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ABSTRACT
Objective To specify the problem of patient-level
temporal aggregation from clinical text and introduce
several probabilistic methods for addressing that problem.
The patient-level perspective differs from the prevailing
natural language processing (NLP) practice of evaluating
at the term, event, sentence, document, or visit level.
Methods We utilized an existing pediatric asthma cohort
with manual annotations. After generating a basic feature
set via standard clinical NLP methods, we introduce six
methods of aggregating time-distributed features from the
document level to the patient level. These aggregation
methods are used to classify patients according to their
asthma status in two hypothetical settings: retrospective
epidemiology and clinical decision support.
Results In both settings, solid patient classification
performance was obtained with machine learning
algorithms on a number of evidence aggregation
methods, with Sum aggregation obtaining the highest F1
score of 85.71% on the retrospective epidemiological
setting, and a probability density function-based method
obtaining the highest F1 score of 74.63% on the clinical
decision support setting. Multiple techniques also
estimated the diagnosis date (index date) of asthma with
promising accuracy.
Discussion The clinical decision support setting is a
more difficult problem. We rule out some aggregation
methods rather than determining the best overall
aggregation method, since our preliminary data set
represented a practical setting in which manually
annotated data were limited.
Conclusion Results contrasted the strengths of several
aggregation algorithms in different settings. Multiple
approaches exhibited good patient classification
performance, and also predicted the timing of estimates
with reasonable accuracy.

BACKGROUND AND SIGNIFICANCE
With the rapid adoption of electronic medical
records (EMRs) and the increase of clinical text in
electronic form, clinical natural language processing
(NLP) is a pivotal research concern in the medical
informatics community. Extensive innovation has
been applied to core language-related problems like
negation detection,1 named entity recognition
(NER),2 and coreference resolution.3 4 Successful
applications of NLP techniques have ranged from
specific clinical problems like peripheral arterial
disease5 to ancillary information like smoking
status.6 Many of these applications are interested in
NLP-based inferences about whole patients and
their status at the present time. However, NLP
techniques have overwhelmingly been evaluated at
the term,7 event,8 sentence,9 document,6 or
visit,10 11 level.

In this article, we develop and evaluate techni-
ques for patient-level temporal aggregation. We do
so through the lens of text-based ascertainment of
a pediatric asthma status for clinical care and
research.12 This is medically significant because
asthma is the most common chronic illness in child-
hood, has significant comorbidities,13 14 and is
often not promptly diagnosed (or treated).15 16

The use case of pediatric asthma reveals some
interesting aspects of patient-level analysis. First,
patient-level analysis by its nature faces the chal-
lenge of time-distributed evidence—relevant infor-
mation can be distributed across multiple
documents at different time points. This is particu-
larly important for studying chronic diseases such
as asthma. Second, a patient’s status may evolve
over time, and estimates of status change can be
made. Third, clinical text is an excellent (but not
exhaustive) source of clinical information, and can
be harnessed with information extraction techni-
ques. Finally, patient-level evaluations require a
substantial amount of infrastructure and resources:
longitudinal electronic records must be both avail-
able and annotated consistently.
Note that our purpose is not to design the most

accurate system for pediatric asthma status ascertain-
ment, as in other work,12 but to provide a prelimin-
ary testbed for the novel problem of patient-level
temporal aggregation. Our evaluations explore the
temporal evolution of a patient’s health while pre-
serving the common task of patient classification.
Our previous work on the same data set12 used only
the most basic of temporal aggregation techniques
(Sum aggregation) and a different machine learning
classifier. While temporal expressions and temporal
relation extraction have been explored in clinical
NLP,17 18 they have not typically been approached
from the standpoint of patient-level temporal aggre-
gation. In contrast, structured data have been visua-
lized by systems such as LifeLines,19 KNAVE,20 and
TimeLine,21 but the data have been infrequently
integrated with NLP processing or with secondary
use problems. Furthermore, the visualization of
time-stamped observations does not solve the
problem of how disparate observations should be
weighed against each other for a given task. Another
active area of research is reasoning and inference
over the temporal events, often using ontologies or
standards such as CNTRO.8 This event-level reason-
ing is important, but different from the patient-level
status ascertainment we discuss here.
Below, we describe the problem setting, motivate

and introduce six methods for patient-level temporal
aggregation, present evaluation results, and discuss
comparisons, limitations, and the conclusions of our
work.
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MATERIALS AND METHODS
Problem setting: pediatric asthma
As context for the issue of temporal aggregation, figure 1 shows
our overall study design. We evaluated NLP-based systems (bottom
branch) against manual medical record reviews (top branch).

The gold standard asthma status was labeled according to
manual chart review as a binary 0 or 1 for each patient, following
established asthma criteria22 (see figure 2). The criteria were found
to have high inter-annotator agreement and have been extensively
used in research for asthma epidemiology.22–31 Each system or
algorithm produced an estimated asthma status that could be com-
pared to the gold standard asthma status for accuracy.

Multiple arrows in figure 1 illustrate the setting of time-
distributed evidence: namely, that each patient may have mul-
tiple documents associated with his or her medical record,
which may or may not suggest an asthma status. To capture the
temporal progression of asthma status, manual record reviews
tracked an index date, that is, the first date (document) for
which the patient should have been considered to have asthma.
Thus, non-asthmatic patients had no index date associated with
their records. To determine whether there is a delay in diagnosis
for patients who have asthma, the temporal aggregation and
patient classification step (bottom branch of figure 1) must also
produce an estimated index date—an inference as to when a
diagnosis should have occurred. Direct comparison of these
dates yields an evaluation metric of time-estimation accuracy.

We used days as the unit of time in all our analyses unless
otherwise specified. Also, the abstraction date was recorded,
indicating when the manual chart review was performed; for all
analyses, records beyond the abstraction date were excluded for
fair comparison.

NLP as feature extraction
In this work, automatic classification of patients’ asthma statuses
was done using both machine learning methods and a logic-based

method, using a limited set of features that we will describe
here.12 A filtered set of custom named entities (NEs), reflecting
the criteria of figure 2, were considered to be primary features in
the data set; NEs found in historical sections or in negated con-
texts were excluded. Thus, for a document at time t, a valid NE
was considered to be a positive binary feature f(t)=1; if an NE
was filtered out or not present at all, a binary feature f(t)=0 was
assigned to the document.

Basic processing of the clinical text was done with cTAKES
V.1.3.2. This clinical NLP tool analyzes text at the document
level, sentence level, and word (token) level; discovers grammat-
ical structure; and most importantly, finds identifiable medical
concepts in text (the task of NER). We modified cTAKES
V.1.3.2 to discover the criteria-based primary features. Variants
of the highlighted words in figure 2 were included as NEs in the
custom dictionary; we also crafted additional high-precision
long-range negation detection rules.

Note that finding some of the features using other EMR data
sources (eg, structured data from laboratories) is completely
consistent with the temporal aggregation approach to be intro-
duced. We have constrained ourselves to an NLP-based feature
extraction because of the need to resolve instances when both
structured and unstructured data are present. For example, if
structured data describe the results of a test, but clinical text
describes one the day before, should the patient get ‘credit’ for
two events? Although this problem of coreference also exists in
the text itself, we have sought to reduce the variability of timing
estimates by excluding structured data sources in this explora-
tory methodological work.

Characteristics of time-distributed evidence
Here, we typify the time-distributed evidence setting, and
analyze the temporal characteristics of patient-level data.
Consider figure 3, in which a patient will have associated clinical
documents distributed over a timeline (top). Some of these

Figure 1 Overall study design,
comparing automatic methods (NLP
+classification) to manual record
review. Multiple arrows indicate that
each patient may have more than one
document. EMR,electronic medical
record; NLP, natural language
processing.

Figure 2 Established criteria for
retrospective asthma ascertainment.
Highlighted terms were named entity
(NE) concepts that were eventually
used as primary features in
classification.
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documents have some relevant evidence in the form of binary
features, that is, f(t)=1, and some do not, that is, f(t)=0
(middle). Furthermore, given a manually annotated index date,
here 6/28/03, we can calculate the gold standard asthma status
of a patient at each point in time (bottom). In this work, we
only consider time points t at which an EMR document was
generated about a patient.

Practically speaking, we can thus infer asthma statuses at any
point in the document history (see the final column of table 1
discussed in the next section). If the same patient’s history had
been examined 2 weeks earlier on 6/13/03, documentation up
to that point would still have insufficient evidence to consider
the patient asthmatic. On 6/28/03, new information added to
the patient history allowed that patient to be classified as asth-
matic. On 7/11/03, the patient was still asthmatic, even though
there was no further evidence of asthma based on feature f(t).

Patient-level temporal aggregation methods
Here, we introduce several methods to aggregate features from
the document level to the patient level. In each aggregation
method, we re-assigned feature values FiðtÞ in place of the
primary features fi(t), and the aggregated features were used for
training and testing machine learning classifiers. After some pre-
liminary cross-validation tests comparing different classifiers in

the Weka machine learning environment, our experiments used
a simple logistic regression classifier. However, the re-assigned
temporal aggregation values are applicable to any machine
learning classifier that can handle real-valued features. For
feature i at time t, we denote fiðtÞ as the binary feature value,
FiðtÞ as the aggregated value, and sðtÞ as the manually annotated
binary asthma status.

Or aggregation
Possibly the most common (but under-examined) way to do
patient-level aggregation is to just consider all documents for a
patient at the same time. This reduces the patient-level classifica-
tion problem into a document classification problem. If any
feature is discovered in a document before the current time t, it
gets counted as having been discovered for that feature:

FðtÞ ¼ 1; if 9 t � t; f(t) ¼ 1
0; else

�

This Or operation across documents is extremely simple;
however, it is somewhat naive in that it does not consider add-
itional occurrences of a feature. Furthermore, it is sensitive to
noise, since it considers any positive feature to be persistent

Figure 3 Just as medical documents
for a patient are distributed over time,
extracted features f(t) and asthma
statuses s(t) are also distributed over
time. s(t) has been inferred as positive
for all documents after the manually
annotated index date.

Table 1 Features f(t), six different aggregation methods on the 23rd primary feature (bronchodilator use), and statuses s(t) for a set of
time-distributed documents from one de-identified patient

Date f23(t) Or Sum PDF-IN CDF PDF-NC PDF-ST s23(t)

7/23/01 0 0 0 0 0 0.96×10−3 0 0
12/5/01 0 0 0 0 0 1.25×10−3 0 0
1/5/02 0 0 0 0 0 1.32×10−3 0 0
2/10/02 1 1 1 0.58×10−3 0.396 1.39×10−3 0.482 0
3/5/02 0 1 1 0.59×10−3 0.410 1.42×10−3 0.500 0
3/18/02 1 1 2 1.17×10−3 0.813 1.43×10−3 0.991 0
11/13/02 0 1 2 0.97×10−3 1.078 1.34×10−3 1.282 0
3/4/03 0 1 2 0.87×10−3 1.180 1.34×10−3 1.354 0
3/6/03 0 1 2 0.87×10−3 1.181 1.34×10−3 1.355 0
6/13/03 0 1 2 0.79×10−3 1.263 1.37×10−3 1.415 0
6/28/03 1 1 3 1.36×10−3 1.671 1.36×10−3 1.904 1
7/11/03 0 1 3 1.36×10−3 1.688 1.36×10−3 1.921 1
9/24/03 0 1 3 1.31×10−3 1.789 1.31×10−3 2.009 1

CDF, cumulative index date.
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throughout a patient’s history, even if that feature was hedged,
mistaken, or more or less predictive over time.

Sum aggregation
Another simple strategy that is often used (eg, in our previous
work) is to count the frequency of positive features up to time
t. All previous occurrences of a feature are considered to be
accumulated evidence over the history of a patient. This
addresses one weakness of Or aggregation, because additional
evidence over time is recorded in the summed frequency count:

FðtÞ ¼
X
t�t

f(t)

Note that, similar to Or aggregation, this is not truly a temporal
aggregation method; it does not reflect when the aggregated fea-
tures happened. For example, if a patient had two bouts of
wheezing 5 years before time t, it would have the same effect as
wheezing twice in the 5 weeks just before t.

Index date probability (PDF-IN) aggregation
To account for the temporal aspect of evidence, we employed
probability density functions (PDFs) using kernel density estima-
tion, as we now describe. With conditional PDFs that specify
probabilities at time t, we can examine how the gold standard
annotations and features may be related to each other tempor-
ally. Two variations on PDF-based plots are shown in figure 4;
these are estimated using a kernel density estimator with a
Gaussian kernel, which is similar to a continuous version of a
histogram.

PDF-IN (top plot) is a PDF based on the index date for
asthma. At time t, all previous occurrences of a feature are con-
sidered, but they are weighted by how likely it is that the feature
at time t implies that the index date is at time t:

FðtÞ ¼
X
t�t

pðt� tÞ � 1(f(t) ¼ 1)

where the term pðtÞ ¼ P(index ¼ t(0)¼ 1) is the PDF and 1ð�Þ is
‘1’ when the condition is met and ‘0’ when it is not. This differs
from Sum aggregation in that the feature counts are weighted by
the index date probability.

In the top plot of figure 4, the x-axis represents time t where
a feature such as a mention of ‘Asthma’ would have been
observed at time t=0. Each line is an estimated PDF for feature
fi, answering the question: ‘We’ve observed feature fi in a
patient’s record; what is the probability that the index date will
occur t days away?’ This estimation only accounts for patients
who are, in fact, positive for asthma.

Analysis of this PDF yields some interesting characteristics.
For example, the ‘Methacholine test’ feature most likely has its
index date before the feature appears at t=0; thus, if we observe
that a methacholine test is administered to a patient, the patient
is almost sure to have already met the criteria for asthma. In
contrast, the ‘Bronchodilator’ feature has a peak and substantial
probability mass after the feature at t=0; this implies that bron-
chodilator use (with f(0)=1) commonly begins before the index
date is assessed.

Figure 4 Top: Probability density function (PDF) for index date (p(t), used in PDF-IN, CDF, and PDF-NC), as estimated by kernel density estimation
on a training set. Bottom: PDF for positive asthma status (a(t), used in PDF-ST) of non-zero primary features. CDF, cumulative index date.
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Cumulative distribution function (CDF) aggregation
While PDF-IN treats the temporal aspect of evidence aggrega-
tion, it is not clear that the probability of the index date is the
‘correct’ weighting to use. For example, in a clinical decision
support setting, it might be more relevant to estimate whether
the index date was likely to have occurred at any time before
the current time t. Thus, we define a cumulative distribution
function (CDF)-based aggregation method:

FðtÞ ¼
X
t�t

cðt� tÞ � 1ðfðtÞ ¼ 1Þ

where the weighting function cðtÞ ¼ Ð t
�1 pðtÞdt is the cumula-

tive distribution function corresponding to PDF-IN.
With a CDF, the weighting for a feature always increases over

time, since CDFs are by definition non-decreasing functions.
However, a weakness is that there may be features whose evi-
dence becomes less confident over time, rather than more confi-
dent. Consider a feature that co-occurs with asthma but does
not predict asthma long term. Having a positive feature 5 weeks
ago should be better evidence than seeing it 5 years ago, but a
CDF will always have higher weights for a feature more distant
in the past.

Positive status probability (PDF-ST) aggregation
The bottom of figure 4 is an alternative probability-based aggre-
gation method, which we term the positive status probability
(PDF-ST). This distribution compares the probability of a posi-
tive binary asthma status to that of a negative one, at a given
time t:

FðtÞ ¼
X
t�t

aðt� tÞ � 1ðf ðtÞ ¼ 1Þ

where aðtÞ ¼ P(sðtÞ ¼ 1 ð0Þ ¼ 1)and these conditional probabil-
ities are calculated as:

aðtÞ ¼ (PðsðtÞ ¼ 1; fð0Þ ¼ 1Þ)=
X

i
P(sðtÞ ¼ i; fð0Þ ¼ 1)

� �

Multiple occurrences of a feature are weighted by how likely it
is that the feature at time t implies the asthma status is positive
at time t.

This differs from PDF-IN in that it directly considers asthma
status rather than index date. Examining the bottom of figure 4,
if a ‘Methacholine test’ feature is observed, every document in
the previous 1500 days would have been considered positive for

asthma. Virtually all ‘bronchodilator’ users eventually become
asthmatic (3000 days after that feature is observed), which emu-
lates the CDF scenario of temporal feature weighting. However,
a mention of ‘asthma’ itself does not necessarily indicate that a
patient will eventually be indexed for asthma, and the PDF-ST
method accounts for this. It is estimated with all cases of posi-
tive asthma status rather than only the index date.

Because PDF-ST directly estimates the probability of the
current status, we can say that it is ‘designed’ for a clinical deci-
sion support scenario, in which the status at the current time is
all that matters (the index date is less salient). Intuitively, this
means that it may be a poorer fit to retrospective epidemiology
settings.

Non-causal index date (PDF-NC) aggregation
Here, we define non-causal index date (PDF-NC) aggregation,
which is based on the index date probability PDF-IN, but
further tailored to a retrospective epidemiology setting:

FðtÞ ¼
X
t

pðt� tÞ � 1(f ðtÞ ¼ 1)

where pðtÞ is the index date probability PDF-IN, as above. This
differs from PDF-IN in that time points t . t are considered
during aggregation. In other words, it is a non-causal aggrega-
tion using the PDF (a causal system is one in which the output
only depends on time points t � t). This is not a realistic way to
ascertain asthma status for clinical decision support, since it uses
the contribution of future features. However, it tests the hypoth-
esis that, from a retrospective vantage point, all previous evi-
dence should be used at each point in time.

A worked example of aggregation methods
To clarify the similarities and differences between the aggrega-
tion methods, consider the example in table 1 of six evidence
aggregation methods. For the 23rd feature, ‘Bronchodilator,’ for
each time t that a document is generated about a patient, F23ðtÞ
was recalculated to include the aggregated information. Recall
that f23ðtÞ is the feature value and s23ðtÞ is the asthma status at
time t.

Note that the scale of these FðtÞ values is a superficial differ-
ence that is accounted for in many classifiers, including our
implementation’s logistic regression classifier. Visually, figure 5
scales these values by their largest value, so that we can compare
the effect of each function. Gray bars show the dates on which
a ‘bronchodilator’ feature was observed, and the black bar
shows the index date.

Figure 5 Relative F(t) of aggregation
methods on the ‘bronchodilator’
primary feature.
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First, note that Or and Sum values are step functions that
only change value at the time of an observed feature, whereas
the values in PDF-related versions give some ‘partial credit’
based on a probability estimate. In particular, note the span
from the second to the third ‘bronchodilator’ features (3/18/02
to 6/28/03). The PDF-IN estimate is initially more likely to
assign positive asthma status than the Sum estimate, but this
fades over time. The CDF and PDF-ST versions both increase in
confidence about a positive diagnosis even when no additional
features are being observed. The CDF does this because its
probabilities are always increasing, while PDF-ST does this
because previous examples have shown that bronchodilator fea-
tures often result in positive asthma status at a later time point.
The PDF-NC is clearly different from the others, with the
highest value at 3/18/02 because it gets ‘partial credit’ for both
the past (2/10/02) and future (6/28/03) features.

Evaluation
Data source
As in previous work,12 our test set consisted of 112 study subjects,
children under 4 years of age who were enrolled in the Mayo
Clinic sick-child daycare program,32 33 of whom 84% were
reported to be Caucasians and 49% were female; their mean age
was 2.0 years (SD 1.03). We also retrieved ICD-9 codes (along
with dates of code assignment) for each of the patients. Despite its
small size, we used this patient population because of its practical
relevance and connections to previous epidemiological research.
For training our system, we used a different set of 125 Mayo
Clinic pediatric patients, as done previously.12 This cohort was
obtained by convenience sample from the Rochester, Minnesota
population and excluded two patients whose records were at insti-
tutions other than Mayo Clinic. The documents themselves con-
tained HL7-compliant section headings and come from multiple
clinical note types, such as admission notes and discharge summar-
ies, from many of Mayo Clinic’s service areas.

Table 2 shows some of the statistics of the training and test
data sets. While this data set is limited in size, it typifies the
setting of patient-level temporal aggregation, which is especially
relevant in a chronic disease like asthma. The use of this data
set also facilitates comparison with existing work.

Single versus multiple statuses per patient
We arranged the training and testing sets for two different
informatics problem settings: a retrospective epidemiological
setting and a clinical decision support setting.

The retrospective epidemiological setting looks at a fixed set
of patients from a specific time point (the abstraction date), and
determines the asthma status. Since there is only a single status
per patient (SSP), we will term this SSP training or classification.
A model trained on the training set would have 125 instances
(patients) to train on; testing would be done on 112 instances
(patients).

Additionally, we train and evaluate our machine learning
models for a clinical decision support setting. For each patient,
we consider every time point at which we have observed evi-
dence of clinical care (ie, a document was generated), thus gen-
erating as multiple statuses per patient. We will refer to this as
multiple statuses per patient (MSP) training or classification.
Note that this is different from document-level classification,
since each decision is made based on the patient’s full document
history up to the observation date, rather than on a single docu-
ment at that date.

To make an MSP perspective possible, we consider all docu-
ments before a gold standard index date to have negative
asthma status, and all documents after the index date to have
positive asthma status. Then, because we have an aggregation
strategy for each observation at time point t, every observation
can be classified for asthma status, and compared with this gold
standard. Thus, the training set of 125 patients would corres-
pond to 7098 instances (document histories) to train on; testing
on 112 patients would amount to 2938 instances (document
histories). Testing on MSP also allows us to record the earliest
positive asthma status as an estimated index date.

RESULTS
Retrospective epidemiological setting
In table 3, we compare the six aggregation strategies used in
machine learning patient classification against two previously
reported baselines12: ICD-9 codes (commonly used in practice)
and the logic-based patient classification scheme (direct imple-
mentation of the criteria of figure 2). The standard statistical
tests in epidemiological research are sensitivity (recall), specifi-
city, positive predictive value (precision) (PPV), and negative
predictive value (NPV) at the SSP level; as with standard NLP
evaluations, we will primarily be concerned with the F1 score.
We define these in terms of true positives (TP), false negatives
(FN), false positives (FP), and true negatives (TN):

sens ¼ TP
TPþ FN

spec ¼ TN
TNþ FP

PPV ¼ TP
TPþ FP

NPV

¼ TN
TNþ FN

F1 ¼ 2 � sens � PPV
sensþ PPV

Table 2 Training and test set statistics for the pediatric asthma
data used in this study

Training set Test set

Number of patients 125 (after excluding 2) 112 (after excluding 3)
Patients positive for asthma 28.00% (35/125) 23.21% (26/112)
Total clinical documents 7098 2938
Documents positive for asthma 23.84% (1692/5406) 20.66% (607/2331)

Table 3 Performance of various asthma ascertainment methods in
the retrospective research setting, that is, testing on single status
per patient (SSP)

SSP training

MSP
training F1

Sens.
(%)

Spec.
(%)

PPV
(%)

NPV
(%)

F1
(%)

ICD-9 codes 30.8 93.2 57.1 82.2 40.0

NLP-Logic 80.8 95.3 84.0 94.3 82.4
NLP-ML-Sum 84.62 95.35 84.62 95.35 84.62 83.33
NLP-ML-Or 57.69 95.35 78.95 88.17 66.67 74.42
NLP-ML-PDF-IN 92.31 93.02 80.00 97.56 85.71 81.63
NLP-ML-CDF 84.62 94.19 81.48 95.29 83.02 83.33
NLP-ML-PDF-ST 84.62 95.35 84.62 95.35 84.62 80.00
NLP-ML-PDF-NC 92.31 93.02 80.00 97.56 85.71 66.67

CDF, cumulative distribution function; ML,machine learning; MSP,multiple statuses per
patient; NLP, natural language processing;NPV, negative predictive value; PDF,
probability density function;PPV, positive predictive value; Sens., sensitivity; Spec.,
specificity.
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Most of the aggregation methods enable machine learning
classifiers to outperform the baseline ICD-9 codes (significant,
with p<0.05, by two-tailed paired t test). This is most likely
because ICD-9 codes and any defined primary and secondary
features are noisy, with discrepancies more easily overcome in a
machine learning algorithm. However, it is not clear whether
machine learning classifiers outperform the baseline rule-based
NLP-Logic system (increases not significant at the p< 0.05
level).

In this test, PDF-IN aggregation was the most effective in
detecting patients who have asthma, according to F1 score.
(Note that the non-causal PDF-IN aggregation method is
equivalent to causal PDF-IN aggregation for the SSP setting,
since we did not consider documents after the abstraction date.)
The PDF-IN strategy has excellent recall (92.31%), but the Sum
and PDF-ST aggregation methods have higher precision
(84.62%). The Or aggregation method is clearly less accurate
(significant at p < 0.05 compared to each other machine learn-
ing method); it likely requires too many symptoms before it will
classify a patient as positive for asthma.

In this retrospective cohort identification setting, the test is on
the SSP setting; thus the standard training data to use would be
SSP data. Because these data are limited (here, only 125 cases),
we may be interested to know whether we can utilize the MSP
perspective to expand the training set to 7098 ‘patients’ (ie, treat
each MSP as a separate patient). The final column of table 3
shows us that this is not necessarily beneficial except in the worst
classifiers (ie, Or aggregation), and perhaps overfits the data set
(eg, for 66.67% F1 for PDF-NC).

Clinical decision support setting
In table 4, we consider the clinical decision support setting, in
which we will evaluate the same patient multiple times based on
their history at each point in time (MSP testing). In this MSP
testing, we consider each time point for each patient as a separ-
ate instance in the evaluation (ie, 2938 test instances); however,
we adjust for the fact that some patients have more documents
than others. To do so, we scale TP, FN, FP, and TN counts by
the number of documents per patient Np so that each patient
contributes a proportional amount to the overall metric:

cTP ¼
X
p

TPP
NP

cFN ¼
X
p

FNP

NP

cFP ¼
X
p

FPP
NP

dTN ¼
X
p

TNP

NP

The resulting sensitivity, specificity, PPV, NPV, and F1 scores
consider each patient equally. (Note that these adjusted metrics
are equivalent to the standard metrics if the setting is SSP rather
than MSP, since the numerators are 0 or 1, and Np is 1.)

First, we notice that PPV (column 4) and F1 (column 6) are
overall lower when testing on MSP rather than on SSP. This
demonstrates that the MSP setting is more difficult overall. In
addition to the missed diagnoses and FP diagnoses that are
penalized in SSP, early or late diagnoses are penalized in MSP
evaluation.

In this setting, the most balanced strategy (according to F1) is
now PDF-ST aggregation (74.63%; p<0.001, two-tailed paired
t test compared to each other machine learning approach).
PDF-ST is a technique that considers the timing of asthma status
sðtÞ rather than the timing of the index date, so it is a good fit
for the problem of MSP classification. The PDF-IN and
PDF-NC strategies were successful in the SSP setting but are
somewhat less so here. They still have relatively good recall
(88.74% and 90.94%), but suffer in terms of precision. In par-
ticular, the non-causal version is highly likely to make early esti-
mates of asthma status (see ‘Timing estimation’ section below)
and is penalized for this. Also, the Or aggregation method again
performs poorly; the discriminating evidence in the features
appears to have been lost due to the coarse granularity of
feature representation.

Similarly to the retrospective epidemiological setting, we
sought to determine whether using MSP training data would
help alleviate the problem of a small training data set. While
precision of many of the aggregation methods improved (not
pictured), this was offset by lower recall, and the F1 scores
(column 7) of promising aggregators did not improve signifi-
cantly. This is somewhat surprising, given that the training and
testing data were from the same MSP distribution. However, on
closer examination, an MSP training set over-counts the
instances early in a patient’s timeline, and this likely adds to the
model as much noisy information as it does useful information.

Timing estimation
We characterized the timing estimation accuracy of automatic
diagnosis according to the histograms of figure 6. In these plots,
only gold standard positive asthma cases in the SSP setting are
considered; thus, they depict recall and timing, but do not
depict precision. The time 0 on the x-axis represents the index
date, and the bars indicate how many estimated index dates
were delayed by the same amount of time. In figure 5A,E, +∞
corresponds to FN (ie, true positive asthma status was never
detected), whereas in figure 5B–D, F–H, these FN are conflated
with any estimated index dates that were 20+ months after the
index date.

In figure 5A,E, it is clear that all NLP-based methods outper-
form ICD-9 codes, and that the NLP-Logic method produces a
solid timing estimate.12 The relative performance of machine
learning algorithms (figure 5B–D,F–H) depends on the aggrega-
tion method; we consider how many cases were detected within
1 month (the center bar) and the overall distribution. The
PDF-IN method is perhaps the most intriguing, in that it is
almost never delayed on a diagnosis, and detects 50.0% of posi-
tive cases within 1 month. Sum aggregation has a similar charac-
teristic, but estimates the timing later overall than PDF-IN or
NLP-Logic. PDF-ST and CDF are also similar to each other,
with PDF-ST identifying a few more cases within 1 month. The
Or aggregation method is the most distributed of the methods,
and leaves more cases undetected than NLP-Logic. While non-
causal PDF aggregation has the fewest detected 20+ months

Table 4 Performance of various aggregation methods in a clinical
decision support setting, that is, testing on multiple statuses per
patient (MSP)

SSP training
MSP
training

Sens.
(%)

Spec.
(%)

PPV
(%)

NPV
(%)

F1
(%)

F1
(%)

NLP-ML-Sum 83.03 93.69 63.99 97.61 72.28 71.62
NLP-ML-Or 49.56 81.56 26.62 92.29 34.64 65.33
NLP-ML-PDF-IN 88.74 91.52 58.55 98.37 70.55 70.40
NLP-ML-CDF 82.54 93.18 62.03 97.53 70.83 72.85
NLP-ML-PDF-ST 81.37 95.05 68.93 97.42 74.63 71.09
NLP-ML-PDF-NC 90.94 82.82 41.68 98.54 57.16 56.57

CDF, cumulative distribution function; ML, machine learning; NLP, natural language
processing; PDF, probability density function; NPV, negative predictive value; PPV,
positive predictive value; Sens., sensitivity; Spec., specificity; SSP, single status per
patient.
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late, it tends to pre-empt true index dates. This is expected,
given the fact that in a non-causal aggregation, FðtÞ values
before the index date get some weighting from events that
happen later; this always includes at least the index date and
any observations after the index date.

DISCUSSION
We have tested our aggregation methods in the applied setting
of asthma cohort discovery. We assert that this is a real-world
evaluation scenario, and better aligned with downstream retro-
spective public health studies than typical evaluations like docu-
ment classification. This does mean, though, that the presented
results are limited in scope by the size and underlying popula-
tion of the data sets that were used. Thousands of documents
seems like a reasonable size for an NLP evaluation; however,
because this corresponds to just over a hundred patients, and
only tens of positive cases, the test set is not necessarily a gener-
alizable estimate of performance.

Our results should not be interpreted as picking the best
aggregation algorithm, but as exploring and evaluating patient-
level phenomena, and perhaps eliminating a few options
(PDF-NC in the clinical decision support setting, or Or in any
setting). There are many factors to consider in choosing how to
do temporal aggregation on a given domain or problem. A rule-
based method (the baseline NLP-Logic method) may be intui-
tive, simple, and precise, but it requires an expert to develop
rules and refine them on a data set. The Sum and Or aggrega-
tion methods are essentially unsupervised, and are thus quite
simple to conceive, implement, and describe; however, there

may be settings (such as clinical decision support) in which they
are more poorly suited. For the PDF-based methods, some of
the features suffered from data sparsity, with insufficient data to
do reliable kernel estimation of the PDF. However, our results
did not clearly show a clear advantage of the unsupervised Sum
and Or aggregation methods compared to the kernel-estimated
methods, implying that feature sparsity did not occlude the con-
clusions to be drawn from our results. Rather, it is quite notable
that the extra cost in learning a PDF may pay off in the end
when such a PDF correctly models the evaluation situation, as
we noted with PDF-ST in the clinical decision support setting.

Furthermore, the set of primary features is quite limited com-
pared to a standard document classification feature set (eg,
bag-of-words, n-gram, or character-based features) or structured
data-based phenotyping algorithm.34 Even the existing primary
features could have included negated terms as contraindicating
evidence. We analyze our techniques based on the small number
of primary features because: (1) the PDF-based aggregation
methodologies we have introduced are not optimized for large
numbers of features; and (2) mirroring the explicit criteria22

aligns with the realistic future use of any NLP-discovered
cohorts in public health. In a production system, other typical
machine learning features could accompany the expert-based
features, once the dimensionality of the feature space is reduced
through feature selection.

CONCLUSION
We have specified the practical problem of patient-level temporal
aggregation from clinical text, and defined several probability-

Figure 6 Delay in diagnosis for patients with asthma. Higher bars close to 0 indicate that more asthma index dates were estimated correctly. Bars
to the left of 0 indicate early automatic diagnosis, bars to the right of 0 indicate delayed diagnosis. The ‘20+’ designation includes each system’s
false negatives.
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based evidence aggregation methods to overcome the challenge
of time-distributed evidence. Our evaluations utilized the pre-
liminary test case of EMR text-based identification of a pediatric
asthma, for which we made use of an established cohort of pedi-
atric patients. Results in both a retrospective epidemiological
setting and in a clinical decision support setting showed that
several aggregation algorithms had satisfactory patient classifica-
tion performance, and also predicted the timing of estimates
with promising accuracy.
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