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ABSTRACT
Objectives To evaluate factors affecting performance
of influenza detection, including accuracy of natural
language processing (NLP), discriminative ability of
Bayesian network (BN) classifiers, and feature selection.
Methods We derived a testing dataset of 124
influenza patients and 87 non-influenza (shigellosis)
patients. To assess NLP finding-extraction performance,
we measured the overall accuracy, recall, and precision
of Topaz and MedLEE parsers for 31 influenza-related
findings against a reference standard established by
three physician reviewers. To elucidate the relative
contribution of NLP and BN classifier to classification
performance, we compared the discriminative ability of
nine combinations of finding-extraction methods (expert,
Topaz, and MedLEE) and classifiers (one human-
parameterized BN and two machine-parameterized BNs).
To assess the effects of feature selection, we conducted
secondary analyses of discriminative ability using the
most influential findings defined by their likelihood
ratios.
Results The overall accuracy of Topaz was significantly
better than MedLEE (with post-processing) (0.78 vs
0.71, p<0.0001). Classifiers using human-annotated
findings were superior to classifiers using Topaz/MedLEE-
extracted findings (average area under the receiver
operating characteristic (AUROC): 0.75 vs 0.68,
p=0.0113), and machine-parameterized classifiers were
superior to the human-parameterized classifier (average
AUROC: 0.73 vs 0.66, p=0.0059). The classifiers using
the 17 ‘most influential’ findings were more accurate
than classifiers using all 31 subject-matter expert-
identified findings (average AUROC: 0.76>0.70,
p<0.05).
Conclusions Using a three-component evaluation
method we demonstrated how one could elucidate the
relative contributions of components under an integrated
framework. To improve classification performance, this
study encourages researchers to improve NLP accuracy,
use a machine-parameterized classifier, and apply
feature selection methods.

OBJECTIVE
This study evaluated factors affecting performance of
influenza detection, including accuracy of natural lan-
guage processing (NLP), discriminative ability of
Bayesian network (BN) classifiers, and feature selec-
tion. Utilizing free-text emergency department (ED)
medical reports as input, our influenza detection
system comprises a finding-extraction component—
the Topaz1 and MedLEE2 3 NLP parsers—and a BN
classifier. Our evaluation measured the classification
performance over different finding-extraction

methods, over different parameterizations of the
BNs, and over different sets of findings.

BACKGROUND AND SIGNIFICANCE
There is a growing interest in leveraging routinely
collected electronic health records (EHRs) for
patient cohort identification to facilitate biomedical
research.4–9 However, many cohorts—or ‘pheno-
types’—of interest are defined in part by informa-
tion that is often (though not always) recorded in
clinical notes. This constraint is especially true in
early detection of epidemics and in the elucidation
of yet-to-be-named diseases. The semi-structured
free text of clinical notes must be transformed into
structured representations prior to phenotype
detection.
The earliest attempt to leverage free-text EHR

data to detect phenotype dates to the work of
Hripcsak et al,10 who used MedLEE and a rule-
based classifier to detect tuberculosis cases from
chest radiograph reports, obtaining positive predict-
ive values (PPVs) in the range 0.03–0.96 and sensi-
tivity in the range 0.36–0.93. Aronsky and Haug
made the first use of a probabilistic classifier in con-
junction with NLP to detect community-acquired
pneumonia from data in an EHR. In that study,
which showed discriminative ability as measured by
area under the receiver operating characteristic
(AUROC) curve of 0.98,11 six findings were parsed
from clinical documents.
The combination of NLP and classification algo-

rithms have subsequently been applied to the auto-
matic detection of additional phenotypes from EHR
data, including inhalational anthrax (AUROC:
0.677),12 cataracts (PPV: 0.95),7 peripheral arterial
disease (precision: 0.67–1; recall: 0.84–1),13 and
rheumatoid arthritis (PPV: 0.94).14

Automatic influenza detection from EHR data is of
particular importance because of the threat of pan-
demic influenza. Elkin measured the discriminative
ability of an NLP parser (in the Multithreaded
Clinical Vocabulary Server system at Mayo Clinic)
and a regression classifier on Mayo Clinic records,
obtaining an AUROC=0.76415 to discriminate
between PCR or culture-positive influenza cases and
PCR or culture-negative non-influenza controls.
As part of a larger system16 17 that detects and

characterizes outbreaks in the Real-time Outbreak
and Disease Surveillance Laboratory (RODS) at
University of Pittsburgh, we developed a Bayesian
Case Detector (BCD) that uses an NLP parser to
extract the influenza-related findings from ED
reports and a BN classifier to compute the probability
that a patient has influenza given the set of NLP
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extracted findings.18 19 Tsui demonstrated high discrimination
between influenza cases and non-influenza controls drawn from a
low-influenza summer period (AUROC: 0.973; 95% CI 0.955 to
0.992).18

In this study, we evaluated the individual components along a
processing pipeline that starts with free-text ED reports and ends
with a probability estimation of the presence of influenza. These
components are an NLP parser used for extracting influenza-
related findings from free-text, a BN classifier utilized for perform-
ing probability estimation, and the findings selected for inferring
the presence of influenza.

MATERIALS AND METHODS
In this section, we describe the NLP parsers, the BN classifiers,
the testing dataset, and the experiments.

Natural language processing parsers
Topaz
Topaz was developed by Chapman, Chu, and colleagues in our
laboratory for use in influenza and shigellosis related finding
extraction from ED reports. For this reason, the output of Topaz
can be used to directly set the values of nodes in the BNs that we
studied. Topaz uses a pipeline of processing components to (1)
find and annotate targeted clinical findings, (2) determine whether
a finding is mentioned as being present or absent; historical,
recent, or hypothetical; and experienced by the patient or
someone else,20 and (3) assign a single value of ‘present’, ‘absent’,
or ‘missing’ (not mentioned) to each finding taking into account
synonyms and multiple possibly contradictory mentions of the
finding in the report. Topaz’s heuristic resolution of contradictory
mentions of a clinical finding within a report includes the follow-
ing rules: labeling a finding as ‘present’ in summary when Topaz
identified at least one positive mention in a report, labeling a
finding as ‘absent’ for a report when all mentions identified by
Topaz were negative, and labeling ‘missing’ otherwise (when it
found no mentions positive or negative).

MedLEE
MedLEE was developed by Friedman and colleagues at Columbia
University. It has a pipeline of programming components, each of
which is guided by a corresponding knowledge component such as
lexicon and grammar. MedLEE’s pre-processor component and
phrase regularization component execute tasks similar to Topaz’s
first step. MedLEE’s parser assigns element modifiers (eg, certainty,
severity) that are similar to Topaz’s second step. However, the
version (64-bit, 2012 release) of MedLEE that we used does not
resolve contradictory mentions of findings that it extracts from a
report. Since our BN classifiers require features to be ‘present’,
‘absent’, or ‘missing’ in summary, we applied Topaz’s heuristic
resolution rules to MedLEE output. In addition, we mapped some
MedLEE output, which was represented by Unified Medical
Language System Concept Unique Identifiers (UMLS CUIs) to a
few influenza-related findings without corresponding UMLS CUIs
(CUIs). For examples, we mapped C0021400 (influenza) to a ‘sus-
pected flu’ finding.

BN classifiers
A BN classifier represents probabilistic knowledge related to a
classification task in the form of an acyclic graph whose struc-
ture represents dependent and independent relationships
between random variables and a set of conditional probability
tables (CPTs). A BN structure is the set of nodes and arcs
between nodes denoting the probabilistic dependencies among
the represented variables. The set of CPTs comprises a table for

each random variable in the BN structure conditioned on its
parents. The structure and CPTs of a BN can be manually eli-
cited from an expert21 or automatically estimated from training
data by machine learning algorithms.22 23 We will refer to the
process of specifying CPTs for a BN as parameterization in the
following sections.

Three BN classifiers
To study the effects of different parameterization methods for
BN classifiers (expert, machine-parameterization) on influenza
detection performance, we created three BN classifiers that dif-
fered only in how their CPTs were determined.

Author FT and two physicians defined a simple BN structure
for all three classifiers (figure 1). They first identified a set of 31
clinical findings used by clinicians in diagnosing influenza. One
physician is a board-certified infectious disease specialist who
has over 40 years’ clinical experience and more than 5 years’
research experience in biomedical informatics.

They defined a near naïve BN, assuming that all of the
influenza-related findings were conditionally independent given
influenza status, with the exception of the ‘lab confirmed flu’
finding that depended on both influenza status and whether the
report mentioned a nasal swab order. Naïve BN has been shown
to have reasonable discriminative ability25 26 and its CPTs were
easier for physicians to estimate than CPTs of a more compli-
cated model.

Expert-defined BN classifier
Author FTelicited conditional probabilities for each finding given
its parent node(s) in the network from the infectious disease phys-
ician mentioned above. He elicited 64 conditional probabilities,
including two conditional probabilities for each of 30 nodes that
are assumed to be conditionally independent and four conditional
probabilities for the ‘lab confirmed flu’ node. For example, two
questions during elicitation for the ‘cough’ node were ‘what is the
probability that an influenza patient has cough?’ and ‘what is the
probability that a non-influenza patient has cough?’ We refer to
the resulting classifier as the expert-defined-BN classifier.

Machine-learned classifiers
We created a set of training data with which to parameterize
another two classifiers.

Training data for machine-learned classifiers
Influenza cases: We obtained 468 ED reports of PCR-positive
influenza patients from the period January 1, 2008 to August
31, 2010. The reports were de-identified by the De-ID tool.27

Non influenza controls: We obtained 29 004 de-identified ED
reports of patients whose visits were not associated with a posi-
tive influenza PCR test from the period July 1, 2010 to August
31, 2010.

Using these reports, we created two training sets to param-
eterize the BN classifiers. One training set contained findings
that were extracted using Topaz and the other training set con-
tained findings that were extracted using MedLEE. Both training
sets comprised 29 472 instances where a single instance had 31
influenza-related findings.

Expectation–Maximization maximum a posteriori (EM-MAP)
algorithm: Besides the expert-defined-BN classifier, we created
two additional BN classifiers—both initially parameterized by
expert and further trained using the Topaz training set
(BN-EM-Topaz) or the MedLEE training set (BN-EM-MedLEE).
We used the EM-MAP algorithm28 as the machine learning
method with a stopping criterion of |Δ(P(model|data))|<0.01.
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We selected the EM-MAP algorithm because it can handle
missing features in the training instances (eg, findings that an
NLP parser labels as ‘missing’) and it can use CPTs elicited by
experts as prior knowledge. These BN classifiers are parameter-
ized using both expert’s knowledge and training data, and are
especially useful when the occurrence of certain findings is rare.

Testing dataset
The testing dataset comprised reports for both ED patients with
influenza and ED patients without influenza (shigellosis). This
testing dataset was used in all experiments described in the
remaining sections of Methods.

Influenza cases: We obtained 124 de-identified ED reports of all
PCR-positive influenza patients seen in four EDs in Allegheny
County, Pennsylvania between December 1, 2010 and June 30,
2011.

Non-influenza (shigellosis) controls: We used a convenience
sample of 87 shigellosis cases from the same EDs for the period
January 1, 2010 to June 30, 2010. This set represents all ED
patients that have positive culture results for shigellosis. In using
this non-representative sample, we recognized that shigellosis
and influenza have symptomatic overlap (eg, both diseases can
cause fever and diarrhea) and our BN classifier did not represent
special shigellosis-related findings (eg, rectal bleeding and stool
order) that might help to discriminate between the diagnoses.

Annotation method: Three board-certified physicians anno-
tated the 211 ED reports in the testing dataset. To ensure that
all physicians could reach a similar annotation baseline standard,
we first asked them to review 10 sample reports together, and
then we measured Cohen’s κ value, a measure of inter-annotator
agreement. When Cohen’s κ value reached 0.8 or greater, we
considered each physician to have reached the annotation stand-
ard. Then, each physician was assigned overlapping subsets of
the reports. To ensure annotation quality, 12% of reports were
reviewed by at least two annotators and their agreement was
measured during the annotation process. If there was

discrepancy between two physicians’ annotations, the third
physician would review the discrepancy and make the final deci-
sion after discussion with the other two physicians.

Using this testing dataset, we measured the NLP parsers’
finding-extraction performance and classifiers’ influenza-detection
performance. Our primary analyses used 31 findings mentioned in
the section introducing BN classifiers (figure 1), while the second-
ary analyses used the 17 most influential findings as we will discuss
later.

Metrics of NLP-finding-extraction performance
We measured the performance of Topaz and MedLEE using
accuracy, recall, and precision. We calculated CIs using bootstrap
percentiles with SAS V.9.3.29

Measurement of the classification performance
We used the AUROC as a measure of classification performance.
Since we had three finding-extraction methods (expert, Topaz, or
MedLEE) and three BN classifiers (expert-defined-BN, BN-EM-
Topaz, or BN-EM-MedLEE), we performed nine experiments. The
‘true’ disease status (gold standard) was defined by laboratory test
results. To compare AUROCs, we calculated p values using
DeLong’s two-sided comparisons30 as implemented in the
pROC31 package of the R statistical software. To elucidate the
relative contribution of the finding-extraction method (human-
annotated findings vs Topaz/MedLEE-extracted finding) and par-
ameterization method (human-parameterized classifier vs
machine-parameterized classifiers) on classification performance,
we compared AUROCs in groups using Friedman’s two-way non-
parametric analysis of variance model (ANOVA)32 with SAS V.9.3.

Secondary analyses: measurement of the effect of feature
selection on performance
To determine the effect of feature selection on influenza detec-
tion, we studied a subset of influenza-related findings. In a naïve
BN, the posterior odds (eg, P(disease=True|findings)/P

Figure 1 Bayesian network for influenza detection (GeNIe24 visualization).
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(disease=False|findings)) equals the product of prior odds (ie, P
(disease=True)/P(disease=False)) and the likelihood ratios (LR)
of each finding. Therefore, we defined a subset of influential
findings as those findings (in the BN-EM-Topaz classifier) that
had LR positive (LR+) greater than three or LR negative (LR−)
less than 0.33 (one third).

We then measured the accuracy, precision, and recall of Topaz
and MedLEE for each of these findings. We further assessed
AUROCs of classifiers only using these influential findings and
compared them with classifiers leveraging the complete finding
set using a one-sided paired Wilcoxon signed-rank test.

RESULTS
Inter-annotator agreement
The κ values measuring inter-annotator agreement for each pair-
wise comparison of annotations of three physicians were
0.8346, 0.8592, and 0.8933, indicating reliable agreement.

Influenza-related findings in the testing dataset
Figure 2 shows the frequency at which the treating clinicians
documented 31 influenza-related findings in the influenza and
non-influenza (shigellosis) patients in the testing dataset. The
most frequently documented positive finding in the influenza
cases was cough (77.42%), while the most frequently

documented negative finding was cervical lymphadenopathy
(44.35%). The most frequently documented positive finding in
the shigellosis cases was diarrhea (60.48%), while the most fre-
quently documented negative finding was sore throat (37.90%).
On average, the clinicians documented about 11
influenza-related findings (six positive findings and five negative
findings) in the influenza cases and about seven influenza-related
findings (three positive findings and four negative findings) in
the shigellosis controls.

NLP accuracy for influenza-related findings
Table 1 shows the overall accuracy, recall, and precision of
Topaz and MedLEE for the entire set of influenza-related find-
ings (left-hand side). The right-hand side of table 1 presents the
results for a subset of influential findings and will be described
in the secondary analyses section.

Because we post-processed the MedLEE output, the following
evaluation results only reflect the accuracy of MedLEE for influ-
enza findings when coupled with the post-processing that we
employed.

We found that Topaz was more accurate than MedLEE at
identifying influenza-related findings documented by treating
clinicians in their reports (accuracy: 0.78 vs 0.71, p<0.0001).

Figure 2 Percentages of influenza
cases and shigellosis cases with
targeted influenza-related findings.
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Topaz and MedLEE had similar recall (ie, sensitivity) for posi-
tive findings (0.80 vs 0.79, p=0.7499), but Topaz had better
recall for negative findings (specificity) (0.76 vs 0.62,
p<0.0001). MedLEE’s precision for positive findings (positive
predictive values) was significantly better than Topaz (0.90 vs
0.85, p=0.0002), while its precision for negative findings (nega-
tive predictive value) was similar to Topaz (0.90 vs 0.87,
p=0.0852).

Classification performance for nine combinations
Table 2 shows the classification performance for all nine combi-
nations of the finding-extraction method (expert, Topaz, or
MedLEE) and classifier (expert-defined BN, BN-EM-Topaz, or
BN-EM-MedLEE), with the upper half of the table showing for
classifier using 31 findings and the lower half listing for classifier
using 17 influential findings. Table 3 shows the p values for each
two-sided comparison of AUROCs of two combinations of
finding-extraction method and classifier.

The combination of the finding-extraction method and classi-
fier with the highest performance was the combination of expert
findings with BN-EM-Topaz (AUROC: 0.79; 95% CI 0.73 to
0.85), suggesting that NLP misclassification contributed to less
accurate influenza case identification. The pairing with the
lowest performance was the pairing of Topaz findings with
expert-defined BN (AUROC: 0.64; 95% CI 0.57 to 0.71), sug-
gesting that parameters in expert-defined BN may not well repre-
sent correlations between NLP extracted clinical findings and
the disease.

Effect of the finding-extraction method on classification
performance
In the primary analyses, all three classifiers achieved better dis-
criminative ability when associated with expert findings than
with NLP (Topaz/MedLEE) findings (average AUROC: 0.75 vs

0.68, p=0.0113). Specifically, expert-defined BN classifier using
expert findings was better than the same classifier using Topaz
findings (AUROC: 0.70 vs 0.64, p=0.0044) or MedLEE findings
(AUROC: 0.70 vs 0.64, p=0.0083). This pattern also held for
the secondary (influential findings) analyses.

Effect of classifier on classification performance
In the primary analyses, all three finding-extraction methods
worked best when the classifier was BN-EM-Topaz, followed by
BN-EM-MedLEE, then expert-defined BN. The machine-learned
classifiers had greater discriminative ability than the expert-
defined BN classifier (average AUROC: 0.73 vs 0.66,
p=0.0059). For example, associated with expert findings, expert-
defined BN classifier (AUROC: 0.70) did not perform as well as
either the BN-EM-Topaz classifier (AUROCs: 0.79, p<0.0001)
or the BN-EM-MedLEE classifier (AUROCs: 0.77, p=0.0042).
However, these differences largely disappeared in the secondary
analyses using the most influential findings.

When comparing the two machine-learned classifiers in
the primary analyses, we found that the BN-EM-Topaz
classifier yielded greater accuracy than the BN-EM-MedLEE
classifier: AUROCexpert-findings+BN-EM-Topaz=0.79 vs AUROCexpert-

findings+BN-EM-MedLEE=0.77, p=0.0195; AUROCTopaz-findings+BN-

EM-Topaz=0.73 vs AUROCTopaz-findings+BN-EM-MedLEE=0.70,
p=0.0012; AUROCMedLEE-findings+BN-EM-Topaz=0.71 vs
AUROCMedLEE-findings+BN-EM-MedLEE=0.66, p<0.0001. The
superiority of BN-EM-Topaz over BN-EM-MedLEE remained in
the secondary analyses.

Secondary analyses of NLP and classifier performance
for 17 influential findings
The 17 influential findings indicated in BN-EM-Topaz were arth-
ralgia, cervical lymphadenopathy, chill, cough, fever, hoarseness,
influenza-like illness, lab confirmed influenza, lab order (nasal

Table 1 Summary of performance measures for Topaz and MedLEE

Measures Performance for primary analyses (use all 31 findings)
Performance for secondary analyses (use 17 influential
findings)

Topaz MedLEE
p Value
(Topaz vs MedLEE) Topaz MedLEE

p Value
(Topaz vs MedLEE)

Accuracy 0.91 (0.90 to 0.91) 0.90 (0.89 to 0.91) 0.1650 0.92 (0.91 to 0.92) 0.90 (0.89 to 0.91) 0.0537
Accuracy (absent and present) 0.78 (0.76 to 0.80) 0.71 (0.70 to 0.73) <0.0001* 0.75 (0.73 to 0.78) 0.70 (0.67 to 0.73) 0.0047*
Recall for present 0.80 (0.77 to 0.82) 0.79 (0.77 to 0.82) 0.7499 0.72 (0.69 to 0.76) 0.77 (0.74 to 0.80) 0.0453*
Recall for absent 0.76 (0.73 to 0.78) 0.62 (0.59 to 0.65) <0.0001* 0.81 (0.77 to 0.84) 0.58 (0.53 to 0.63) <0.0001*
Precision for present 0.85 (0.83 to 0.87) 0.90 (0.88 to 0.92) 0.0002* 0.92 (0.90 to 0.94) 0.92 (0.89 to 0.94) 0.8100
Precision for absent 0.87 (0.85 to 0.90) 0.90 (0.88 to 0.93) 0.0852 0.89 (0.86 to 0.92) 0.87 (0.83 to 0.91) 0.5144

95% CIs in parentheses.
For each report, physicians and NLP parsers labeled values (present, absent, or missing) for each of the 31 influenza-related findings. With physician annotations as gold standard, we
calculated accuracy, recall, and precision as measurements of NLP accuracy as follows:
Accuracy: A+E+I/(A+B+C+D+E+F+G+H+I).
Accuracy (absent and present): A+E/(A+B+D+E+G+H).
Recall for present (sensitivity): A/(A+D+G).
Recall for absent (specificity): E/(B+E+H).
Precision for present (positive predictive value): A/(A+B+C).
Precision for absent (negative predictive value): E/(D+E+F).
where A stands for number of findings with both expert and NLP labeled present; B stands for number of findings with expert labeled absent but NLP labeled present; C stands for
number of findings with expert labeled missing but NLP labeled present; D stands for number of findings with expert labeled present but NLP labeled absent; E stands for number of
findings with both expert and NLP labeled absent; F stands for number of findings with expert labeled missing but NLP labeled absent; G stands for number of findings with expert
labeled present but NLP labeled missing; H stands for number of findings with expert labeled absent but NLP labeled missing; and I stands for number of findings with both expert and
NLP labeled missing.
95% CI of the empirical distribution is obtained by bootstrapping with replacement (2000 times, sample size is 31 features per report×211 report=6541 each time).
The 17 influential findings indicated in BN-EM-Topaz were arthralgia, cervical lymphadenopathy, chill, cough, fever, hoarseness, influenza-like illness, lab confirmed influenza, lab order
(nasal swab), malaise, myalgia, rhinorrhea, sore throat, suspected flu, viral infection, viral syndrome, and wheezing. 95% CI of the empirical distribution is obtained by bootstrapping
with replacement (2000 times, sample size is 17 influential findings per report×211 report=3587 each time).
Each p value was calculated with a two-sided z test for comparison of two proportions. *p<0.05.
BN, Bayesian network; NLP, natural language processing.

Ye Y, et al. J Am Med Inform Assoc 2014;21:815–823. doi:10.1136/amiajnl-2013-001934 819

Research and applications



swab), malaise, myalgia, rhinorrhea, sore throat, suspected flu,
viral infection, viral syndrome, and wheezing (figures 3 and 4).

The right-hand side of table 1 compares the finding-extraction
accuracy of Topaz and MedLEE for these findings. Topaz still had
a significantly higher accuracy than MedLEE for these 17 findings
with value of being either present or absent (0.75 vs 0.70,
p=0.0047). Similarly, Topaz’s recall for negative findings was still
significantly higher than MedLEE’s (0.81 vs 0.58, p<0.0001).
However, Topaz’s recall for positive findings became significantly
lower than MedLEE’s (0.72 vs 0.77, p=0.0453). The accuracy,
recall, and precision of Topaz and MedLEE for each finding are
listed in online supplemental table S1.

The lower half of table 2 lists AUROCs of nine combinations
of finding-extraction method and BN classifier. Comparing

them with the upper half, we found that classifiers that only
used the 17 influential findings had significantly better perform-
ance (average AUROC: 0.76>0.70, p=0.004).

DISCUSSION
Effects of finding-extraction on classification performance
The accuracy of NLP extraction of influenza-related findings from
ED reports varies by finding and differs for the determination of
positive and significant negative findings. The Topaz and MedLEE
parsers accurately determined 71–78% of the findings. Topaz per-
formed significantly better than MedLEE on mentions of absent
findings (significant negatives) (0.76 vs 0.62, p<0.0001), and
MedLEE had significantly better precision for positive findings
(0.90 vs 0.85, p=0.0002). The accuracy of MedLEE could be

Table 2 AUROCs (95% CIs) of nine possible combinations of finding-extraction method and BN classifier

BN classifiers

Finding-extraction methods

Expert Topaz MedLEE

Primary analyses: BN classifiers using 31 influenza-related findings
Expert-defined BN 0.70 (0.63 to 0.77) 0.64 (0.57 to 0.71) 0.64 (0.57 to 0.72)
BN-EM-Topaz 0.79 (0.73 to 0.85) 0.73 (0.66 to 0.79) 0.71 (0.64 to 0.78)
BN-EM-MedLEE 0.77 (0.70 to 0.83) 0.70 (0.63 to 0.77) 0.66 (0.59 to 0.74)

Secondary analyses: BN classifiers using 17 influential findings*

Expert-defined BN 0.80 (0.74 to 0.86) 0.76 (0.69 to 0.82) 0.73 (0.66 to 0.80)
BN-EM-Topaz 0.82 (0.76 to 0.88) 0.75 (0.69 to 0.82) 0.74 (0.68 to 0.81)
BN-EM-MedLEE 0.79 (0.73 to 0.85) 0.73 (0.66 to 0.80) 0.70 (0.63 to 0.77)

*The 17 influential findings indicated in BN-EM-Topaz were arthralgia, cervical lymphadenopathy, chill, cough, fever, hoarseness, influenza-like illness, lab confirmed influenza lab order
(nasal swab), malaise, myalgia, rhinorrhea, sore throat, suspected flu, viral infection, viral syndrome, and wheezing.
AUROC, area under the receiver operating characteristic; BN, Bayesian network.

Table 3 Paired two-sided DeLong tests for comparison among AUROCs of Bayesian case detectors with different combinations of
finding-extraction method and Bayesian network (BN) classifier

e+E e+T e+M t+E t+T t+M m+E m+T m+M

Primary analyses: BN classifiers using 31 influenza-related findings
e+E 0.0001* 0.0042* 0.0044* 0.4231 0.9399 0.0083* 0.9321 0.1437
e+T 0.0195* <0.0001* 0.0007* <0.0001* <0.0001* <0.0001* <0.0001*
e+M <0.0001* 0.0229* 0.0006* <0.0001* 0.0029* <0.0001*
t+E 0.0011* 0.0182* 0.8959 0.0265* 0.4805
t+T 0.0012* 0.0052* 0.2914 0.0004*
t+M 0.0526 0.8289 0.0337*
m+E 0.0045* 0.4466
m+T <0.0001*
m+M

Secondary analyses: BN classifiers using 17 influenza-related findings
e+E 0.1151 0.4847 0.0345* 0.0362* 0.0038* 0.0005* 0.0157* 0.0001*
e+T 0.0005* 0.0037* 0.0005* <0.0001* <0.0001* 0.0001* <0.0001*
e+M 0.1490 0.0438* 0.0019* 0.0065* 0.0251* <0.0001*
t+E 0.6497 0.0496* 0.1426 0.4892 0.0166*
t+T 0.0012* 0.2962 0.6471 0.0107*
t+M 0.9391 0.5289 0.1460
m+E 0.3206 0.1110
m+T <0.0001*
m+M

Each combination of finding-extraction method and BN classifier is represented as a lower case letter plus a upper case letter. The lower case letters are abbreviations of
finding-extraction methods: e, expert findings; t, Topaz findings; m, MedLEE findings. The upper case letters are abbreviations of BN classifiers: E, expert-defined BN; T, BN-EM-Topaz;
M, BN-EM-MedLEE.
Each p value was calculated with a DeLong two-sided comparison of AUROC. The *p<0.05.
The 17 influential findings indicated in BN-EM-Topaz were arthralgia, cervical lymphadenopathy, chill, cough, fever, hoarseness, influenza-like illness, lab confirmed influenza lab order
(nasal swab), malaise, myalgia, rhinorrhea, sore throat, suspected flu, viral infection, viral syndrome, and wheezing.
AUROC, area under the receiver operating characteristic.
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biased because of the post-processes mentioned in the method
section (ie, applying Topaz’s heuristic resolution rules and
mapping some UMLS CUIs to influenza-related findings).

Both primary and secondary analyses suggested that all three
classifiers achieved greater discrimination when combined with
expert findings, followed by Topaz findings, then MedLEE find-
ings. This correlation was present even when there was a mis-
match between NLP parser and BN classifier. These results
suggested the importance of finding-extraction accuracy for
influenza detection and encouraged the use of the highest per-
forming NLP system available regardless of the NLP system used
to train the classifier.

Effects of classifier on classification performance
Usually, it is not easy for an expert to accurately quantify the
correlations between findings and the disease, and using an NLP
parser as finding-extraction method could further complicate
the situation. In this study, the machine-learned classifiers were
shown to have better discriminative abilities than the expert-
defined classifier across all finding-extraction methods, indicating
the benefit of turning data into knowledge. Starting the machine
learning process from BN classifiers that are initially

parameterized by experts, the EM-MAP algorithm is especially
useful when the occurrences of certain findings are rare.

Effects of feature selection on classification performance
In this study, feature selection based on likelihood ratio values
that were calculated with CPTs in a machine-learned BN classi-
fier significantly improved the performance of influenza detec-
tion, suggesting that feature selection could be an efficient way
to improve classification performance.

Limitations
Although the research has reached its aims, one major limitation
is the use of a non-representative sample of non-influenza (shi-
gellosis) controls in the testing dataset. This decision was prag-
matic as we did not have the resources to develop additional
expert-annotated ED charts. In addition, our use of PCR tests as
a gold standard may have biased the testing set with positive
cases that are more severe symptomatically and thus easier to
distinguish than average influenza cases in EDs. Therefore, the
AUROC in the range 0.64–0.82 should not be taken as an indi-
cation of the performance of influenza detection that we would

Figure 3 Log10 LR
+ (likelihood ratios)

of features in expert-defined BN,
BN-EM-Topaz, and BN-EM-MedLEE.
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expect in an operational ED setting; further evaluation with a
randomly selected testing dataset would be more informative.

Significance
Influenza detection is important in both clinical care and public
health practice. Automatic influenza detection from EHR data
still depends on the ability to extract symptoms and signs from
unstructured data. The present paper described a systematic
approach for evaluating the relative contributions of the compo-
nents in a process of extracting symptoms and signs, feature
selection, and classification for the disease influenza. Although
using a biased control may limit the interpretation of the results
of the present study, the three-component evaluation could be
applied more generally to a broader problem of detection of
any disease phenotype that involves clinical information that is
stored in free-text reports.

CONCLUSION
Using a three-component evaluation method we demonstrated
how one could elucidate the relative contributions of compo-
nents under an integrated framework. To improve classification
performance, this study encourages researchers to improve NLP

accuracy, use a machine-parameterized classifier incorporating
both expert knowledge and data patterns, and apply feature
selection methods. This study addresses the concern of using
one NLP system to train a classifier and another NLP system in
production—using the highest performing NLP system available
regardless of the NLP system used to train the classifier is
advised.
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