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ABSTRACT
Objective Pathology reports are rich in narrative
statements that encode a complex web of relations
among medical concepts. These relations are routinely
used by doctors to reason on diagnoses, but often
require hand-crafted rules or supervised learning to
extract into prespecified forms for computational disease
modeling. We aim to automatically capture relations
from narrative text without supervision.
Methods We design a novel framework that translates
sentences into graph representations, automatically
mines sentence subgraphs, reduces redundancy in mined
subgraphs, and automatically generates subgraph
features for subsequent classification tasks. To ensure
meaningful interpretations over the sentence graphs, we
use the Unified Medical Language System Metathesaurus
to map token subsequences to concepts, and in turn
sentence graph nodes. We test our system with multiple
lymphoma classification tasks that together mimic the
differential diagnosis by a pathologist. To this end, we
prevent our classifiers from looking at explicit mentions
or synonyms of lymphomas in the text.
Results and Conclusions We compare our system
with three baseline classifiers using standard n-grams,
full MetaMap concepts, and filtered MetaMap concepts.
Our system achieves high F-measures on multiple binary
classifications of lymphoma (Burkitt lymphoma, 0.8;
diffuse large B-cell lymphoma, 0.909; follicular
lymphoma, 0.84; Hodgkin lymphoma, 0.912).
Significance tests show that our system outperforms all
three baselines. Moreover, feature analysis identifies
subgraph features that contribute to improved
performance; these features agree with the state-of-the-art
knowledge about lymphoma classification. We also
highlight how these unsupervised relation features may
provide meaningful insights into lymphoma classification.

INTRODUCTION
The differential diagnosis of lymphoid malignancies
has long been a difficult task and a source of
debates for pathologists and clinicians.1–4 To stand-
ardize knowledge into a widely accepted guideline,
the WHO published a consensus lymphoma classifi-
cation in 2001,5 which was revised in 2008.6 Even
with the full spectrum of clinical and genetic fea-
tures used in this guideline, uncertainty persists in
pathologists’ daily practice.7 8 Since its original
publication, several case series and reviews of
lymphoma have suggested refinements to the
current classification scheme and additional lymph-
oma subtypes.9–13 Facing this ongoing need for peri-
odic revision, the current approach to revise the
WHO classification presents several challenges. First,
the review process took more than 1 year, involving
an eight-member steering committee and over 130

pathologists and hematologists worldwide6; hence
it is a time-consuming and labor-intensive task.
Moreover, the cases covered for revision considera-
tions are subject to selection bias from different
studies. These challenges motivated us to build an
interpretable lymphoma classification model to auto-
mate the case review process in a systematic way.
Many medical natural language processing (NLP)

systems aim to extract medical problems from text
to identify patient cohorts for clinical studies.14–19

They rely heavily on mentions and synonyms of
the targeted problems. In contrast, we exclude all
mentions and synonyms of lymphomas. The aim is
to prevent oracles from telling the system the true
lymphoma type and to mimic the differential diag-
nosis, with the pathology reports as proxies for
related laboratory results and tests. The automatic-
ally built diagnostic models are intended to assist
with expert review, and thus it is necessary not
only to achieve high accuracy, but also to retain
interpretable features.

RELATED WORK
Some of the advances in the state-of-the-art specia-
lized clinical NLP systems for identifying medical
problems have been documented in challenge
workshops such as the yearly i2b2 (Informatics for
Integrating Biology to the Bedside) workshops,
which have attracted international teams to address
successive shared classification tasks. The first such
challenge focused in part on identifying the
smoking status of patients.17 Features used by the
successful teams included mentioned medical
entities, n-grams (up to trigrams), part-of-speech
(POS) tags, and challenge-specific regular expres-
sions, dictionaries, and assertion classification rules.
Feature-engineering details contributed significantly
among the best performing systems.20–22 In a later
challenge, recognizing obesity and its 15 comorbid-
ities,19 the top four systems employed heavier
feature engineering on hand-crafted rules which
integrated ‘disease-specific, non-preventive medica-
tions and their brand names’,23 disease-related pro-
cedures,24 and disease-specific symptoms.25 26

However, task-specific rules and regular expressions
to capture medical concepts and relations are
usually subdomain-specific and hard to generalize.
In contrast, standard linguistic features such as
n-grams are difficult to interpret—the selected
n-grams may not be meaningful.
General clinical NLP systems such as cTAKES15

and MetaMap16 can extract negation-classified27

medical concepts. Besides negations, they specify
few additional relations. Other systems apply hand-
crafted rules to extract prespecified semantic rela-
tions, such as MedLEE,28 MedEx,29 and
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SemRep,30 or require supervised learning on prespecified
semantic relations, such as those stated by Uzuner et al,31 and
thus are hard to adapt to new subdomains. The value of syntac-
tic parsing in concept and relation extraction has also been
explored, such as phrase chunking in cTAKES,15 shallow
parsing with the Stanford Parser,32 short syntactic link chain
extraction in Sibanda et al,33 and Treebank building such as in
the MiPACQ corpus.34 Our work features unsupervised extrac-
tion of relations among a flexible number of medical concepts,
which produces features that both improve performance over
baselines and are more interpretable.

PROBLEM DEFINITION
Pathology reports typically record four general categories of
patient information: clinical presentation, morphology, immu-
nophenotype, and cytogenetics. Our corpus is rich in narrative
sentences that specify complex relations among medical con-
cepts. We accordingly design a sentence subgraph mining frame-
work that is suitable for capturing such relations. Using the
features generated from this framework, we performed the fol-
lowing tasks.
1. We tested the hypothesis that an automated lymphoma clas-

sifier with sentence subgraph features can outperform the
baseline classifier with standard n-gram features.

2. We tested the hypothesis that sentence subgraph features can
outperform the baselines with full or filtered medical
concept features extracted by the latest MetaMap.

3. We showed that sentence subgraph features are friendly to
interpretation and provide insights into the diagnosis of
lymphoma.
To prevent classifiers from using the explicit mentions and

synonyms of the lymphoma types, we exclude phrases overlap-
ping with a Medical Subject Heading (MeSH)35 of ‘lymphoma’
or ‘leukemia’. We also exclude phrases that match a set of manu-
ally constructed patterns aiming to catch abbreviations and
synonyms of the target lymphomas that may be missed by
MeSH. Please refer to the online supplement for more details.

DATA COLLECTION
Our corpus consists of Massachusetts General Hospital (MGH)
pathology reports in the Research Patient Data Registry
(RPDR)36 database. An MGH pathology report consists of
standard and semi-standard sections as shown in figure 1.

For this project, we focused on the following four lymphomas:
diffuse large B-cell lymphoma (DLBCL; the most common
lymphoma), Burkitt lymphoma (the most aggressive lymphoma),
follicular lymphoma (the second most common lymphoma), and
Hodgkin lymphoma (the most common lymphoma in young
patients). We obtained our patient cases by having two MGH
medical oncologists and one hematopathologist review pathology
reports of patients diagnosed between 2000 and 2010, and col-
lected 1038 cases in which the written diagnosis (in the final
diagnoses section) has one or more of the four lymphomas.

METHODS
We first preprocessed our corpus using sentence breaking, toke-
nization, and POS tagging, with customizations to medical
corpora. We then performed a two-phase sentence-parsing step,
grouping token subsequences that match concept unique identi-
fiers (CUIs) in the Unified Medical Language System (UMLS)
Metathesaurus16 as parsing units to Stanford Parser instead of
individual tokens. For the UMLS CUI matching, we experimen-
ted with the entire set or subsets of CUIs and chose the follow-
ing approach, which balances the coverage and accuracy on our

data. If the token subsequence had only one CUI match, this
CUI was used. If the token subsequence had multiple CUI
matches, we selected the one supported by the most sources. If
there was a tie, we preferred the CUI supported by Systematized
Nomenclature of Medicine—Clinical Terms (SNOMED CT)37 if
there was one, or flipped a coin otherwise. For Stanford Parser,
we chose the lexicalized parser. We refer the reader to the
online supplement for more details, and focus on the sentence
subgraph framework.

Intuition on relations among concepts
In a corpus of pathology reports focusing on a specific disease,
certain relations among medical concepts occur frequently. For
example, figure 2 shows variations of immunohistochemistry
interpretations, which describe ‘what kind of staining’ (bold-
outline blocks) is observed with regard to ‘antibodies’ to ‘what
type of antigens’ (dash-outline blocks). The relations among
those concepts are what characterize the immunohistochemistry
results. For example, in one pathology report, ‘B lineage anti-
gens’ associate with ‘staining of most large atypical cells’, and ‘T
lineage associated antigens’ associate with ‘staining of most
small cells’. If we use only individual findings, it is difficult to
exclude the other possibilities of association. For daily path-
ology practice, important relations are likely to be repeated in
similar syntactic and semantic constructs. This motivated us to
use a graph representation to capture concepts and relations
expressed in a sentence, as well as to use frequent subgraph
mining to identify important relations encoded by sentence
subgraphs.

Representing sentence-dependency parses as graphs
In natural language, the syntactic structure of a statement often
corresponds at least approximately to the ways in which the
semantic parts may be combined to aggregate the meaning of the
overall statement.38 The two-phase sentence parsing (described in
the online supplement) produces the dependency linkage struc-
ture of a sentence. This translates naturally to a graph representa-
tion of the relations, where the nodes are concepts, and the edges
are syntactic dependencies among the concepts. We experimented
with multiple parsers, including the augmented Stanford Parser
(described in the online supplement),39 the Link Parser40 41 and
the ClearParser.42 We chose the Stanford Parser because it pro-
duced fewer systemic errors on our corpus.

Figure 3 shows the graph representation for the example sen-
tence ‘Immunostains show the large atypical cells are strongly
positive for CD30 and negative for CD15, CD20, BOB1,
OCT2 and CD3.’ Syntactic dependencies are denoted using line
segments with labels (eg, prep_for). For each parse node
(round-corner rectangle), the text in parentheses includes the
tokens in the original sentence, connected by hyphens (eg,
‘atypical-cells’). The text above the parentheses displays the pre-
ferred name of the node’s CUI (eg, CD20_Antigens for
C0054946). For determiners, we exclude common functional
determiners such as ‘a’, ‘an’ and ‘the’, but keep the semantically
meaningful ones such as ‘no’ and ‘all’.

The Stanford Parser supports various parsing modes. We also
chose the mode with ‘collapsed dependencies with propagation
of conjunct dependencies’,43 which has the most compact graph
translations. With this mode, possible cyclic graphs can arise in
the dependency linkages, such as the cycle in the middle of
figure 3.

In order to increase the accuracy of the sentence graph repre-
sentations, we performed post-processing on the Stanford
dependency parsing results. The main observation is that a list
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of immunologic factors often poses a parsing challenge as in the
sentence, ‘Most interstitial lymphocytes are CD3 positive T-cells
with fewer CD20 and PAX5 positive B-cells’. Even if all the
POS tags are correctly assigned, the parser still has difficulty in
determining that ‘CD20’ and ‘PAX5’ are both connected to
‘positive’. The key idea is to treat such a list as one token in the
parsing. We refer the reader to the online supplement for details
and discussions on parse post-processing.

Frequent subgraph mining
Frequent subgraph mining is based on the notion of graph subi-
somorphism. Intuitively, one graph is subisomorphic to another
graph if it is part of the other. Formally, let Gs=(Vs, Es, ls) and
G=(V, E, l) be two graphs, where V (Vs) is the set of nodes, E
(Es) is the set of edges, and l (ls) is the labeling function for

nodes and edges. For Gs to be subisomorphic to G, the follow-
ing conditions must be met: there exists a one-to-one mapping f
such that:
1. f(Vs) ! Vm , V; st: 8v [ Vs; lsðvÞ ¼ lðfðvÞÞ
2. ∀v1, v2∈Vs, if (v1, v2)∈Es, then (f (v1), f (v2))∈E and ls (v1,

v2)=l (f(v1), f(v2))
Condition 1 says that there exists a mapping from nodes in

Gs to a subset of nodes in G, such that corresponding nodes
agree on their labels. Condition 2 says that each edge in Gs

should also have a counterpart in G that shares the same label.
Figure 4 shows two example subgraphs of the sentence graph in
figure 3.

We say that a subgraph occurs once in a corpus every time it
is subisomorphic to a graph in that corpus. The frequency of a
subgraph is the total number of its occurrences within the

Figure 1 Massachusetts General Hospital pathology reports usually contain four sections with almost all information retained as narrative text.
Clinical data, the first section, include patient age, medical history, and ongoing treatment procedures, etc. The second section, morphology and
immunohistochemistry, describes cellular structural alterations appearing under a light microscope aided by a variety of dyes, some of which are
conjugated to cell-specific antibodies. The third section is on flow cytometry, which describes the characteristic expression of various surface
antigens on cells. The individual or combined percentages of antigens (eg, CD20, CD5 and CD10) are reported. Also reported are pathologists’
interpretations, which characterize these numbers (eg, + (ie, positive) or − (ie, negative)) relative to reference values. The fourth section is on
cytogenetics, which records the presence of chromosomal aberrations such as translocations, insertions, and deletions, in the form of a ‘karyotype’
using a standardized nomenclature55 that is not natural language processing friendly. However, the accompanying ‘interpretation’ section describes
these aberrations in narrative text. Dates and age etc are replaced with realistic surrogates for deidentification.
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corpus. Frequent subgraph mining tries to identify those sub-
graphs whose frequencies are above a given threshold. Various
graph encodings, enumeration strategies, and search pruning
policies have been proposed to improve the efficiency of the
mining algorithms.44 45 In this work, we used the open-source
frequent subgraph miner, Gaston,46 which has state-of-the-art
speed.

Pruning redundant subgraphs
We ran Gaston on our training dataset with 17 186 sentences,
with a frequency threshold of 5, and obtained 180 863 frequent
subgraphs. Analyzing these subgraphs, we found that many
smaller subgraphs are subisomorphic to other larger frequent
subgraphs. Many of these larger subgraphs have the same fre-
quencies as their subisomorphic smaller subgraphs. This arises
when a larger subgraph is frequent; all of its subgraphs also
become frequent. Furthermore, if the smaller subgraph is so
unique that it is not subisomorphic to any other larger sub-
graph, then this pair of larger and smaller subgraphs shares
identical frequency. Therefore, we only kept the larger sub-
graphs in such pairs. Note that it is cost prohibitive to perform
a full pairwise check because the subisomorphism comparison
between two subgraphs is already nondeterministic polynomial
time (NP)-complete,46 and a pairwise approach would ask for

around 16 billion such comparisons for our dataset. We devel-
oped an efficient algorithm using hierarchical hash partitioning
that reduces the number of subgraph pairs to compare by
several orders of magnitude. The key idea is that we only need
to compare subgraphs that differ in size by one, and we can
further partition the subgraphs so that only those within the
same partition need be compared. We refer the reader to the
online supplement for technical details of this algorithm. After
pruning redundant subgraphs, we are left with 9935 subgraphs.

Single-node frequent subgraph collection
Gaston only collects frequent subgraphs with two or more
nodes. Because our token subsequence grouping may group all
tokens within a short sentence into one node if they are covered
by one CUI, such nodes would be ignored by Gaston. We do
not want to exclude the possibility that sometimes the presence
of a meaningful medical concept in the text can be informative.
We thus also collected single-node subgraphs using the same fre-
quency threshold 5 as for multinode frequent subgraphs, adding
1602 single-node subgraphs (11 537total).

EXPERIMENTS AND RESULTS
For each patient case, we used the written diagnosis (in the final
diagnoses section of the pathology reports) as the ground truth

Figure 2 A variety of sentences frequently occurring in our corpus describe the relations among cells, staining, and antigens/antibodies. Dash-
outline blocks indicate ‘what type of antigens’; bold-outline blocks indicate ‘what kind of staining’.

Figure 3 Constructing the sentence
graph from the results of two-phase
dependency parsing.
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label. A patient may have multiple lymphomas at the same time,
or the diagnosis may be an intermediate case between multiple
lymphomas. Given the relatively small numbers of multiple-hit/
intermediate cases as shown in table 1, we modeled the classifi-
cation task as multiple binary classification problems, one for
each lymphoma. For the ground truth, the positive cases for one
lymphoma type also include the multiple-hit/intermediate cases
involving this type. The negative cases of one lymphoma type
include positive cases of the other three types, except for
multiple-hit/intermediate cases involving this type. Our task
resembles the differential diagnosis of four lymphomas, assum-
ing that every patient in the selected population has at least one
lymphoma. By splitting the dataset randomly into halves, strati-
fied by type of lymphoma, we obtained a training set and a
testing set, whose statistics are in table 2.

In our experiments, we trained three baseline classifiers on
different feature types. Baseline 1 uses negation-classified
medical concepts extracted by the latest Metamap.16 Baseline 2
further filters the concepts in baseline 1 based on UMLS seman-
tic types reported in previous studies to show good performance
for medical problem extraction.47 48 In addition to previously
used semantic categories of diseases and symptoms, we also
included semantic types that fall under the hierarchy of
‘Chemical’ and ‘Anatomical Structure’ as our pathology reports
largely concern the immunological factors and various types of
lymphocytes. Baseline 3 uses the standard n-gram features,49

including unigrams, bigrams, and trigrams, which have been
reported to be most useful for document classification.50 We
experimented with multiple machine learning algorithms includ-
ing support vector machine (SVM), decision trees, and Bayesian
networks. We chose SVM for its better performance on our
training data and its widely acknowledged generalizability. We
experimented with polynomials up to degree five and radial

basis functions as candidate kernels. We performed tenfold
cross-validation on training data for parameter selection and
evaluated the trained model on the held-out test dataset. Of
note, cross-validation favored a linear kernel for all the settings
in our experiment.

Table 3 shows the evaluation results on the subgraph features
for each of the four lymphoma categories in comparison with
the three baselines. The evaluation metrics include standard pre-
cision, recall, F-measure, and area under the receiver operating
characteristic curve. It is clear that full MetaMap features out-
perform filtered MetaMap features. Thus we performed signifi-
cance tests comparing the subgraph features with the full
MetaMap features and with the n-gram features. We used the
approximate randomization test51 to assess whether two system
outputs were significantly different from each other (p=0.05),
and the statistically significant changes in table 3 are marked.
We see improvements on precision, recall, and F-measure across
all four lymphomas compared with either baseline. For Burkitt
lymphoma, all improvements are significant. For DLBCL, the
improvement in recall over n-grams is not significant. For fol-
licular lymphoma, all improvements over n-gram are significant;
the improvement in recall over MetaMap is significant. For
Hodgkin lymphoma, all improvements are significant except for
the recall compared with n-gram features. Overall, the sentence
subgraph features significantly outperform all three baselines.

We also assessed the effect of parse post-processing and the
effect of detailed dependency types on the performance of sen-
tence subgraph features. Table 4 shows different configurations

Figure 4 Example subgraphs for the
sentence graph in figure 3.

Table 1 Multiple-hit or intermediate lymphoma cases

Type No of cases Percentage*

Intermediate between Burkitt and DLBCL 18 1.7
Intermediate between Burkitt and follicular 2 0.2
Double-hit of DLBCL and follicular 42 4.0
Intermediate between DLBCL and Hodgkin 7 0.7

*Out of a total of 1038 cases.
DLBCL, diffuse large B-cell lymphoma.

Table 2 Distribution of lymphoma cases in full corpus, training
corpus, and testing corpus

Full corpus Training corpus Testing corpus

Lymphoma N P P % N P P % N P P %

Burkitt 946 93 9.0 500 55 9.9 446 38 7.9
DLBCL 383 656 63.2 210 345 62.2 173 311 64.4
Follicular 811 228 22.0 425 130 23.4 386 98 20.3
Hodgkin 908 131 12.6 486 69 12.4 422 62 12.8

Note that in the full corpus, the number of positive cases does not add up to 1038
(the total number of patients); this is because there are patients with diagnoses for
multiple/intermediate lymphomas.
DLBCL, diffuse large B-cell lymphoma; N, number of the negative patients; P, number
of positive patients; P %, percentage of the positive patients.
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in separate panels, in which ‘untyped dependency’ means that
all dependencies are treated equally. Vertical comparisons show
that post-processing in general helps to improve classification
performance, with the exception of Burkitt lymphoma classifica-
tion when the system uses typed dependencies. Horizontal com-
parisons show that distinguishing dependency types in general
does not improve classification performance. In particular, with
post-processing, untyped dependencies even help to improve
the F-measures for Burkitt, DLBCL, and follicular lymphoma
classifications. There are two possible reasons. First, the
Stanford Parser dependency types may distinguish relations

between concepts in unnecessary detail. For example, the partial
sentences ‘B-cells with CD10 expression’
(B-cells �!prep withexpression�!amodCD10) and ‘B-cells expressing
CD10’ (B-cells �!partmodexpressing �!dobj CD10) have different syn-
tactic parses but convey almost the same information to patholo-
gists. In addition, parser errors during dependency type
assignment could introduce noise, which diminishes the useful-
ness of the dependency types.

FEATURE AND ERROR ANALYSIS
This section investigates the ability of a sentence subgraph to
assist with human review by providing insightful relations over a
flexible number of medical concepts. The sentence subgraph
features outperform all three baselines, and n-gram seems to be
the best baseline overall. A closer look at the MetaMap baseline
shows that the program did not identify some important
immunologic factors, such as CD30, CD15 etc. By contrast,
n-gram features cover the entire text, but often do not map to
medical concepts. To compare subgraph features with the base-
lines, we identified in the training corpus cases that are false
negatives for the n-gram baseline and the MetaMap baseline but
not for the sentence subgraph features during cross-validation.
We then identified the big subgraphs (≥3 nodes), which contrib-
ute to the improved recognition of the three minority lymph-
omas, by choosing those with a normalized weight above 0.01
as assigned by a linear kernel SVM. For Burkitt lymphoma,
examples of interesting positive factors include:

bf1 ‘… with antibodies to immunoglobulin, … there is monotypic … kappa
staining of most tumor cells … ’

bf2 ‘… b-cells … negative for BCL2 … positive for BCL6 …’

bf3 ‘… CD19+, CD20+, CD10+, CD5−, CD23−, CD43+ … B cells with
monotypic expression of kappa light chain … ’

bf4 ‘ … tumor cell is positive for CD10 …’

For readability, we translated each subgraph into a partial sen-
tence. Note that in bf3, although we have listed ‘CD19+, CD20+,
CD10+, CD5−, CD23−, CD43+’ in order, when viewed in the
subgraph, individual immunologic factors are all adjective modi-
fiers of ‘B cells’, hence the subgraph is order ignorant. The
factors bf1, bf2, bf3, and bf4 are consistent with immunopheno-
typic characteristics of Burkitt lymphoma in the WHO classifica-
tion,6 which states that the tumor cells are light-chain-restricted
with moderate to strong expression of pan-B-cell (CD19,

Table 3 Held-out test results on different feature groups

Lymphoma Full MetaMap* (3112) Filtered MetaMap (1600) n-gram† (16 326) Sentence subgraph (11 537)

class P R F AUC P R F AUC P R F AUC P R F AUC

Burkitt-N 0.965 0.978 0.971 0.778 0.959 0.989 0.973 0.744 0.969 0.984 0.977 0.808 0.978 0.991 0.984 0.864
Burkitt-P 0.688 0.579 0.629 0.778 0.792 0.5 0.613 0.744 0.774 0.632 0.696 0.808 0.875*† 0.737*† 0.8*† 0.864
DLBCL-N 0.703 0.634 0.667 0.743 0.714 0.523 0.604 0.704 0.829 0.703 0.761 0.812 0.87 0.779 0.822 0.857
DLBCL-P 0.808 0.852 0.829 0.743 0.77 0.884 0.823 0.704 0.849 0.92 0.883 0.812 0.884*† 0.936* 0.909*† 0.857
Follicular-N 0.933 0.974 0.953 0.849 0.939 0.953 0.946 0.854 0.932 0.958 0.945 0.841 0.952 0.971 0.961 0.889
Follicular-P 0.877 0.724 0.793 0.849 0.804 0.755 0.779 0.854 0.816 0.724 0.768 0.841 0.878† 0.806*† 0.84† 0.889
Hodgkin-N 0.963 0.995 0.979 0.869 0.952 0.988 0.97 0.825 0.97 0.988 0.979 0.889 0.977 1 0.988 0.919
Hodgkin-P 0.958 0.742 0.836 0.869 0.891 0.661 0.759 0.825 0.907 0.79 0.845 0.889 1*† 0.839* 0.912*† 0.919

In the lymphoma class column, suffix ‘-N’ denotes negative cases and ‘-P’ denotes positive cases. P, precision; R, recall; F, F-measure; AUC, area under the receiver operating
characteristic curve. Numbers in parentheses next to each feature group indicate the number of features in that group. Evaluation metrics for each positive class are in bold if they show
significant improvements over baselines. Markers (*†) are used to indicate specific baselines.
DLBCL, diffuse large B-cell lymphoma.

Table 4 Held-out test results on different settings of sentence
subgraph feature groups

Lymphoma No post-processing, typed
dependency (7491)

No post-processing, untyped
dependency (8548)

class P R F AUC P R F AUC

Burkitt-N 0.978 0.984 0.981 0.861 0.978 0.984 0.981 0.861
Burkitt-P 0.8 0.737 0.767 0.861 0.8 0.737 0.767 0.861
DLBCL-N 0.819 0.762 0.789 0.834 0.868 0.767 0.815 0.852
DLBCL-P 0.873 0.907 0.890 0.834 0.879 0.936 0.907 0.852
Follicular-N 0.942 0.971 0.957 0.868 0.937 0.971 0.954 0.858
Follicular-P 0.872 0.765 0.815 0.868 0.869 0.745 0.802 0.858
Hodgkin-N 0.977 0.990 0.983 0.915 0.974 0.993 0.984 0.908
Hodgkin-P 0.929 0.829 0.881 0.915 0.944 0.823 0.879 0.908

Lymphoma Post-processing, typed
dependency (9488)

Post-processing, untyped
dependency (11 537)

class P R F AUC P R F AUC

Burkitt-N 0.969 0.989 0.979 0.810 0.978 0.991 0.984 0.864
Burkitt-P 0.828 0.632 0.716 0.810 0.875 0.737 0.8 0.864
DLBCL-N 0.86 0.75 0.801 0.841 0.87 0.779 0.822 0.857
DLBCL-P 0.871 0.932 0.901 0.841 0.884 0.936 0.909 0.857
Follicular-N 0.943 0.979 0.961 0.872 0.952 0.971 0.961 0.889

Follicular-P 0.904 0.765 0.829 0.872 0.878 0.806 0.84 0.889
Hodgkin-N 0.979 0.998 0.988 0.926 0.977 1 0.988 0.919
Hodgkin-P 0.981 0.855 0.914 0.926 1 0.839 0.912 0.919

In the lymphoma class column, suffix ‘-N’ denotes negative cases and ‘-P’ denotes
positive cases. P, precision; R, recall; F, F-measure; AUC, area under the receiver
operating characteristic curve. Numbers in parentheses next to each feature group
indicate the number of features in that group.
DLBCL, diffuse large B-cell lymphoma.
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CD20) and germinal center (BCL6 and CD10) antigens, and are
negative for CD5 and CD23.

For follicular lymphoma, examples of positive factors that are
exclusively discovered by sentence subgraph features are as
follows. The factors ff1, ff2, and ff3 are consistent with table
8.01 in Swerdlow et al,6 as CD10 is usually positive and CD23
is intermittently positive on B cells in follicular lymphoma.

ff1 ‘… CD20+, CD10dim, CD5−, CD23− … B cells ...’
ff2 ‘… CD20+, CD10dim, CD5−, CD43− … B cells ...’
ff3 ‘… CD19+, CD20+, CD23+ … B cells with … expression of lambda light

chain …’

One might think that Hodgkin lymphoma cases should be
easy to classify because of the presence of Reed–Sternberg cells
as a well-recognized diagnostic feature. However, our analysis
shows that the paucity of neoplastic Reed–Sternberg cells and
the predominance of non-neoplastic cells lead to interesting
associations between sentence subgraphs and Hodgkin lymph-
oma. In particular, we found the following positive factors dis-
covered by sentence subgraph features.

hf1 ‘… atypical large cells … positive for … CD30 …’

hf2 ‘… with antibodies to B lineage … antigens … there is staining of many …
cells …’

hf3 ‘… with antibodies to T lineage associated antigen … there is staining of …
cells …’

The factor hf1 links CD30-expressing atypical large cells to
Hodgkin lymphoma and conforms to conventional knowledge.6

The factors hf2 and hf3 refer to staining patterns of background
T and B cells. Although hf2 and hf3 are seen to some extent in
other lymphoma subtypes, Hodgkin lymphoma is particularly
rich in background non-neoplastic T cells, as well as B cells to a
lesser extent, and these non-neoplastic cells vastly outnumber
the neoplastic Reed–Sternberg cells.6 Together with other
Hodgkin-related subgraph features such as hf1 or Reed–
Sternberg cells, hf2 and hf3 appear to account for these non-
neoplastic cells. Our classifier placed higher weight on hf3 than
on hf2, agreeing with the aforementioned T-cell dominance. Of
note, some work has shown varying patterns of morphology
and immunophenotype in background non-neoplastic cells asso-
ciated with a certain subtype of Hodgkin lymphoma,52–54 point-
ing to the potential utility of our analysis in identifying variant
patterns of lymphoma.

Of the four lymphomas, follicular lymphoma has a moderate
number of cases but a lower F-measure than DLBCL and
Hodgkin lymphoma. We thus delved into false negative cases of
follicular lymphoma in the training data and selected common
features that have top negative weights as assigned by the linear
kernel SVM. Investigating those common features, we high-
lighted the following:

fnf1 ‘… large …’

fnf2 ‘… erythroid maturation is normal …’

fnf3 ‘… myeloid maturation is normal …’

The factor fnf1 incorrectly associates the single-node sub-
graph ‘large’ with negative classification of follicular lymphoma.
In the description of a morphological study, ‘large’ often
describes the cell size. Although the keyword corresponds to the
name of DLBCL (diffuse large B cell lymphoma), it is, however,
not a distinguishing feature, because a Hodgkin Reed–Sternberg

cell can be large, and centroblasts in follicular lymphoma can be
large. Similarly the keyword ‘diffuse’ and ‘follicular’ are also
not special to DLBCL and follicular lymphoma, respectively.
Although our model successfully excluded ‘diffuse’ from the top
negative features for follicular lymphoma, it incorrectly included
‘large’. We reason that this is because we have a majority of
DLBCL cases, which do frequently have the keyword ‘large’,
and the imbalanced ratio between DLBCL and follicular lymph-
oma confused our model. The factors fnf2 and fnf3 refer to
erythroid and myeloid maturation, respectively, which in reality
are neither positively nor negatively associated with the likeli-
hood of follicular lymphoma. We think this is identified by the
classifier because lymphoma patients often undergo a staging
bone marrow biopsy in which myeloid and erythroid maturation
are routinely assessed during the process of determining
whether the marrow is involved by lymphoma. As a result,
normal myeloid and erythroid maturation is frequently asso-
ciated with most cases. Because there are more follicular lymph-
oma cases with uninvolved staging bone marrow biopsies than
those with involved biopsies, such association could be regarded
by the classifier as favoring negative classification of follicular
lymphoma.

DISCUSSION AND FUTURE WORK
Some clinical reports are template based. In fact, our pathology
reports also have template-based sections. For example, there
are disclaimers such as ‘By his/her signature below, the patholo-
gist listed as making the Final Diagnosis certifies that he/she has
personally reviewed this case and confirmed or corrected the
diagnoses.’ We exclude these sentences from being processed as
they do not offer clinical insights. Recognition of these sections
is based on knowledge from electronic medical record vendors
about prespecified templates.

Patient demographics such as gender and age are usually men-
tioned in the clinical presentation section. They are also part of
the features captured by subgraphs. For the age features, expres-
sions such as ‘year-old’ are connected to the integers that we dis-
cretize by every 10 years. However, we did not find
demographics ranked as top-weighted features in our experi-
ments. This is likely due to the presence of more specific predic-
tors such as morphologic, immunophenotypic, and genetic
features, although we do not exclude the possibility that a better
customized discretization can yield a different outcome.

In addition, we note that different institutions may have dif-
ferent clinical documentation systems and styles, which may bring
challenges to generalizing our framework to multiple institutions.
We expect that the untyped dependencies will help mitigate some
style (eg, syntactic) differences between institutions. We also expect
that the UMLS concept mapping will lessen the impact of the ter-
minology differences between institutions. We are in fact expand-
ing the lymphoma classification project across institutions, and
generalizability analysis is part of our future work.

Our work is predicated on the assumption that pathology
reports provide a comprehensive statement of measurements,
observations, and interpretations made by pathologists. This
seems to be true of current practice, but future programs may
have access to digital images of immunohistochemical slides and
raw flow cytometry counts directly from instruments.
Nevertheless, we expect that, for the foreseeable future, pathol-
ogists’ observations and interpretations will continue to be
expressed in natural language, hence the techniques we report
here will continue to be helpful.

We expect to scale up our tool to assist with human expert
reviews and more systematically identify unique variants and new
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subcategories of lymphoma, whose recognition, diagnosis, and
acceptance into the widely used classification system is important
for patients to receive appropriate treatment and follow-up and
to further our understanding of lymphoma biology.

CONCLUSIONS
We have narrowed the gap between automatic unsupervised
feature generation and interpretable feature generation from
clinical narrative text by building a framework that can perform
unsupervised extraction of relations among a flexible number of
medical concepts. Our framework represents narrative sentences
in pathology reports as graphs, and automatically mines sen-
tence subgraphs for feature generation. We performed a lymph-
oma classification task resembling differential diagnosis, in
which no explicit mentions or synonyms of the targeted lymph-
omas are available to the classifier. Evaluation shows that the
classifier with unsupervised sentence subgraph features signifi-
cantly outperforms the baselines using standard n-grams, full
MetaMap concepts, or filtered MetaMap concepts. With
detailed feature analysis, we highlight that our system generates
meaningful features and medical insights into lymphoma
classification.

Contributors YL is the primary author and was instrumental in designing and
developing the work and performed data analyses. ARS reviewed most of the
patient cases for ground truth, provided expertise in pathology, and reviewed and
edited the manuscript. PS and EPH are the principal investigators for the grants
involving the secondary use of clinical data. PS provided expertise in machine
learning, data analysis, and reviewed and edited the manuscript. EPH also
contributed to case review for ground truth, provided expertise in pathology and
oncology, and edited the manuscript.

Funding The work described was supported in part by Grant Number
U54LM008748 from the National Library of Medicine and by the Scullen Center for
Cancer Data Analysis. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National Library of Medicine
or the National Institutes of Health.

Competing interests None.

Ethics approval The institutional review boards governing oncology care at the
Massachusetts General Hospital approved this study. A waiver of informed consent
was obtained.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES
1 Robb-Smith A. US National Cancer Institute working formulation of non-Hodgkin’s

lymphomas for clinical use. Lancet 1982;320:432–4.
2 Bennett M, Farrer-Brown G, Henry K, et al. Classification of non-Hodgkin’s

lymphomas. Lancet 1974;304:405–8.
3 Lukes RJ, Collins RD. Immunologic characterization of human malignant

lymphomas. Cancer 1974;34:1488–503.
4 Rappaport H. Tumors of the hematopoietic system. Armed Forces Institute of

Pathology, 1966.
5 Jaffe ES, Harris NL, Stein H, Vardiman J, eds. WHO classification of tumours.

Pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC
Press, 2001.

6 Swerdlow SH, Campo E, Harris NL, et al, eds. WHO classification of tumours of
haematopoietic and lymphoid tissues. IARC Press, 2008.

7 Turner J, Hughes A, Kricker A, et al. Use of the WHO lymphoma classification in a
population-based epidemiological study. Ann Oncol 2004;15:631–7.

8 Clarke CA, Glaser SL, Dorfman RF, et al. Expert review of non-Hodgkin’s
lymphomas in a population-based cancer registry reliability of diagnosis and subtype
classifications. Cancer Epidemiol Biomarkers Prev 2004;13:138–43.

9 Snuderl M, Kolman OK, Chen Y-B, et al. B-cell lymphomas with concurrent
IGH-BCL2 and MYC rearrangements are aggressive neoplasms with clinical and
pathologic features distinct from Burkitt lymphoma and diffuse large B-cell
lymphoma. Am J Surg Pathol 2010;34:327–40.

10 Gruver AM, Huba MA, Dogan A, et al. Fibrin-associated large B-cell lymphoma:
part of the spectrum of Cardiac lymphomas. Am J Surg Pathol 2012;36:
1527–37.

11 Savage KJ, Harris NL, Vose JM, et al. ALK- anaplastic large-cell lymphoma is
clinically and immunophenotypically different from both ALK+ ALCL and peripheral

T-cell lymphoma, not otherwise specified: report from the International Peripheral
T-Cell Lymphoma Project. Blood 2008;111:5496–504.

12 Hsi E, Singleton T, Swinnen L, et al. Mucosa-associated lymphoid tissue-type
lymphomas occurring in post-transplantation patients. Am J Surg Pathol
2000;24:100–6.

13 Ferry JA, Sohani AR, Longtine JA, et al. HHV8-positive, EBV-positive Hodgkin
lymphoma-like large B-cell lymphoma and HHV8-positive intravascular large B-cell
lymphoma. Mod Pathol 2009;22:618–26.

14 Liao KP, Cai T, Gainer V, et al. Electronic medical records for discovery research in
rheumatoid arthritis. Arthritis Care Res 2010;62:1120–7.

15 Savova GK, Masanz JJ, Ogren PV, et al. Mayo clinical Text Analysis and Knowledge
Extraction System (cTAKES): architecture, component evaluation and applications.
J Am Med Inform Assoc 2010;17:507–13.

16 Aronson AR. Effective Mapping of Biomedical Text to the UMLS Metathesaurus: The
MetaMap Program. AMIA Annu Symp Proc 2001;2001:17–21.

17 Uzuner Ö, Goldstein I, Luo Y, et al. Identifying patient smoking status from medical
discharge records. J Am Med Inform Assoc 2008;15:14–24.

18 Uzuner Ö, Luo Y, Szolovits P. Evaluating the state-of-the-art in automatic
de-identification. J Am Med Inform Assoc 2007;14:550–63.

19 Uzuner Ö. Recognizing obesity and comorbidities in sparse data. J Am Med Inform
Assoc 2009;16:561–70.

20 Cohen AM. Five-way smoking status classification using text hot-spot
identification and error-correcting output codes. J Am Med Inform Assoc
2008;15:32–5.

21 Aramaki E, Imai T, Miyo K, et al. Patient status classification by using rule based
sentence extraction and BM25 kNN-based classifier. i2b2 Workshop on Challenges
in Natural Language Processing for Clinical Data, 2006.

22 Clark C, Good K, Jezierny L, et al. Identifying smokers with a medical extraction
system. J Am Med Inform Assoc 2008;15:36–9.

23 Solt I, Tikk D, Gál V, et al. Semantic classification of diseases in discharge
summaries using a context-aware rule-based classifier. J Am Med Inform Assoc
2009;16:580–4.

24 Farkas R, Szarvas G, Hegedűs I, et al. Semi-automated construction of decision
rules to predict morbidities from clinical texts. J Am Med Inform Assoc
2009;16:601–5.

25 Childs LC, Enelow R, Simonsen L, et al. Description of a rule-based system for the
i2b2 challenge in natural language processing for clinical data. J Am Med Inform
Assoc 2009;16:571–5.

26 Ware H, Mullett CJ, Jagannathan V. Natural language processing framework to
assess clinical conditions. J Am Med Inform Assoc 2009;16:585–9.

27 Chapman WW, Bridewell W, Hanbury P, et al. A simple algorithm for identifying
negated findings and diseases in discharge summaries. J Biomed Inform
2001;34:301–10.

28 Hristovski D, Friedman C, Rindflesch TC, et al. Exploiting semantic relations for
literature-based discovery. AMIA Annu Symp Proc 2006;2006:349–53.

29 Xu H, Stenner SP, Doan S, et al. MedEx: a medication information extraction system
for clinical narratives. J Am Med Inform Assoc 2010;17:19–24.

30 Rindflesch TC, Fiszman M. The interaction of domain knowledge and linguistic
structure in natural language processing: interpreting hypernymic propositions in
biomedical text. J Biomed Inform 2003;36:462–77.

31 Uzuner O, Mailoa J, Ryan R, et al. Semantic relations for problem-oriented medical
records. Artif Intell Med 2010;50:63–73.

32 Huang Y, Lowe HJ, Klein D, et al. Improved identification of noun phrases in clinical
radiology reports using a high-performance statistical natural language parser
augmented with the UMLS specialist lexicon. J Am Med Inform Assoc
2005;12:275–85.

33 Sibanda T, He T, Szolovits P, et al. Syntactically-informed semantic category
recognizer for discharge summaries. AMIA Annu Symp Proc 2006;2006:
714–18.

34 Albright D, Lanfranchi A, Fredriksen A, et al. Towards comprehensive syntactic
and semantic annotations of the clinical narrative. J Am Med Inform Assoc
2013;20:922–30.

35 National Library of Medicine. MeSH. http://www.ncbi.nlm.nih.gov/mesh
36 Partners Healthcare. RPDR. http://rc.partners.org/rpdr
37 IHTSDO. SNOMED CT. http://www.ihtsdo.org/snomed-ct/
38 De Marneffe M-C, MacCartney B, Manning CD. Generating typed dependency

parses from phrase structure parses. Proceedings of LREC, 2006, vol. 6,
449–54.

39 Stanford NLP. Stanford Parser. http://nlp.stanford.edu:8080/parser/
40 Sleator DD, Temperley D. “Parsing English with a link grammar,” arXiv preprint

cmp-lg/9508004, 1995.
41 AbiWord. Link Parser. http://www.abisource.com/projects/link-grammar/
42 Choi JD, Palmer M. Getting the Most out of Transition-based Dependency Parsing.

ACL (Short Papers), 2011:687–92.
43 De Marneffe M-C, Manning CD. Stanford typed dependencies manual. 2008.
44 Chi Y, Muntz RR, Nijssen S, et al. Frequent subtree mining-an overview.

Fundamenta Informaticae 2005;66:161–98.

Luo Y, et al. J Am Med Inform Assoc 2014;21:824–832. doi:10.1136/amiajnl-2013-002443 831

Research and applications

http://www.ncbi.nlm.nih.gov/mesh
http://www.ncbi.nlm.nih.gov/mesh
http://rc.partners.org/rpdr
http://rc.partners.org/rpdr
http://www.ihtsdo.org/snomed-ct/
http://www.ihtsdo.org/snomed-ct/
http://www.ihtsdo.org/snomed-ct/
http://nlp.stanford.edu:8080/parser/
http://nlp.stanford.edu:8080/parser/
http://www.abisource.com/projects/link-grammar/
http://www.abisource.com/projects/link-grammar/
http://www.abisource.com/projects/link-grammar/


45 Jiang C, Coenen F, Zito M. A Survey of Frequent Subgraph Mining Algorithms.
Knowledge Engineering Review, vol. (To appear:), 2013;75–105.

46 Nijssen S, Kok JN. The Gaston tool for frequent subgraph mining. Electron Notes
Theor Comput Sci 2005;127:77–87.

47 Goldstein I, Uzuner Ö. Specializing for predicting obesity and its co-morbidities.
J Biomed Inform 2009;42:873–86.

48 Long W. Extracting diagnoses from discharge summaries. AMIA Annu Symp Proc
2005;2005:470–4.

49 Cavnar WB, Trenkle JM. N-Gram-Based Text Categorization. Proceedings of SDAIR-94, 3rd
Annual Symposium on Document Analysis and Information Retrieval, 1994, pp 161–75.

50 Baeza-Yates R, Ribeiro-Neto B, et al. Modern information retrieval, vol. 463. 1999.
51 Noreen EW. Computer-intensive methods for testing hypotheses: an introduction.

Wiley, 1989.

52 Fan Z, Natkunam Y, Bair E. Characterization of variant patterns of nodular
lymphocyte predominant Hodgkin lymphoma with immunohistologic and clinical
correlation. Am J Surg Pathol 2003;27:1346–56.

53 Rahemtullah A, Reichard KK, Preffer FI, et al. A double-positive CD4+ CD8+ T-cell
population is commonly found in nodular lymphocyte predominant Hodgkin
lymphoma. Am J Clin Pathol 2006;126:805–14.

54 Sohani AR, Jaffe ES, Harris NL, et al. Nodular lymphocyte-predominant Hodgkin
lymphoma with atypical T cells: a morphologic variant mimicking peripheral T-cell
lymphoma. Am J Surg Pathol 2011;35:1666–78.

55 Shaffer LG, Tommerup N. ISCN 2013: an international system for human
cytogenetic nomenclature (2013) : recommendations of the
International Standing Committee on Human Cytogenetic Nomenclature.
Karger, 2013.

832 Luo Y, et al. J Am Med Inform Assoc 2014;21:824–832. doi:10.1136/amiajnl-2013-002443

Research and applications


