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Abstract

Meta-analysis of the entire analyzable cohort of 4,935 tamoxifen-treated breast cancer patients by

the International Tamoxifen Pharmacogenetics Consortium (ITPC) (criterion 3) revealed no

CYP2D6 effect on outcomes but strong heterogeneity across sites.1 However, a post hoc–defined

subgroup (criterion 1: postmenopausal, estrogen receptor positive, receiving 20 mg/day tamoxifen

for 5 years; n = 1,996) did find statistically significant effect of CYP2D6 on both invasive

disease–free survival as well as breast cancer–free interval, with little site heterogeneity. How

should we interpret these discrepant findings?

“Statistics: The only science that enables different experts using the same figures to

draw different conclusions.”

—Evan Esar, humorist

“Data do not give up their secrets easily. They must be tortured to confess.”

—Jeffrey Hooper, Bell Laboratories

“Facts are stubborn, but statistics are more pliable.”

—Mark Twain, humorist

If the ITPC investigators had been clever enough to have defined the various subgroup

criteria a priori (i.e., before any data analysis), then it would be easier to interpret the

results. In such an alternative universe, we would reason as follows. The full ITPC sample

(criterion 3) shows no significant association between CYP2D6 and treatment response.

However, in the (now a priori–defined) criterion 1 subset, CYP2D6 shows a significant

effect on outcome. Either the subgroup analysis is a false-positive type I error or it is a true-

positive finding and the lack of replication in the entire data set may be due to CYP2D6’s

being just one of several important biological pieces of the puzzle. Other genes or factors
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that may be equally or more important in determining outcome might dominate in other

subsets of breast cancer patients. This would explain the heterogeneity of results seen in the

literature, as well as that seen in the ITPC itself.

Unfortunately, as we explained in detail in the Methods section of Province and colleagues’

paper,1 we did not define the criterion 1 subgroup until after some preliminary analyses had

been conducted that did not recapitulate previously published results in much the same data.

This lack of replication prompted further investigation of the data, a change in analysis

strategy from a mega-analysis to a meta-analysis, and several rounds of additional data

cleaning that identified suspicious values, which in turn required going back to each of the

12 source sites to collect more data and either confirm or correct the data, followed by

additional analyses. Such an iterative process is actually not particularly unusual in

retrospective studies like the ITPC, in which data must be harmonized post hoc across

multiple source studies that used different measurement protocols, instruments, and

procedures in originally collecting the data. Because no one person or group had seen the

data from all 12 studies in one place before, the harmonization and cleaning process was a

learning and illuminating experience to all involved. Furthermore, the act of analysis is

always one of profound quality control as well as exploration. It reveals aspects of the data

that were not appreciated in the initial cleaning procedures—no matter how carefully

designed and skillfully executed. Once discovered, that information cannot be ignored but

must be reported. Although the end result is often a better analysis of the data, the process is

not always straightforward. Thus, it can be difficult, if not impossible, to do formal

statistical accounting of the exact number of multiple comparisons of tests and analyses

conducted along the way so as to properly correct for inflation of P values.

Formally, corrections for multiple comparisons are partly a question of numbers. The

Bonferroni correction accurately adjusts the significance levels for multiple comparisons

when the precise number of statistical tests done is known (and they are independent). At

one extreme, in prospective clinical trials, a single, clear, primary hypothesis is tested, the

associated P value of which can be taken at face value with no corrections for

“multiplicities.” If there are preliminary analyses of the accumulating data, they are

preplanned and formally adjusted for multiple comparisons so as to allow the possibility of

early termination without inflating the significance level of the final inference of that one

hypothesis test at the end of the trial. At the other extreme, millions of statistical tests may

be conducted, and they may even be partially dependent tests, such as in genome-wide

association studies (GWAS), but an accurate correction can still be obtained because the

number of tests is well defined and the way in which the tests are correlated is

mathematically tractable to being undone (e.g., Gao et al.2).

Because of the extreme numbers of tests conducted in a GWAS, and the correspondingly

high chance of a “winner’s curse” false-positive finding, journals usually require that any

findings not only exceed such strict genome-wide Bonferroni significance criteria but also

be replicated in one or more completely independent data sets before the authors can claim a

positive association. GWAS data collection has been criticized by some for setting the bar of

proof too high, perhaps missing important signals lurking below such thresholds.

Nonetheless, it has been enormously successful in identifying and statistically validating
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thousands of complex trait variants, some with quite small effect sizes that would have been

out of reach of the earlier “candidate gene” experiments of the pre-GWAS era. In the

statistical literature, this process of generating a large number of statistical tests and

selecting the most extreme ones has been referred to as “hypothesis generation” as opposed

to formal “hypothesis testing,” to make the term sound more respectful than “fishing

expedition,” which derived from the legal field3 and has negative connotations. When

performed on an industrial, more automated scale, it is sometimes called “exploratory data

analysis,” “data mining,” or “model selection.” Regardless of what it is called, we believe

that hypothesis generation should not be looked on with disdain but instead as an important

part of the scientific process—a valuable complement to formal hypothesis testing. Indeed,

even outside of the GWAS realm, where hypothesis generation works very well, there are

concrete examples of important scientific discoveries that were first reported as “hypothesis

generations,” including the well-established association between apolipoprotein E genotype

and Alzheimer’s disease (the initial reports of which were dismissed by journal reviewers as

biologically implausible and probably a type I error, until independent replication proved

otherwise).

Even though we can’t determine the exact number of tests conducted, certainly the number

of analyses performed by the ITPC are much closer to the “one” of the prospective clinical

trial (requiring only P < 0.05 α-levels) than they are to the millions of tests conducted in

GWAS fishing expeditions (requiring P < 10−8 α-levels).

Additionally, multiple repeat analyses of the same hypothesis test using updated or corrected

versions of the data should not be penalized at the same Bonferroni rate as truly independent

tests (but exactly how much should they be penalized?). However, there is a deeper problem

here in interpreting the ITPC results than the simple numbers game of not knowing what

Bonferroni denominator to use to correct for the number of hypotheses tested along the way.

By defining subgroups guided by positive preliminary analyses, the ITPC passed over from

formal hypothesis testing to hypothesis generation in ways that cannot be formally corrected

by any known correction. Even though criterion 1 has high face validity, there may be many

other subsets of the data that also have face validity, each of which may or may not show a

positive association. How do we assess whether we are fitting to noise or signal in such

process? Do we correct for all possible subsets that can be formed? Alternatively, should we

correct for only subsets that test positive? Rather than being defined by an automated

machine learning procedure—whose propensity to fit to noise we could formally evaluate in

repeated simulation experiments—the subgroups were defined by experts using their clinical

knowledge and prior experience. We could devote a lot of effort to attempting to “adjust”

these results and not gain much insight.

So where does this leave us, and how do we interpret the ITPC results? We have an overall

negative study, so it is clear that the CYP2D6 is at best one of several factors influencing

outcome following adjuvant tamoxifen treatment. We have generated a hypothesis defining

criterion 1, which has clinical face validity and does show a positive association to outcome

in the ITPC. Unfortunately, it appears impossible to formally adjust the significance levels

to account for the “generation” process. But we believe that it is important to report those

findings as best we can and to inform the readership as to exactly how they were generated.
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At the same time, we are extremely sensitive to the concerns of the CODATA-ICSTI Task

Group on Data Citation Standards and Practices, which notes that “there is even evidence

that researchers engage in data dredging, model fishing, or other methodological

peccadilloes in search of results that are ‘significant.’”4 This is why we made a full

disclosure of the (admittedly flawed) process by which these subgroups were defined;

furthermore, we have exceeded the Task Group’s recommendations for data citation by

making all the ITPC data and all analysis programs publicly available. To complete the

hypothesis-generation experiment, our generated hypothesis about criterion 1 should be

taken into an independent data set in which it can be formally tested—as we called for in the

conclusion of our paper.1 In the end, the field will determine the truth. Since the formation

of the ITPC, additional studies on the subject have already emerged, and more are expected

to come. We hope the ITPC will have played a part in discovering the truth about the role of

CYP2D6 in tamoxifen therapy.
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