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ABSTRACT
Objective As more electronic health records have
become available during the last decade, we aimed to
uncover recent trends in use of electronically available
patient data by electronic surveillance systems for
healthcare associated infections (HAIs) and identify
consequences for system effectiveness.
Methods A systematic review of published literature
evaluating electronic HAI surveillance systems was
performed. The PubMed service was used to retrieve
publications between January 2001 and December
2011. Studies were included in the review if they
accurately described what electronic data were used and
if system effectiveness was evaluated using sensitivity,
specificity, positive predictive value, or negative
predictive value. Trends were identified by analyzing
changes in the number and types of electronic data
sources used.
Results 26 publications comprising discussions on 27
electronic systems met the eligibility criteria. Trend
analysis showed that systems use an increasing number
of data sources which are either medico-administrative
or clinical and laboratory-based data. Trends on the use
of individual types of electronic data confirmed the
paramount role of microbiology data in HAI detection,
but also showed increased use of biochemistry and
pharmacy data, and the limited adoption of clinical data
and physician narratives. System effectiveness
assessments indicate that the use of heterogeneous data
sources results in higher system sensitivity at the expense
of specificity.
Conclusions Driven by the increased availability of
electronic patient data, electronic HAI surveillance
systems use more data, making systems more sensitive
yet less specific, but also allow systems to be tailored to
the needs of healthcare institutes’ surveillance programs.

INTRODUCTION
Healthcare associated infections (HAIs) are gener-
ally recognized as a considerable threat to a patient’s
health, as they are associated with increased morbid-
ity and mortality,1–4 and increase the cost of health-
care.5–7 To decrease the rate of infection, hospitals
have adopted active surveillance programs which
have proven to be effective,8–10 but are also very
time-demanding for infection control specialists,11 12

and the results are susceptible to considerable vari-
ability.13 14 Consequentially, electronic HAI surveil-
lance systems have been developed to decrease
variability and allow infection control specialists to
focus less on infection detection and more on infec-
tion prevention.

To detect HAIs, electronic surveillance systems
utilize electronically available patient data, such as
clinical, microbiological, pharmaceutical, and admin-
istrative patient records. Over the last decade, more
types of electronic health records have become avail-
able in hospitals, providing opportunities to improve
the effectiveness of electronic HAI detection systems
in the detection of both old and new threats. We
initiated this systematic review to assess more recent
trends in electronic data usage by HAI surveillance
systems and resulting consequences for system effect-
iveness by analyzing systems created in the first
decade of the 21st century.

METHODS
Search strategies and information sources
We conducted a systematic search of published litera-
ture that evaluated electronic surveillance systems for
HAIs. Searches were conducted both electronically
and manually; we used the PubMed service to search
for publications indexed in Medline between January
1, 2001 and December 31, 2011; manual searches
were performed by scanning the bibliographies of all
eligible original research papers and systematic
reviews, as well as the authors’ personal collections.
Figure 1 shows the PubMed search query. We used
the filters ‘human’ and ‘abstract’ on all searches, and
the publication language was restricted to English.

Eligibility criteria and study selection
Included articles had to describe a system that per-
forms electronic HAI surveillance, what electronic-
ally available data sources were used by the system,
and how. Reviews were excluded, as were publica-
tions addressing modifications to already published
systems, to avoid overcounting data sources. There
were no restrictions to monitored infection types,
electronic data sources, or healthcare settings. To
evaluate the effectiveness of a system, sensitivity,
specificity, positive predictive value (PPV), or nega-
tive predictive value (NPV) either had to be stated
or could be calculated from the raw data.
Titles and abstracts were evaluated independently

by all authors to confirm an article matched the
aforementioned profile. Discrepant cases were settled
by a majority wins consensus. Relevant complete arti-
cles were retrieved and reviewed independently.

Data collection and extraction
Data were abstracted from each article to a standar-
dized Excel worksheet. JSdB reviewed all articles,
while ChS and WS each reviewed half and super-
vised the results. Collected data included patient
characteristics, hospital setting, infection types
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targeted by the system, types of electronic data sources used and
how, type of algorithms used, and overall performance mea-
sures. In case multiple values for performance measures were
reported, the value indicated as most favorable by the article
authors was extracted; if an overall performance indication was
not specified, we attempted to calculate it from the available
data, or specified a range if recalculation proved impossible. For
each article, data elements that were not confirmed by all
reviewers were discussed until a consensus was reached.

Data analysis
Discussion of publications was divided into two periods; the
first period contains all studies from 2001 to 2006 (period 1),
whereas the second period spans 2007–2011 (period 2). Based
on this partitioning, we analyzed changes in the number, type,
and category of electronic data sources used, and compared
overall system effectiveness. We also present graphical depictions
of the aforementioned statistics in 5-year sliding windows
between period 1 and period 2.

RESULTS
The aforementioned search strategy generated 431 results; 380
references were found in the electronic search, 20 in the
authors’ personal libraries, and 31 in bibliographies of reviews
and eligible research articles. After duplicate removal and review
of titles and abstracts, 85 articles were considered eligible for
further study. Fifty-five full-text articles were found by the
authors, and an additional 22 through the help of a senior
librarian. Twenty-six publications satisfied the aforementioned
eligibility criteria and were included in the review. Figure 2
shows the study flow diagram.

Electronic data types were categorized as either
medico-administrative or clinical- and laboratory-based data.
Medico-administrative data includes procedure and discharge
coding, pharmacy dispensing records, and physician narratives,
but excludes patient admission and tracking data. Clinical- and
laboratory-based data includes data on patient vital signs, as well
as biochemistry, microbiology, and radiology laboratory test
results. Data categories are eponymous to system categories that
use these data categories exclusively, while systems using data from
both categories are called mixed-data systems.

The included systems were designed for a variety of HAIs,
including surgical site infections (SSIs) and postoperative
wound infections (PWIs),15–26 urinary tract infections
(UTIs),16 20 22 25 27–30 bloodstream infections (BSIs),20 22 27–29

central venous catheter-related infections (CRIs) and central line-
associated BSIs (CLABSIs),23 27–29 31–33 pneumonias and lower
respiratory tract infections (RTIs),20 22 23 28 29 34–36 Clostridium
difficile infections (CDIs),20 37 and drain-related meningitis.38

Period 1: 2001–2006
Period 1 comprised 13 electronic HAI detection systems.
Table 1 provides an overview of all publications in period 1.

Figure 1 The PubMed search query for electronic
healthcare-associated infection surveillance systems.

Figure 2 Study selection flow diagram.
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Table 1 Electronic healthcare-associated infection surveillance systems published from 2001 to 2006

Article Study setting and size HAI types Data sources used Data description
Sensitivity
[PPV] (%)

Specificity
[NPV] (%)

Cadwallader et al15 Adult teaching hospital, 510
procedures

SSI Procedure and discharge codes ICD-9-CM codes 88 [95.6] 99.8

Yokoe et al 200116 HMO, 2746 female patients SSI, UTI, PWI Procedure and discharge codes; pharmacy
dispensing records

ICD-9-CM and, COSTAR codes; antimicrobial exposure 96 [40] 99

Bouam et al27 Teaching hospital, 548 samples UTI, BSI, CRI Microbiology laboratory results Positive blood, urine or CVC cultures 91 [88] 91 [93]
Moro and Morsillo17 HMO, 6158 patients SSI Procedure and discharge codes ICD-9-CM codes 20.6 99.1
Trick et al31 Teaching and community hospitals,

127 patients
CRI Microbiology laboratory results; pharmacy

dispensing records
Positive blood or wound cultures; vancomycin exposure interval 81 [62] 72 [87]

Yokoe et al18 HMO, 22 313procedures SSI Procedure and discharge codes; pharmacy
dispensing records

ICD-9-CM codes; infection-specific antimicrobial exposure intervals 93–97 [33–38] –

Spolaore et al19 Acute care hospitals, 865 cases SSI Procedure and discharge codes; microbiology
laboratory results

ICD-9-CM codes; positive wound and drainage cultures [97] –

Mendonça et al34 Acute care and community
hospitals, 1688 neonates

Pneumonia Radiology results Free text radiology reports 71 [7.5] 99

Leth and Møller22 Teaching hospital, 1129 patients UTI, BSI,
pneumonia, SSI

Pharmacy dispensing records; microbiology
laboratory results; biochemistry laboratory results

Antimicrobial exposure; positive blood, urine, wound and drainage
cultures; abnormal leukocyte counts and CRP values

94 [21] 47 [98]

Brossette et al20 Tertiary teaching and community
hospitals, 907 patients

UTI, BSI, RTI,
CDI, PWI

Microbiology laboratory results Positive blood, urine, sputum and wound cultures, serology,
molecular tests

86 98.4

Sherman et al23 Academic tertiary care pediatric
hospital, 1072 cases

CRI, VAP, SSI Procedure and discharge codes ICD-9-CM codes 61 [20] 96 [99]

Pokorny et al39 Acute care teaching hospital, 1043
patients

Not specified Procedure and discharge codes; pharmacy
dispensing records; microbiology laboratory results

ICD-9-CM codes; antimicrobial exposure; positive cultures 94.3 [55.9] 83.6 [98.5]

Chalfine et al21 Tertiary care hospital, 766 patients SSI Microbiology laboratory results Positive cultures 84.3 [96.4] 99.9 [99.4]

BSI, bloodstream infection; CDI, Clostridium difficile-related infection; COSTAR, computerized stored ambulatory records; CRI, CVC-related infection; CRP, C reactive protein; CVC, central venous catheter; HAI, healthcare-associated infection; HMO, health
maintenance organization; ICD-9-CM, International Classification of Diseases 9th revision, clinical modification; NPV, negative predictive value; PPV, positive predictive value; PWI, postoperative wound infection; RTI, respiratory tract infection; SSI,
surgical site infection; UTI, urinary tract infection; VAP, ventilator-associated pneumonia.
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Clinical- and laboratory-based systems
Bouam et al27 discussed a knowledge-based approach to identify
a variety of HAIs using a series of computer programs to extract
positive blood, urine, or catheter culture results. The system
achieved a sensitivity and specificity of 91%, outperforming the
concurrently performed ward-based surveillance. A similar
search strategy including serology and molecular test results as
well as a rule base for the exclusion of samples likely associated
with specimen contamination and non-infected clinical states
was discussed by Brossette et al.20 The system missed seven
infections (sensitivity 86%) and generated 14 false positives
(specificity 98.4%). Chalfine et al21 discussed a combination of
automatic positive culture recognition for surgical site speci-
mens, and manual confirmation of results by surgeons. Despite
the manual confirmation, the sensitivity (84.3%) was not higher
than the aforementioned automated approaches. Mendonça
et al34 reported on a natural language processing system that
analyses free-text radiology results for infection indications to
detect hospital-acquired pneumonias among neonates. The
resulting system was very specific (99.9%), and showed decent
sensitivity (71%), but very poor PPV (7.5%) due to 61 false
positives.

Medico-administrative-based systems
Cadwallader et al15 discussed an SSI detection method that
searches patient records for selected procedure- and infection-
specific International Classification of Diseases 9th revision, clin-
ical modification (ICD-9-CM) discharge codes, which yielded
high sensitivity (88%), specificity (99.8%), and PPV (95.6%).
However, both Moro and Morsillo17 and Sherman et al23

report lower sensitivities (respectively, 62% and 20.6%) with
similar search strategies, despite using more comprehensive col-
lections of ICD-9-CM codes.

Yokoe et al16 describe a method which used procedure and
discharge codes and pharmacy records for selected drug types as
input for univariate data analysis to select postpartum infection
predictors. These predictors served as input for a predictive
logistic regression model, which achieved 96% sensitivity and
99% specificity. A rule-based system analyzing the individual
and collective effectiveness of procedure-specific intervals of
antimicrobial drug treatment and ICD-9-CM codes to detect a
variety of SSIs was described in Yokoe et al,18 and yielded sensi-
tivities of 93–97%, depending on the infection site.

Mixed-data systems
Trick et al31 described a rule-based classification system which
uses positive culture results and vancomycin exposure to detect
central venous CRIs. The system sequentially classifies potential
infections as either hospital- or community-acquired, infection
or contamination, and as primary or secondary infections,
excluding cases with each failed classification. The automated
system yielded good sensitivity (81%) and decent specificity
(72%); a semi-automated version with manual catheter deter-
mination increased specificity to 90%. Spolaore et al9 analyzed
the effectiveness of infection-associated ICD-9-CM discharge
codes and positive wound and drainage cultures for tracking
suspected SSIs. Where detection using individual data types was
moderately effective (PPV: 70% for both types), the combin-
ation yielded excellent PPV (97%). A similar study on the effect-
iveness of positive microbiology cultures, recorded antibiotic
therapy, and ICD-9-CM diagnostic codes was performed by
Pokorny et al.39 The authors found that a combination of two
criteria resulted in the most satisfactory sensitivity (94.3%) and

specificity (83.6%). Finally, Leth and Møller22described a
system that used biochemistry test results for leukocyte counts
and C reactive protein (CRP) levels, positive blood, urine,
wound, or drainage cultures, and recorded antimicrobial drug
administration to identify a variety of HAIs. The combination of
all data types proved most sensitive (94%), but not very specific
(47%); when also considering community-acquired infections,
the system showed good sensitivity, specificity, PPV, and NPV
for all infection sites.22

Period 2: 2007–2011
Period 2 comprises 14 electronic HAI detection systems dis-
cussed in 13 publications. An overview of all publications in
period 2 is shown in table 2.

Clinical- and laboratory-based systems
Bellini et al described a multi-phase classification algorithm
similar to that of Trick et al using positive blood and catheter cul-
tures to classify CRIs and BSIs, and discussed improvement strat-
egies on pathogen inclusion. After combining data for both CRIs
and BSIs, we calculated overall system sensitivity at 89.7%.33

Woeltje et al discussed a rule-based system that was meant to
augment manual surveillance of CLABSIs, and therefore opti-
mized the system’s NPV. Various rules were constructed and eval-
uated, some including antimicrobial treatment and patient vital
signs, but a rule using only positive blood culture results yielded
the most satisfactory NPV (99.2%) and specificity (68%).32

Klompas et al35 described a system to identify ventilator-
associated pneumonia cases in intensive care units (ICUs).
Suspected cases are systematically excluded by analyzing chest
radiograph results, abnormal leukocyte counts, the presence of
fever, Gram stain results of respiratory secretion samples, and
sustained increases in ventilator gas exchange. Although a true
gold standard was lacking, all identified suspected cases were
confirmed by infection control experts (sensitivity: 95%; PPV:
100%). Another ICU-based system is described by Koller et al.28

The system combined positive cultures, abnormal leukocyte
counts and CRP levels, and patient vital signs in a knowledge
base using fuzzy sets and logic. The system showed good out-
comes for all performance metrics, having missed only three of
21 cases and reporting no false positives. Finally, Choudhuri
et al discussed a multi-phase rule-based classification system for
the detection of catheter-associated UTIs using positive micro-
biology results, the presence of fever and catheters, and urinaly-
sis results. The system showed good sensitivity (86.4%) and
specificity (93.8%).30

Medico-administrative-based systems
Shaklee et al discussed a system to automatically detect CDI in
children. While trying a variety of data sources including micro-
biology and antibiotic treatment records, the best sensitivity was
achieved using only ICD-9-CM codes (sensitivity 80.7%; specifi-
city 99.9%).37 Bouzbid et al reviewed two different methods for
detecting a variety of HAIs, one using natural language processing
on electronic hospital discharge summaries created by a medical
epidemiologist through the manual data extraction of patient vital
signs, antibiotic or antifungal prescriptions, and positive micro-
biology reports. Though only used on a small subset of the study
population, the method showed the highest sensitivity/specificity
ratio (sensitivity 86.7%; specificity 88.2%).29

Bolon et al reviewed the effectiveness of rules using
ICD-9-CM codes and infection-specific antimicrobial exposure
during index and rehospitalization to track infections after
arthroplastic hip and knee procedures. They found that
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Table 2 Electronic healthcare-associated infection surveillance systems published from 2007 to 2011

Article Study setting and size HAI types Data sources used Data description Sensitivity [PPV] (%)
Specificity
[NPV] (%)

Bellini et al33 University hospital, 669
episodes

BSI, CRI Microbiology results Positive blood and CVC cultures 89.7* 83.9*

Klompas et al35 Academic hospital, 459 patients VAP Microbiology results; biochemistry results;
radiology results;
clinical patient data

Gram stains of excretion samples; abnormal leukocyte count;
radiological signs of pneumonia; PEEP and FiO2 values,
presence of fever

95 [100] –

Woeltje et al32 Tertiary care academic hospital,
540 patients

CRI Microbiology results Positive wound, urine or respiratory device cultures 94.3 [22.8] 68 [99.2]

Claridge et al36 Level I trauma center, 769
patients

VAP Pharmacy dispensing records;
microbiology results;
clinical patient data

Antimicrobial treatment records, positive cultures, patient vital signs
and presence of devices

97 [100] 100 [99.9]

Bolon et al24 HMO, 6322 procedures SSI Procedure and discharge codes; pharmacy
dispensing records

ICD-9-CM codes; Antimicrobial administration with an
infection-specific interval

86–93 [25–39] –

Leth et al25 Community hospitals, 1512
women

SSI, UTI Procedure and discharge codes; pharmacy
dispensing records; microbiology results

ICD-10 and NCSP codes; ATC codes for antimicrobial administration;
positive urine or wound cultures

74* [81.7*] 99.4* [99.3*]

Koller et al28 Tertiary care and teaching
hospital, 99 patients

UTI, BSI, CRI,
pneumonia

Microbiology results; biochemistry results;
clinical patient data

Positive cultures; Abnormal leukocyte count or CRP values; Clinical
data from a patient data management system

90.3 [100] 100 [95.8]

Shaklee et al37 Pediatric hospitals, 119 patients CDI Procedure and discharge codes ICD-9-CM codes 80.7 [73.95] 99.9 [99.9]
Inacio et al26 HMO, 42 173 procedures SSI Procedure and discharge codes; physician

narratives
ICD-9-CM codes; standardized postoperative forms 97.8 [11] 91.5 [100]

Bouzbid et al29 University hospital, 1499
patients

UTI, BSI, CRI
pneumonia

System 1
physician narratives
System 2
pharmacy dispensing records; microbiology
results

Electronic discharge summaries

ATC codes for antimicrobial administration; positive cultures of
non-common skin contaminants

86.7

99.3 [34.7]

88.2

56.8 [99.7]

Choudhuri et al30 University affiliated urban
teaching hospital, 136 patients

Catheter-associated
UTI

Microbiology results; biochemistry results;
clinical patient data

Positive cultures; presence of fever and urinary tracts; abnormal
leukocyte count

86.4 [85] 93.8 [94.4]

van Mourik et al38 Tertiary healthcare centre, 537
patients

Drain-related
meningitis

Pharmacy dispensing records; microbiology
results; biochemistry results

Number and exposure time of antimicrobial drugs; positive
cerebrospinal fluid and drain cultures; abnormal leukocyte and CRP
values

98.8 [56.9] 87.9 [99.9]

Chang et al40 Academic teaching medical
center, 476 patients

Device-related Procedure and discharge codes; pharmacy
dispensing records

ICD-9-CM codes; administration of steroids 92.4–96.6 [70.6–79.1] 86.0–91.5
[97.2–98.7]

*Indicates that metrics were (re-)calculated from data provided in the publication.
ATC, Anatomical Therapeutic Chemical; BSI, bloodstream infection; CRI, CVC-related infection; CRP, C reactive protein; CVC, central venous catheter; HAI, healthcare-associated infection; HMO, health maintenance organization; ICD-9-CM, International
Classification of Diseases 9th revision, clinical modification; NCSP, NOMESCO Classification of Surgical Procedures; NPV, negative predictive value; PEEP, positive end-expiratory pressure; PPV, positive predictive value; SSI, surgical site infection; UTI,
urinary tract infection; VAP, ventilator-associated pneumonia.
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combining both data sources resulted in high sensitivity (86–
93%) but poor PPV (25–39%) for both infection sites.24 Chang
et al also used combinations of ICD-9-CM codes and steroid
and chemo treatment indications as inputs for a predictive logis-
tic regression model to uncover parameter sets significant to
device-related HAIs. These parameter sets also served as inputs
to an artificial neural network. Using all available parameters,
the neural network proved more sensitive (96.6%), while the
regression model was more specific (91.5%).40 A semi-
automated method requiring a manual confirmation step to
detect SSIs was introduced by Inacio et al.26 Electronic health
records were scanned for relevant ICD-9-CM codes, while sim-
ultaneously standardized surgical reports pertaining information
on all surgical procedures were searched for infection-related
terms. Positive outcomes for either search strategy were com-
bined and manually verified by infection control experts, which
achieved excellent sensitivity (97.8%) and high specificity
(91.5%).

Mixed-data systems
The second method discussed in Bouzbid et al analyzed the
effectiveness of positive blood cultures, anatomical therapeutic
chemical (ATC) codes for systemic antibiotic exposure, and
ICD-10 codes. After an exhaustive review of all combinations,
using either microbiology or antibiotic prescription produced
the best sensitivity (99.3%), at the expense of specificity and
PPV (respectively, 56.8% and 34.7%).29 Leth et al25 described a
system to detect in-hospital and post-discharge PWIs and UTIs
using sets of procedure and discharge codes, infection-specific
ATC codes, and positive urine or wound cultures. After combin-
ing data from all contingency tables, the system showed overall
sensitivity of 74% and specificity of 99.4%, although it is worth
noting that in-house infection detection was more effective than
post-discharge detection.25 Claridge et al evaluated a system
that detects ventilator-associated pneumonia in ICU patients
using positive microbiology results, patient vital signs and
recorded use of ventilators, and data on current antibiotic treat-
ments. The resulting combination was highly accurate

(sensitivity 97%; specificity 100%).36 Finally, van Mourik et al
analyzed the effectiveness of a logistic regression model for
drain-related meningitis, thereby using positive drain cultures,
abnormal biochemical blood and drain-related values, and the
number and exposure intervals of antibiotics as input. The
resulting predictive model yielded excellent sensitivity (98.8%)
and high specificity (87.9%).38

Data trends
The average number of data sources used by electronic HAI
detection systems rose from 1.62 per system in period 1 to 2.21
in period 2. The 5-year trend movement (figure 3) showed that
until recently, systems used clinical- and laboratory-based data
more often than medico-administrative-based data. The figure
also shows that about one-third of all systems between period 1
and period 2 depended on both data types.

Trends in the use of different data types (figure 4) showed
that microbiology data use has increased over the last decade
and is the most frequently used data type in electronic HAI
detection systems; a modest increase in the use of pharmacy
data and a substantial increase in the use of biochemistry data
were also detected. Period 2 also saw the introduction of
systems using clinical data such as patient vital signs, and more
recently modest attempts at the use of electronic physician nar-
ratives. In contrast, substantially fewer systems have used diag-
nostic and treatment codes over the last decade; approximately
one-third of all systems use this type of data. Systems using radi-
ology data remain a rare occurrence, though the frequency of
use remained unchanged.

Figure 5 shows a comparison between the two periods for all
performance metrics. For sensitivity, PPV, and NPV, results are
generally better in period 2, while systems in period 1 achieve
better specificity. The figure also shows that for all except PPV,
variability between systems in period 2 is lower. The receiver
operating characteristic graph in figure 6 shows the sensitivity/
specificity ratio for all systems that reported on sensitivity and
specificity for both periods. Systems for which multiple per-
formance metrics were reported are depicted as ranges. The

Figure 3 Distribution of systems
using only clinical- and
laboratory-based data,
medico-administrative data, or both
(mixed data) in 5-year sliding periods
between 2001 and 2011.
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graph shows that more recent systems sacrifice specificity to
achieve a high sensitivity.

DISCUSSION
This review showed the developments in availability and use of
electronic data in the electronic detection of HAIs during the first
decade of the 21st century, and how these developments influ-
enced detection effectiveness. The benefits of electronic
surveillance have often been addressed; some studies indicated
that surveillance rules are complex and open to subjective
interpretation,27 35 causing considerable variability in manual
surveillance results, both within and between healthcare

institutes.24 34 41 Electronic surveillance systems lack variability as
they consistently apply surveillance definitions23 24 31 35; studies
that directly compared electronic and manual surveillance per-
formance showed that electronic surveillance achieves equal or
better sensitivity than manual surveillance.11 15 18 20 24 27 31 36

Several studies also reported time savings of 60–99.9%,20 21 27 28

or a reduction in chart reviews of 40–90.5%.26 29 32 38

Despite the reported successes of electronic surveillance, only
eight systems (25%) were used in clinical routine.20 21 26–28 30 34 36

A survey among the authors (response rate 67%) revealed an add-
itional two systems used in clinical routine.11 32 Reasons mentioned
for not adopting methods in clinical or organizational routine were

Figure 5 Per-metric performance
comparisons between systems
published in 2001–2006 (period 1)
and in 2007–2011 (period 2). For each
performance metric, period 1 is plotted
on the left, and period 2 on the right.
PPV, positive predictive value; NPV,
negative predictive value.

Figure 4 Frequency of use for each
data source type in 5-year periods
between 2001 and 2011.
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a lack of resources to manage technical challenges, unfavorable
results of the system, and that systems were used for research only.

The increase in the number of data sources used by electronic
HAI detection systems is driven by an overall increase in avail-
ability of electronic health records and the need for more data
sources to increase system accuracy.42 Several systems reported
on potential improvements if more patient data were electronic-
ally available27 31 33 34; other studies found combining data
sources can considerably improve the effectiveness of a
system.18 22 29 39

The frequent use of microbiology data can be explained by its
high electronic availability in hospitals and its clinical importance
and effectiveness in predicting HAIs.32 Several studies suggest that
the percentage of culture-negative infections is 5–20%, depending
on infection site,38 43 44 which corresponds well with the sensitiv-
ities of reviewed systems based on microbiology data.20 21 27 33 39

The effectiveness of microbiology data in surveillance depends on
the proportion of suspected HAIs for which a microbiology
culture is performed,21 which limits its use in SSI and PWI surveil-
lance where a relatively small number of specimens are evaluated
due to a patient’s short postoperative length of stay.18 45 This limi-
tation is reflected in this study; out of 12 systems that detect SSIs
for various infection sites, only five used microbiology data (42%).

Studies on the effectiveness of diagnostic and procedure code
data in HAI detection produced inconclusive results, which could
explain its decline in use over the last decade. Multiple studies
showed that diagnostic codes data was a weak indicator for
HAIs.17 23 46 47 Sherman et al provide several reasons for the
decreased performance, stating that codes were not assigned by
clinicians and therefore do not make use of all available clinical
data, and that codes were not designed to differentiate HAIs from
community-acquired infections.23 Several studies also found high
variability and inaccuracy in the use of billing codes both within
and between healthcare institutes.19 24 46 More recent studies
stated that the use of ICD-9-CM codes can result in high sensitiv-
ity and specificity rates, and that limitations in sensitivity are likely
caused using a small number of codes.24 26 37

HAI detection using antimicrobial drug administration records
results in great sensitivity, but only moderate specificity.18 22 24 29 48

Antimicrobial drugs are often used for purposes other than infec-
tion treatment, such as postoperative prophylaxis, and for some
procedures the patient population is too heterogenic to be an
effective predictor by itself.21 32 39 Systems that used pharmacy
data in combination with other data sources have shown excellent
sensitivity while retaining a reasonable specificity by addressing the
aforementioned problems in a variety of ways, such as introducing
infection-specific filters on the number, types, or exposure of anti-
biotics used.18 22 25 32 36 38 However, screening strategies based on
pharmacy data need to be evaluated periodically because of chan-
ging antimicrobial subscribing practices.24

Several of the more recently introduced systems have used
biochemical indicators of infection such as leukopenia, leucocyt-
osis, and elevated levels of CRP,22 38 patient vital signs such as
the presence of fever or a rise in ventilator gas exchange,32 or
both.28 30 35 A possible explanation could be an increased elec-
tronic availability of these types of data combined with their
clinical importance in the detection of HAIs, as many of these
signs have been linked to HAIs and adopted in surveillance pro-
grams.49 50 Two studies indicated that the rules or knowledge
base were designed to closely resemble established HAI detec-
tion rules.28 35 However, systems that used patient vital signs
were limited to the ICU setting due to the frequent usage of
clinical monitoring systems and devices in this setting.28 32 35

Radiology data is rarely used because of its limited applicability
and low electronic availability. In established surveillance pro-
grams, radiology results are primarily used for the detection of
pneumonia.49 50 We reviewed six systems that were designed to
detect hospital-acquired pneumonia, but only two used electronic-
ally available radiology data34 35; Leth and Møller22 also discussed
the use and effectiveness of radiology data in predicting pneumo-
nia, but radiology results were not used in the HAI-specific predic-
tion model. The electronic format of radiology reports can also
hinder its application; the analysis of electronically available free-
text reports is a difficult task, which requires a supporting frame-
work in order to be used effectively.34

Using physician narratives is the most recent trend in data
usage, though several other studies already indicated its poten-
tial for electronic surveillance improvement.22 25 31 The effect-
iveness of documentation for infection detection depends on its
comprehensiveness. Inacio et al26 used a relatively simple search
strategy on surgical reports containing operation details, which
identified only five additional cases of HAI that had not been
identified by the ICD-9-CM search strategy. In contrast,
Bouzbid et al used more comprehensive discharge summaries
containing clinical and pharmacy data, as well as microbiology
laboratory results, and the resulting system showed the best
sensibility/specificity ratio compared to other approaches
taken.29 The type of documentation used influences system
effectiveness as well; according to a recent study, discharge sum-
maries contain the most information on infections missed by
electronic surveillance, and electronic SSI detection would have
the most benefit of using treatment reports.51

Due to the heterogenic study settings, patient populations,
targeted infections, and performance indication of studies dis-
cussed in this review it was not possible to make a uniform com-
parison of all systems. However, figure 5 showed that in
general, more recent systems achieved higher sensitivity and
NPV but lower specificity; all performance metrics showed less
variation for systems in period 2 as well. When analyzing the
relationship between sensitivity and specificity for systems,
figure 6 showed that more recent electronic HAI detection
systems show a bias towards a higher sensitivity at the expense
of specificity; several studies in period 2 also explicitly state a
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Figure 6 The receiver operating characteristic graph for systems
published in 2001–2006 (period 1) and in 2007–2011 (period 2).
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preference for a higher sensitivity at the expense of specificity,
or report on the method configuration which yields the highest
sensitivity.26 29 38

This study has several limitations. First, the search was only
done with PubMed, which may have limited the number of
possible suitable publications; the review was based on 26 publi-
cations comprising discussions on 27 systems, which might be
considered a low number compared to other reviews.
Furthermore, eight publications were published in journals and
proceedings for which no subscription was available and could
not be obtained through other institutes; we are aware this
could have biased the trends that we described. Finally, although
a number of variations in search term have been used for com-
pleteness, publications focusing on specific types of HAIs may
have been missed. For this reason, we added wound infection to
the search terms, since very little publications were initially
found on this subject. Consequentially, a bias towards SSIs and
PWIs could have been introduced.

Several other reviews focused on electronic HAI surveillance
systems. Leal and Laupland52 wrote a review on the validity of
electronic HAI detection systems compared to manual surveil-
lance techniques. The review discussed 24 articles and used the
same system categories as we did, but did not make a distinction
between systems using one or multiple data sources. A very
recent review by Freeman et al53 also reports on advances made
in electronic HAI surveillance in the 21st century and conse-
quently shares many of the studies we evaluated. The review dis-
cussed 44 studies and focused on the utility of electronic HAI
surveillance systems, thereby analyzing system effectiveness in
the detection of different infection types. Though the review
discussed more studies, several of their reviewed systems are in
fact duplicates, and the review only differentiates between
systems that do and do not use microbiology results. In this
review we took a more comprehensive data-oriented approach
that differentiated systems both in the number and types of data
sources used for electronic detection. Furthermore, we focused
on how changes in data use affected the performance of systems
over the last decade, and provided detailed information on what
information was used from individual data sources.

In conclusion, electronic HAI detection systems use increas-
ingly more electronic health records and patient data as more
data sources become available. As a result, systems tend to
become more sensitive but less specific, though the increased
availability allows systems to be configured and adapted in such
a way that it can claim its own niche within a healthcare insti-
tute’s surveillance program, leaving more time for infection
control specialists to spend on infection prevention, and less on
infection detection.
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