
Vol. 30 no. 17 2014, pages 2503–2505
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu314

Sequence analysis Advance Access publication May 7, 2014

SAMBLASTER: fast duplicate marking and structural variant

read extraction
Gregory G. Faust1 and Ira M. Hall1,2,*
1Department of Biochemistry and Molecular Genetics and 2Center for Public Health Genomics, University of Virginia,
Charlottesville, VA 22908, USA

Associate Editor: Inanc Birol

ABSTRACT

Motivation: Illumina DNA sequencing is now the predominant source

of raw genomic data, and data volumes are growing rapidly.

Bioinformatic analysis pipelines are having trouble keeping pace. A

common bottleneck in such pipelines is the requirement to read,

write, sort and compress large BAM files multiple times.

Results: We present SAMBLASTER, a tool that reduces the number

of times such costly operations are performed. SAMBLASTER is de-

signed to mark duplicates in read-sorted SAM files as a piped post-

pass on DNA aligner output before it is compressed to BAM. In add-

ition, it can simultaneously output into separate files the discordant

read-pairs and/or split-read mappings used for structural variant call-

ing. As an alignment post-pass, its own runtime overhead is negligible,

while dramatically reducing overall pipeline complexity and runtime.

As a stand-alone duplicate marking tool, it performs significantly better

than PICARD or SAMBAMBA in terms of both speed and memory

usage, while achieving nearly identical results.

Availability and implementation: SAMBLASTER is open-source

C++ code and freely available for download from https://github.

com/GregoryFaust/samblaster.

Contact: imh4y@virginia.edu

Received and revised on March 28, 2014; accepted on April 28, 2014

1 FEATURES AND METHODS

The ongoing rapid cost reduction of Illumina paired-end sequen-

cing has resulted in the increasingly common use of this technol-

ogy for a wide range of genomic studies, and the volume of such

data is growing exponentially. Generating high-quality variant

calls from raw sequence data requires numerous data processing

steps using multiple tools in complex pipelines. Typically, the

first step in this analysis is the alignment of the sequence data

to a reference genome, followed by the removal of duplicate

read-pairs that arise as artifacts either during polymerase chain

reaction amplification or sequencing. This is an important pipe-

line step, as failure to remove duplicate measurements can result

in biased downstream analyses.

1.1 Common usage scenario: piped SAM input

Extantduplicatemarkingprograms suchasPICARDMarkDuplicates

(http://picard.sourceforge.net/) and SAMBAMBA markdup (https://

github.com/lomereiter/sambamba) require position-sorted SAM or

BAM (Li et al., 2009) as input, and perform two passes over the

input data, thereby requiring their input file be stored on disk.

Instead, SAMBLASTER marks duplicates in a single pass over a

SAM file in which all alignments for the same read-id are grouped

together. This allows the SAM output of alignment tools such as

NOVOALIGN (http://www.novocraft.com) or BWA-MEM (http://

arxiv.org/abs/1303.3997) to be piped directly into SAMBLASTER,

which marks duplicates and outputs read-id grouped SAM, which in

turn is piped to SAMTOOLS or SAMBAMBA for sorting and/or

compression, without the need to store any intermediate files. This

saves one compression–write–read step in the common case in which

a duplicate marked position-sorted file is needed later in the pipeline,

and two such cycles if a duplicate marked read-id grouped file is also

needed. The elimination of each such cycle is a significant cost savings

of both disk space and runtime. For example, using �50X-coverage

wholegenomesequencedata forNA12878 fromthe IlluminaPlatinum

Genomes (ENA Accession: ERP001960), each compressed BAM file

consumes4100 GB of space and requires 7+ h to compress with

SAMTOOLS, and 8.5h of CPU time in 1.5h elapsed time with

SAMBAMBA using 10+ threads on a server-class machine. An ad-

vantage of the two-pass duplicate marking strategy is that one can

retain the ‘best’ read-pair of a set of duplicates, while

SAMBLASTER always keeps the first such pair found in its input.

SAMBLASTER will mark as duplicate any secondary

alignments associated with a duplicate primary alignment,

and thus works particularly well with BWA-MEM output.

Currently, neither SAMBAMBA nor PICARD has this

functionality.

1.2 Extracting reads for structural variation detection

Structural Variation (SV) is a major source of genome diversity

but is more difficult to detect than other forms of variation. SV

detection algorithms typically predict SV breakpoints based on

the distribution of discordant paired-end alignments, in which

the paired reads map to opposite ends of an SV breakpoint,

and/or split-read alignments where reads align across an SV

breakpoint. Many SV detection algorithms require long runtimes

due to the overhead associated with searching for and extracting

these alignments from large BAM files comprised predominantly

of uninformative read-pairs. However, some SV detection algo-

rithms, including HYDRA (Quinlan et al., 2010) and LUMPY

(http://arxiv.org/abs/1210.2342), are able to input files comprised

solely of discordant and/or split-read mappings, which are

typically4100-fold smaller in size. This presents an opportunity*To whom correspondence should be addressed.

� The Author(s) 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://github.com/GregoryFaust/samblaster
https://github.com/GregoryFaust/samblaster
mailto:imh4y@virginia.edu
PCR 
http://picard.sourceforge.net/
https://github.com/lomereiter/sambamba
https://github.com/lomereiter/sambamba
that 
http://www.novocraft.com
http://arxiv.org/abs/1303.3997
http://arxiv.org/abs/1303.3997
-
-
over 
``
''
relative to
either 
s
http://arxiv.org/abs/1210.2342


to greatly increase pipeline efficiency by extracting discordant

and split-read mappings during a prior pipeline step which already

requires reading through the entire dataset. SAMBLASTER is able

to extract such reads directly from the SAM output of an aligner,

such as BWA-MEM, which can detect both discordant read-pairs

and split-readmappings. In addition, when usedwith other popular

paired-end aligner such as BWA-ALN or NOVOALIGN, which

do not identify split-read mappings, SAMBLASTER can extract

unmapped and clipped reads for realignment with a sensitive split-

read alignment tool such as YAHA (Faust andHall, 2012) for later

use to detect SV. By including these capabilities directly in a tool

that also marks duplicates, several SV detection pipeline steps can

be eliminated.

1.3 Custom data structures

SAMBLASTER uses a custom data structure, which uses signifi-

cantly less memory than competing duplicate marking

programs. It considers two or more read-pairs to be duplicates

when they have the same signature, defined as the combination

of the sequence, strand and reference position of both reads in

the pair. To most accurately define the reference positions, it

parses the CIGAR string to calculate where the 50 end of each

read would align to the reference genome under the assumption

that the entire read is mapped. This is similar to the strategy used

by PICARD. To detect duplicates, it builds a set of such signatures,

marking a read-pair as duplicate if its signature has previously ap-

peared in the input.

To avoid storing a structure with all this information, the

signature is broken into pieces. Each unique combination of

sequence1, strand1, sequence2 and strand2 maps to its

own position in an array in which a set of the associated pos-

ition pairs is stored as a hash table. The hash tables are optimized

to store 64-bit integers, 32 bits for each reference position.

SAMBLASTER thus has low memory requirements relative to

other tools, �20 bytes per read-pair, which frees it from the need

to use temporary intermediate files. See Figure 1 for details. In

addition, SAMBLASTER does not allocate/free any per-read

memory structures for reading/writing SAM records, thereby

increasing I/O throughput.

1.4 Performance evaluation

To evaluate the speed, memory and disk usage of

SAMBLASTER as a stand-alone duplicate marking algorithm

versus PICARD MarkDuplicates and SAMBAMBA markdup,

we used the NA12878 dataset aligned via BWA-MEM as our

input source. All timings were performed on a server-class ma-

chine with 128 GB of RAM and two 8-core (16 thread) Intel

Xeon E5-2670 processors running at 2.6GHz. To make the com-

parison of SAMBLASTER to PICARD as similar as possible,

we ran both using SAM for both the input and the output

format. SAMBAMBA markdup does not support SAM format

for either input or output. To make the test as comparable as

possible, we used uncompressed BAM for both, even though

such files are still much smaller than SAM. Although

SAMBLASTER is single threaded, to show best possible

PICARD and SAMBAMBA runtimes, each were allocated 32

threads, and SAMBAMBA single-threaded statistics are also

shown. The results of the comparison test are shown in

Table 1. SAMBLASTER outperforms the other duplicate mark-

ing programs in terms of CPU seconds, wall time, disk IO and

memory usage.

ACKNOWLEDGEMENT

The authors thank Ryan Layer, Colby Chiang, Michael

Lindberg, Eric Faust and Aaron Quinlan for their thoughtful

insights.

Funding: NIH New Innovator Award (DP2OD006493-01) and a

Burroughs Wellcome Fund Career Award (to I.H.).

Table 1. Comparative runtime, memory usage and disk usage statistics

for SAMBLASTER 0.1.14, PICARD MarkDuplicates 1.99 and

SAMBAMBA markdup 0.4.4 as stand-alone duplicate marking tools,

and in a common pipeline that produces a duplicate marked position-

sorted BAM file as its final output

Tool Mark

dups

threads

Extra

disk

(GB)

Total

disk IO

(G ops)

CPU

time

(sec)

Wall

time

(min)

Mem

usage

(GB)

Stand-alone mark duplicates function

SAMBLASTER 1 – 1.863 2077 43 �15

SAMBAMBA 1 – 2.285 6338 75 �32

SAMBAMBA 32 – 2.285 6603 54 �43

PICARD 32 – 3.056 63 160 302 �30

Mark duplicates–sort–compress pipeline

No duplicate marking – – 1.954 51 819 117 �19

SAMBLASTER 1 0 1.987 52 767 118 �23

SAMBAMBA cmp 32 108 2.455 86 512 154 �43

SAMBAMBA ucmp 32 391 3.997 61 321 163 �43

Note: In the pipeline, SAMBAMBA sort and compression are used. There is also a

control pipeline run without duplicate marking, which demonstrates that

SAMBLASTER adds little overhead. SAMBAMBA markdup times are shown

for both an uncompressed (ucmp) and compressed (cmp) position-sorted intermedi-

ate file. These tests were run using local RAID storage with fast read/write times. In

a more common scenario using networked disk access, SAMBLASTER’s reduced

IO results in greater runtime savings versus the other tools.

Fig. 1. Custom data structure in SAMBLASTER with a separate set of

reference-offset pairs, stored as a hash table, for each combination of

sequence1, strand1, sequence2 and strand2. The hash tables are optimized

to store 64-bit integers

2504

G.G.Faust and I.M.Hall

that
that
that
,
'
 of
;
vs.
While
,


Conflict of Interest: none declared.

REFERENCES

Faust,G.G. and Hall,I.M. (2012) YAHA: fast and flexible long-read alignment with

optimal breakpoint detection. Bioinformatics, 28, 2417–2424.

Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Quinlan,A.R. et al. (2010) Genome-wide mapping and assembly

of structural variant breakpoints in the mouse genome. Genome Res., 20,

623–635.

2505

SAMBLASTER


