAS). In addition to

eMERGE, the Strategic Health IT Research Program focused on secondary use of EHRs

(SHARPn) developed infrastructure to convert Quality Data Model (QDM)-based

definitions into executable phenotype algorithms [4]. The Electronic Healthcare Record for

Corresponding author: Luke Rasmussen, luke.rasmussen@northwestern.edu, 312-503-2823.

Disclosures: No competing interests exist.

Human subjects/informed consent statement: No human studies were carried out by the author for this article

Animal Studies: No animal studies were carried out by the author for this article.

NIH Public Access
Author Manuscript
J Cardiovasc Transl Res. Author manuscript; available in PMC 2015 August 01.

Published in final edited form as:
J Cardiovasc Transl Res. 2014 August ; 7(6): 607–614. doi:10.1007/s12265-014-9579-z.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Clinical Research (EHR4CR) project has produced not only the technical infrastructure to

integrate disparate EHRs, but also the standards and governance to ensure their

interoperability, allowing for study feasibility queries [5,6]. Initiatives such as these and

others have not only demonstrated the potential of EHRs as efficient and cost-effective

sources of data for biomedical research [7], but have also uncovered considerations and

potential challenges with this source of data, such as standardization, data quality, privacy,

security and governance[8].

Benefits of EHRs for Research

Although not a panacea, the use of EHRs for research offers many benefits to researchers

over (or in conjunction with) prospective data collection and paper chart reviews [9-11].

First, the EHR often represents a comprehensive medical history for a population, providing

a glimpse into baselines and changes in an individual's health over time, which may not be

available if data collection is purely prospective. Second, the use of the EHR offers a cost-

effective option for conducting research. Since the data in an EHR is collected as part of

existing medical encounters, there is no significant cost to collect data elements that already

exist. Likewise, it may reduce or eliminate the need to perform procedures (i.e. laboratory

tests, diagnostic imaging) to establish a baseline for a study participant. Also, EHRs allow

scaling studies to large populations, which may be beneficial for rare conditions or genomic

studies requiring a large population for a sufficiently powered analysis. Within

cardiovascular genetic medicine, it has been previously noted that larger cohorts may be a

key contribution to novel discoveries [12]. Furthermore, since the information is in an

electronic format, it is amenable to computational analysis, which may speed up review and

discovery. Finally, because the data collected in the EHR is broader than that needed for

individual studies, the EHR as a source of information may be reused and repurposed for

new hypotheses and expanded analyses.

Given the benefits demonstrated to date, the use of EHR data for cardiovascular research can

be expected to increase over time. As with any data source, understanding the provenance of

the data and considerations for its application to translational research will be critical for its

use.

EHR Data Types

How data is stored in the EHR may vary across multiple axes, including what the data

measures clinically (laboratory, medications, diagnoses, imaging, etc.), as well as the

modality in which the data is persisted and retrieved for use. These factors affect how EHR

data is processed by a human, as well as how they may be processed computationally.

Details about the specific types of clinical information are well-described elsewhere[9],

however Table 1 provides an overview of the types of data, in order of computational

complexity (least to most complex).

Perhaps not surprisingly, the more complex forms of data are not as widely used as text

narratives and structured data. This is in part due to the specialized knowledge needed to

process those types of data, but also many times the information is abstracted into text or

structured format as part of the clinical documentation.
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Structured data, while arguably the easiest to compute, offers some unique challenges,

primarily around the use of competing standard or local vocabularies to encode the same

information, differing levels of specificity in those vocabularies, and institutional differences

in how information is recorded in the EHR. This offers challenges when trying to aggregate

information across multiple institutions, such as with diagnosis codes. Currently the most

commonly used vocabulary in the U.S. is the International Classification of Diseases (ICD)

Ninth Revision, although SNOMED CT and ICD-10 are being (or are expected to be) used.

Whereas ICD-9 has fewer codes which may translate to less specificity in the meaning of a

code, it is difficult to ensure semantic agreement between two seemingly equivalent

codes[13]. For example, ICD-9 code 429.2 (Cardiovascular disease, unspecified) has a

general equivalence code I25.10 in ICD-10 (Atherosclerotic heart disease of native coronary

artery without angina pectoris). While one could say the ICD-10 code maps to the ICD-9

code (atherosclerotic heart disease is an otherwise unspecified CVD in ICD-9), the opposite

is not true (not all unspecified CVD is necessarily the specific atherosclerotic heart disease

represented in ICD-10). How the data is analyzed can help to address some of these

differences.

Using the example codes presented, if a phenotype were being defined to exclude anyone

with any history of CVD (such as with a control population), the task is easy – the more

general ICD-9 code would be appropriate, as would the ICD-10 code (along with many

others). If the phenotype algorithm were looking for atherosclerotic heart disease without

angina pectoris, the institution using ICD-10 would be able to identify those individuals,

however an institution having only ICD-9 codes may need additional supporting

documentation, such as excluding all instances of the ICD-9 code that co-occur with a

recorded observation of angina pectoris.

This example also illustrates that the difference in granularity of different coding systems

affects not only cross-institutional implementations of an algorithm where mapping and

aggregation of data is required, but also a local implementation where looking for a specific

diagnosis but such specificity is not recorded.

Methods of Analysis

Many approaches may be taken to analyze EHR data [14], varying not only in complexity

by the specific disease being studied, but also influenced by how associated data is stored in

the EHR. As with the types of data in the EHR, analytical approaches also vary in

complexity. It should be noted that no analytical approach is inherently “better” than

another, and instead depends on the requirements of the study (i.e. acceptable tradeoffs in

sensitivity and specificity), the capabilities of the institution, and the type of data being used

from the EHR. A list of approaches is summarized in Table 2, and described in more detail

below.

Rule-based solutions are perhaps the more common approach used, and consist of discrete

data points from which combinations of assertions are made to arrive at a final

determination (i.e. case/control status). The assertions vary in complexity, and may include

nested Boolean combinations of values (has diagnosis X AND [medication Y OR lab result
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Z]), temporal operators (event X at least 3 months before event Y), and arithmetic

calculations on numeric values such as labs (at least an average of X over the past 5 years).

The number and types of assertions needed to comprise an algorithm will vary from case to

case. A selection of algorithms created by the eMERGE network, for example, had a range

of 3 to 172 Boolean operators. In addition, some algorithms did not define temporal

relationships, while others defined up to eight [15]. Complexity may vary by medical

specialty and how the information is recorded in the EHR. For example, as diagnosis codes

are recorded for billing purposes, the presence of a diagnostic code does not always

guarantee the presence of a condition in a patient. To account for this, additional pieces of

information can be factored in to include or exclude patients to determine their status as a

case or control.

Rule-based algorithms assume that the data to be used from the EHR is in a structured

format. With the advent of the Meaningful Use program, the amount of structured data

points collected in the EHR can be expected to increase – both due to an increased number

of EHR implementations, as well as new requirements to record structured data that is tied

to standard clinical vocabularies. While there is a drive to replace clinical narrative with

structured data, primarily to have more computable data, a shift to entirely structured data

entry is not a well-accepted [16] or guaranteed beneficial transition [17]. Also, historical

information may only be recorded as clinical narrative. Furthermore, it is not practical to

record every detail of a clinical encounter in a structured format, given the complexity and

richness of written text. For example, take the statement “Recent ECG is inconclusive for

atrial fibrillation, despite systematic palpitations over the past 6 months”. This is a collection

of a finding (palpitations, occurring over 6 months) and then a relationship between that

finding and a possible diagnosis (atrial fibrillation, with a certainty of “inconclusive”).

While multiple approaches exist for entering structured data, attempting to explicitly codify

that phrase would require significant time and effort by a clinician. Therefore, clinical

narrative text will still remain a key part of the patient's record.

This is why the use of NLP has been important to the field of EHR-based phenotyping.

Natural language processing, like rule-based approaches, may vary in complexity depending

on the granularity of information needed, and the manner in which it is written. The example

phrase above related to atrial fibrillation represents a more complex example, where the

concept “atrial fibrillation” not only needs to be extracted, but the certainty (how likely it

seems the patient has the condition) as well. This also demonstrates the challenges of NLP,

as the above fragment may be written by another clinician as “Evaluated ECG for afib.

Palpitations persist. Results inconclusive.” requiring the computer to relate “inconclusive”

back to atrial fibrillation. On the other end of the spectrum are more structured and

predictable ways of recording information that follow a consistent pattern, such as “BP:

180/75”. In this case, a regular expression, which codifies a pattern, may be used. In our

blood pressure example, a regular expression would essentially say “Find me text that starts

with the phrase ‘BP:’, is followed by some whitespace (I don't care how much), is followed

by some numbers, a forward slash, and some more numbers”.

In addition to rule-based and NLP approaches, machine learning (ML) is also a very

powerful tool for phenotype development. Using statistical approaches, ML systems
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evaluate large amounts of data in order to predict or classify patients given a set of variables

or features. Multiple algorithms are used and are being developed, with specifics on each

being outside the scope of this paper. At a higher level, two approaches may be found. One

approach is “unsupervised”, in which a system is given a set of EHR data and without any

further information and attempts to classify the patients. The “supervised” approach requires

a human to provide the algorithm with a training set of patients along with the proper

classification (i.e. is it a case or a control). Using the information from this training set, the

algorithm learns the features of these classified patients, and uses them to predict the

classification of patients it hasn't previously seen.

The analysis of images is also a viable approach. Although many times structured data or a

clinical assessment of an image may provide the information sought, image analysis can be

helpful when features not otherwise recorded need to be extracted. As previously mentioned,

the types of images may significantly vary in resolution and clarity. Radiological images are

one example, however handwritten notes or forms that are scanned into the EHR or captured

electronically (with a pen-based tablet computer) are another [18]. The use of image analysis

becomes more fruitful in EHR-based phenotypes where a large number of images may need

to be processed, which precludes the use of a human reviewer, especially where the

information sought is not otherwise recorded in a structured or text format.

Hybrid systems are also an option, combining one or more of the other analytical

approaches. Within one review of eMERGE algorithms, 7 of 9 phenotypes used NLP in

combination with rule-based logic [15]. A separate study specifically showed the importance

of hybrid approaches to improve overall accuracy of algorithms, including both NLP and

handwriting recognition to supplement a rule-based algorithm [19].

Use in Cardiovascular Research

Many examples exist in the biomedical literature of the varied uses of these data types and

analytical approaches. In this section we explore existing work using EHR data sources for

cardiovascular care, quality improvement and research, and considerations for these

approaches to research-focused phenotype algorithm development overall.

Rule-based

In the United Kingdom, the cardiovascular disease (CVD) research using linked bespoke

studies and electronic health records (CALIBER) project has built a large data repository

aggregated from EHRs and disease registries [20]. Many of the algorithms implemented are

rule-based, and although may be enriched with information from disease-specific registries,

heavily utilize EHR data sources. This project noted the challenges of EHR-derived data for

research, including consistency and quality issues with EHR data (missing data, incorrect

data, differences in coding standards for the same data over time), both within a single EHR

source and across practices. Their approach has been to transform the raw EHR data into a

standardized data model for research purposes.

A single-site study using claims data to determine the presence of heart disease found

reasonable accuracy, which varied based on the number of clinical events (requiring a
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patient have at least two encounters decreased the prevalence by 50%) [21]. While limited to

a single institution, the approach demonstrates the ability to use ICD-9 codes in combination

with simple temporal constraints (having had at least X visits) to accurately detect heart

disease, and also the sensitivity and specificity tradeoffs that may be made by adjusting

these parameters. Later work from the same institution developed additional algorithms to

identify coronary events using EHR data, showing significant improvements in accuracy

when more specific diagnosis codes are available [22]. For a myocardial infarction with ST

elevation (STEMI), initial algorithm iterations used a combination of ICD-9 codes, troponin

levels, and structured data associated with the ECG indicating ST elevation. The algorithm

was then simplified to only use more specific diagnosis codes provided by Intelligent

Medical Objects (IMO). While the IMO-based algorithm required fewer data elements, it

also is limited in portability to other institutions, as it requires the use of a proprietary

vocabulary.

Green et al. evaluated the accuracy of body mass index (BMI) in conjunction with or in the

absence of lab-based cholesterol results to calculate CVD risk [23]. They noted the lack of

cholesterol results in the EHR for approximately 40% of patients, but that sufficient

(although slightly elevated) risk prediction could be carried out using a lab-based score

along with a requirement that the subject have been seen within the practice over the

previous two years. Similarly, Dalton et al. verified the viability of CVD risk calculation

using imputed missing EHR data – specifically blood pressure, total cholesterol, HDL, BMI

and smoking status [24]. Both of these studies demonstrate practical approaches to dealing

with the reality of missing data in the EHR.

Image Analysis

Takx et al. automated calculation of the coronary artery calcification (CAC) score using

ECGgated computed tomography (CT) images to evaluate CVD risk. The automated

approach had very good agreement with a manually reviewed gold standard [25]. Zhong et

al. demonstrated an improved approach to measure left ventricle size using cardiac magnetic

resonance imaging (MRI), with potential applications of assessing a diverse set of

cardiovascular diseases [26]. Both of these works note the benefits of image analysis to

automatically analyze a large corpus of images, and the benefits to researchers who may be

able to leverage these approaches.

Machine Learning

Multiple studies exist that have used machine learning and statistical approaches for

predictive and classification tasks, which were directly used for or can be applied to

phenotype definitions. One such study used support vector machines (SVMs) to classify

coronary heart disease patients, using features such as cholesterol (low-density lipoprotein,

high-density lipoprotein, total and triglycerides) as well as age [27]. Another study explored

the use of SVMs to predict the risk of developing CVD in the absence of blood tests, by

using volume pulse [28]. Both approaches demonstrate more advanced techniques to address

missing data in the EHR, which has the potential to greatly increase cohort size without

sacrificing accuracy.
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It is important to remember that advanced techniques (which take more time to develop and

evaluate) do not always provide significant improvements. One study used ML classifiers to

determine subtype of heart failure, and to predict the presence of heart failure (specifically

that with preserved ejection fraction) using clinical observations [29]. This approach

demonstrated favorable results and improved performance in classification tasks, but did not

demonstrate significant improvements in accuracy over logistic regression. The use of ML

algorithms, therefore, should be (as with any technique) used purposefully, and validated to

ensure its accuracy.

Hybrid

Denny et al. conducted a GWAS related to atrioventricular conduction to assess genetic

implications in PR intervals, using multiple data types to classify cases and controls [30].

The algorithm utilized natural language processing to evaluate clinical documents and ECG

impressions for evidence of conditions such as heart failure and MI. The results from the

NLP were coupled with ICD-9 codes, labs and medications to determine the case/control

status, and achieved over 95% positive predictive value (PPV). This was the first study of its

kind to utilize an EHR-based phenotype algorithm. Karnik et al. also combined coded data

(diagnoses and procedures) along with the results of text searches into machine learning

algorithms, identifying that the coded and text data sets performed similarly, and that there

are merits of including clinical notes [31].

Turner et al. conducted a GWAS using two EHR systems to evaluate gene-gene interaction

models with respect to HDL levels. The phenotype algorithm utilized HDL measurements

from the EHR, and included analyses using median HDL, and a modeled HDL using

statistical techniques and additional EHR-derived variables. The phenotype was primarily

rule-based – including HDL lab measures, medications and diagnoses – but also included

medication information derived using NLP [32]. A flowchart representation of the algorithm

[33] shows the sequence of the criteria applied, including rule-based, NLP and statistical

techniques, including the level of detail that is needed. In this implementation, for example,

establishing the baseline HDL measure for a subject involves identifying potentially

confounding diagnoses (cancer, diabetes, hyper/hypothyroidism), medication use (statins,

niacin, estrogen) and events such as hospitalizations.

Considerations for Use

Three very important aspects of EHR-based phenotyping merit further discussion. The first

is that all of the approaches mentioned require validation during their development. The use

of a chart review (either using trained chart abstractors or a physician assessment) on a

sample of the patient population is noted as critical to ensuring the accuracy of the

phenotype algorithm [9,34]. The second related point is the iterative nature of EHR

phenotype development. The creation of these algorithms requires expertise from multiple

domains (clinical, research, informatics, data analytics) working in conjunction to propose,

validate and refine the definition. Finally, through all of the effort to develop a phenotype

definition, the resulting validated algorithm then represents a significant body of knowledge

that other researchers may benefit from. Public repositories of these algorithms, either

included with scientific publications or hosted at sites such as the Phenotype
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KnowledgeBase (PheKB, http://www.phekb.org), are key to disseminating these to the

scientific community.

Conclusion

Although many challenges of using EHR data have been discussed, the increased attention

to EHR-based phenotyping has not only demonstrated its utility in biomedical research, but

also provided a wealth of guidance to implementation, and existing algorithms that others

may adopt. Within cardiovascular research, the use of EHR-derived phenotype algorithms

has been shown as a rich and viable data source over disease-specific registries or study-

specific prospective data collection.

Acknowledgments

Sources of Funding: Support for this work provided by NHGRI grant U01HG006388 and NCATS grant
8UL1TR000150-05.

References

1. Hsiao, CJ.; Hing, E. NCHS data brief, no 143. National Center for Health Statistics; Hyattsville,
MD: 2014. Use and characteristics of electronic health record systems among office-based
physician practices: United States, 2001–2013.

2. Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, Manolio TA, Sanderson SC, Kannry J,
Zinberg R, Basford MA, Brilliant M, Carey DJ, Chisholm RL, Chute CG, Connolly JJ, Crosslin D,
Denny JC, Gallego CJ, Haines JL, Hakonarson H, Harley J, Jarvik GP, Kohane I, Kullo IJ, Larson
EB, McCarty C, Ritchie MD, Roden DM, Smith ME, Bottinger EP, Williams MS. The Electronic
Medical Records and Genomics (eMERGE) Network: past, present, and future. Genetics in
medicine : official journal of the American College of Medical Genetics. 2013; 15(10):761–
771.10.1038/gim.2013.72 [PubMed: 23743551]

3. Phenotype Knowledgebase (PheKB). [Accessed May 6, 2014] 2014. http://www.phekb.org/

4. Pathak J, Bailey KR, Beebe CE, Bethard S, Carrell DC, Chen PJ, Dligach D, Endle CM, Hart LA,
Haug PJ, Huff SM, Kaggal VC, Li D, Liu H, Marchant K, Masanz J, Miller T, Oniki TA, Palmer M,
Peterson KJ, Rea S, Savova GK, Stancl CR, Sohn S, Solbrig HR, Suesse DB, Tao C, Taylor DP,
Westberg L, Wu S, Zhuo N, Chute CG. Normalization and standardization of electronic health
records for high-throughput phenotyping: the SHARPn consortium. Journal of the American
Medical Informatics Association : JAMIA. 2013; 20(e2):e341–348.10.1136/amiajnl-2013-001939
[PubMed: 24190931]

5. El Fadly A, Rance B, Lucas N, Mead C, Chatellier G, Lastic PY, Jaulent MC, Daniel C. Integrating
clinical research with the Healthcare Enterprise: from the RE-USE project to the EHR4CR platform.
Journal of biomedical informatics. 2011; 44(Suppl 1):S94–102.10.1016/j.jbi.2011.07.007 [PubMed:
21888989]

6. EHR4CR. [Accessed May 30, 2014] EHR4CR: Electronic Health Records for Clinical Research.
2014. http://www.ehr4cr.eu/

7. Bowton E, Field JR, Wang S, Schildcrout JS, Van Driest SL, Delaney JT, Cowan J, Weeke P,
Mosley JD, Wells QS, Karnes JH, Shaffer C, Peterson JF, Denny JC, Roden DM, Pulley JM.
Biobanks and Electronic Medical Records: Enabling Cost-Effective Research. Science Translational
Medicine. 2014; 6(234):234cm233.10.1126/scitranslmed.3008604

8. Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research
applications and clinical care. Nat Rev Genet. 2012; 13(6):395–405. [PubMed: 22549152]

9. Denny JC. Chapter 13: Mining electronic health records in the genomics era. PLoS computational
biology. 2012; 8(12):e1002823.10.1371/journal.pcbi.1002823 [PubMed: 23300414]

10. Kohane IS. Using electronic health records to drive discovery in disease genomics. Nat Rev Genet.
2011; 12(6):417–428.10.1038/nrg2999 [PubMed: 21587298]

Rasmussen Page 8

J Cardiovasc Transl Res. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.phekb.org
http://www.phekb.org/
http://www.ehr4cr.eu/


11. Weiner MG, Lyman JA, Murphy S, Weiner M. Electronic health records: high-quality electronic
data for higher-quality clinical research. Informatics in primary care. 2007; 15(2):121–127.

12. Hershberger RE. Cardiovascular Genetic Medicine: Evolving Concepts, Rationale, and
Implementation. Journal of cardiovascular translational research. 2008; 1:137–143. [PubMed:
20559908]

13. Boyd AD, Li JJ, Burton MD, Jonen M, Gardeux V, Achour I, Luo RQ, Zenku I, Bahroos N, Brown
SB, Vanden Hoek T, Lussier YA. The discriminatory cost of ICD-10-CM transition between
clinical specialties: metrics, case study, and mitigating tools. Journal of the American Medical
Informatics Association. 2013

14. Shivade C, Raghavan P, Fosler-Lussier E, Embi PJ, Elhadad N, Johnson SB, Lai AM. A review of
approaches to identifying patient phenotype cohorts using electronic health records. Journal of the
American Medical Informatics Association : JAMIA. 2014; 21(2):221–230.10.1136/
amiajnl-2013-001935 [PubMed: 24201027]

15. Thompson WK, Rasmussen LV, Pacheco JA, Peissig PL, Denny JC, Kho AN, Miller A, Pathak J.
An evaluation of the NQF Quality Data Model for representing Electronic Health Record driven
phenotyping algorithms. AMIA Annual Symposium proceedings / AMIA Symposium AMIA
Symposium. 2012; 2012:911–920. [PubMed: 23304366]

16. Walsh SH. The clinician's perspective on electronic health records and how they can affect patient
care. BMJ (Clinical research ed). 2004; 328(7449):1184–1187.10.1136/bmj.328.7449.1184

17. Fernando B, Kalra D, Morrison Z, Byrne E, Sheikh A. Benefits and risks of structuring and/or
coding the presenting patient history in the electronic health record: systematic review. BMJ
Quality & Safety. 201210.1136/bmjqs-2011-000450

18. Rasmussen LV, Peissig PL, McCarty CA, Starren J. Development of an optical character
recognition pipeline for handwritten form fields from an electronic health record. Journal of the
American Medical Informatics Association : JAMIA. 2012; 19(e1):e90–95.10.1136/
amiajnl-2011-000182 [PubMed: 21890871]

19. Peissig PL, Rasmussen LV, Berg RL, Linneman JG, McCarty CA, Waudby C, Chen L, Denny JC,
Wilke RA, Pathak J, Carrell D, Kho AN, Starren JB. Importance of multi-modal approaches to
effectively identify cataract cases from electronic health records. Journal of the American Medical
Informatics Association : JAMIA. 2012; 19(2):225–234.10.1136/amiajnl-2011-000456 [PubMed:
22319176]

20. Denaxas SC, George J, Herrett E, Shah AD, Kalra D, Hingorani AD, Kivimaki M, Timmis AD,
Smeeth L, Hemingway H. Data resource profile: cardiovascular disease research using linked
bespoke studies and electronic health records (CALIBER). International journal of epidemiology.
2012; 41(6):1625–1638.10.1093/ije/dys188 [PubMed: 23220717]

21. Kottke TE, Baechler CJ, Parker ED. Accuracy of heart disease prevalence estimated from claims
data compared with an electronic health record. Preventing chronic disease. 2012;
9:E141.10.5888/pcd9.120009 [PubMed: 22916996]

22. Kottke TE, Baechler CJ. An algorithm that identifies coronary and heart failure events in the
electronic health record. Preventing chronic disease. 2013; 10:E29.10.5888/pcd10.120097
[PubMed: 23449283]

23. Green BB, Anderson ML, Cook AJ, Catz S, Fishman PA, McClure JB, Reid R. Using body mass
index data in the electronic health record to calculate cardiovascular risk. American journal of
preventive medicine. 2012; 42(4):342–347.10.1016/j.amepre.2011.12.009 [PubMed: 22424246]

24. Dalton AR, Bottle A, Soljak M, Okoro C, Majeed A, Millett C. The comparison of cardiovascular
risk scores using two methods of substituting missing risk factor data in patient medical records.
Informatics in primary care. 2011; 19(4):225–232.

25. Takx RAP, de Jong PA, Leiner T, Oudkerk M, de Koning HJ, Mol CP, Viergever MA, Išgum I.
Automated Coronary Artery Calcification Scoring in Non-Gated Chest CT: Agreement and
Reliability. PloS one. 2014; 9(3):e91239.10.1371/journal.pone.0091239 [PubMed: 24625525]

26. Zhong L, Zhang JM, Zhao X, Tan RS, Wan M. Automatic Localization of the Left Ventricle from
Cardiac Cine Magnetic Resonance Imaging: A New Spectrum-Based Computer-Aided Tool. PloS
one. 2014; 9(4):e92382.10.1371/journal.pone.0092382 [PubMed: 24722328]

Rasmussen Page 9

J Cardiovasc Transl Res. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



27. Hongzong S, Tao W, Xiaojun Y, Huanxiang L, Zhide H, Mancang L, BoTao F. Support vector
machines classification for discriminating coronary heart disease patients from non-coronary heart
disease. The West Indian medical journal. 2007; 56(5):451–457. [PubMed: 18303759]

28. Alty SR, Millasseau SC, Chowienczyc PJ, Jakobsson A. Cardiovascular disease prediction using
support vector machines.

29. Austin PC, Tu JV, Ho JE, Levy D, Lee DS. Using methods from the data-mining and machine-
learning literature for disease classification and prediction: a case study examining classification of
heart failure subtypes. Journal of clinical epidemiology. 2013; 66(4):398–407.10.1016/j.jclinepi.
2012.11.008 [PubMed: 23384592]

30. Denny JC, Ritchie MD, Crawford DC, Schildcrout JS, Ramirez AH, Pulley JM, Basford MA,
Masys DR, Haines JL, Roden DM. Identification of genomic predictors of atrioventricular
conduction: using electronic medical records as a tool for genome science. Circulation. 2010;
122(20):2016–2021.10.1161/circulationaha.110.948828 [PubMed: 21041692]

31. Karnik S, Tan SL, Berg B, Glurich I, Zhang J, Vidaillet HJ, Page CD, Chowdhary R. Predicting
atrial fibrillation and flutter using electronic health records. Conference proceedings : Annual
International Conference of the IEEE Engineering in Medicine and Biology Society IEEE
Engineering in Medicine and Biology Society Conference. 2012; 2012:5562–5565.10.1109/embc.
2012.6347254

32. Turner SD, Berg RL, Linneman JG, Peissig PL, Crawford DC, Denny JC, Roden DM, McCarty
CA, Ritchie MD, Wilke RA. Knowledge-driven multi-locus analysis reveals gene-gene
interactions influencing HDL cholesterol level in two independent EMR-linked biobanks. PloS
one. 2011; 6(5):e19586.10.1371/journal.pone.0019586 [PubMed: 21589926]

33. Peissig, P.; Linneman, J. [Accessed June 30, 2014] High-Density Lipoproteins (HDL). 2012. http://
phekb.org/phenotype/high-density-lipoproteins-hdl

34. Newton KM, Peissig PL, Kho AN, Bielinski SJ, Berg RL, Choudhary V, Basford M, Chute CG,
Kullo IJ, Li R, Pacheco JA, Rasmussen LV, Spangler L, Denny JC. Validation of electronic
medical record-based phenotyping algorithms: results and lessons learned from the eMERGE
network. Journal of the American Medical Informatics Association : JAMIA. 2013; 20(e1):e147–
154.10.1136/amiajnl-2012-000896 [PubMed: 23531748]

Abbreviations

CPT Current Procedural Terminology

EHR electronic health record

eMERGE electronic Medical Records and Genomics

GWAS genome-wide association study

ICD International Classification of Diseases

NLP natural language processing

QDM Quality Data Model

SHARP Strategic Health IT Research Program

SVM support vector machine

Rasmussen Page 10

J Cardiovasc Transl Res. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://phekb.org/phenotype/high-density-lipoproteins-hdl
http://phekb.org/phenotype/high-density-lipoproteins-hdl


N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Rasmussen Page 11

Table 1
Modalities of EHR data

ICD-9 - International Classification of Diseases (ICD) Ninth Revision; CPT – Current Procedural

Terminology

Modality Description Considerations for Computation Examples

Structured/discrete data Data that is stored in a
database and is easily
retrieved and
computable.

Easily computable, but may require
domain or institutional knowledge on
proper interpretation of the data.

Atrial fibrillation (AF) diagnosis code –
presence of the ICD-9 code 427.31 denotes
that AF was evaluated in the patient during
their encounter, but may be too broad as it
may include those who were evaluated but
do not truly have AF. Use of the problem
list may provide a more sensitive measure;
Bypass graft procedure code – given that
several CPT codes exist for vascular grafts,
review of the code list is needed to
ascertain the correct procedure(s) of
interest;

Text narrative Clinical prose that is
often written for human
interpretation, or may
be semi-structured
(predictable location
and format of
information).

Varying levels of difficulty to extract
information from the text. Utilizes
approaches such as regular expressions
and more advanced natural language
processing (NLP).

CT impression – typically provides the
most relevant observations from the CT
scan, which may include details not
captured in structured format, such as
measurements (“1 cm mass”), confidence
(“likely calcium buildup”), or severity
(“mild blockage”); History and physical
document – includes observations from the
review of systems (presence of tenderness,
specific heart rate measurements), onset of
symptoms and family history; Pathology
report – may provide more accurate
measurements of a surgically removed
mass;

Images High-resolution
radiological images, as
well as dermatological
photographs or even
scanned documents.
Typically stored in a
specialized ancillary
system, but lower
resolution images may
be stored directly in
EHR.

Requires more advanced approaches to
automatically identify and classify
features in the image.

CT, MRI, x-ray – radiologic images may
be re-evaluated for specific features of a
secondary mass or an incidental finding
that were not the primary focus of the
exam; Scanned admission form – as these
are stored electronically, symptoms and
onset information recorded here may not be
transcribed into a text note or a structured
format, making the scanned document the
sole source of the information;

Video Live recording of a
patient. Perhaps least
prominent, but used
extensively in some
domains (i.e. sleep
medicine).

Difficult – requires expertise in video
analysis.

Overnight sleep study – video and audio
recording of patient's movement, including
audio cues of stopped breathing (confirmed
with other measurements);
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Table 2
Analytical approaches used for EHR-based phenotyping

Approach Description Examples

Rule-based Relies on the presence of discrete data for the clinical
variables of interest. Uses combinations of Boolean and
arithmetic operators to arrive at a final phenotype
definition.

Find patients with an ECG that have no prior
ICD-9 code indicating heart failure (428.*).

Natural language processing Information extraction from narrative text. This may
involve extracting discrete pieces of data straight from
the text, or using the context and semantics of sentences,
or the document as a whole, to make a determination
about a disease state.

Identify symptoms consistent with paroxysmal
atrial fibrillation that are only recorded in a
clinical note.

Machine learning Utilizes algorithms, such as support vector machines
(SVM) and Bayesian networks, to predict and classify
phenotypes.

Given multiple clinical features (lab values,
demographics, etc.) of a training set of patients, a
SVM may use a statistical model to classify
another set of patients as having or not having
heart disease.

Image analysis Evaluates features in clinical images to make a
determination about the state of a condition or the
absence/presence of a disease.

Estimate ventricle size from a radiology image.

Hybrid Uses two or more of the other analytical approaches. Exclude those with an ICD-9 code of heart failure,
who also have no positive mention of heart failure
in a clinical note.
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