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ABSTRACT

Motivation: Several state-of-the-art methods for isoform identification

and quantification are based on ‘1-regularized regression, such as the

Lasso. However, explicitly listing the—possibly exponentially—large

set of candidate transcripts is intractable for genes with many

exons. For this reason, existing approaches using the ‘1-penalty are

either restricted to genes with few exons or only run the regression

algorithm on a small set of preselected isoforms.

Results: We introduce a new technique called FlipFlop, which can ef-

ficiently tackle the sparse estimation problem on the full set of candi-

date isoforms by using network flow optimization. Our technique

removes the need of a preselection step, leading to better isoform iden-

tification while keeping a low computational cost. Experiments with

synthetic and real RNA-Seq data confirm that our approach is more

accurate than alternative methods and one of the fastest available.

Availability and implementation: Source code is freely available as an

R package from the Bioconductor Web site (http://www.bioconductor.

org/), and more information is available at http://cbio.ensmp.fr/flipflop.
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Supplementary information: Supplementary data are available at
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1 INTRODUCTION

Over the past decade, quantitation of mRNA molecules in a cell
population has become a popular approach to study the effect of
several factors on cellular activity. Typical applications include

the detection of genes whose expression varies between two or
more populations of samples (differential analysis), classification
of samples based on gene expression (van’t Veer et al., 2002) and

clustering, which consists of identifying a grouping structure in a
sample set (Perou et al., 2000). While probe-based DNA micro-
array technologies only allow quantitating mRNA molecules

whose sequence is known in advance, the recent development
of deep sequencing has removed this restriction. More precisely,
RNA-Seq technologies (Mortazavi et al., 2008) allow the sequen-

cing of cDNA molecules obtained by reverse transcription of
RNA molecules present in the cell. Consequently, any transcript
can be sequenced and therefore quantitated, even though its

sequence might not be available a priori for designing a specific

probe. In addition to facilitating the study of non-coding parts of

known genomes and organisms whose genome has not been

sequenced (Mortazavi et al., 2010), RNA-Seq technologies facili-

tate the quantitation of alternatively spliced genes. Genes in

eukaryote cells contain a succession of exon and intron

sequences. Transcription results in a pre-mRNA molecule from

which most introns are removed, and some exons are retained

during a processing step called RNA splicing. It is estimated that

495% of multiexonic genes are subject to alternative splicing

(Pan et al., 2008): the set of exons retained during splicing can

vary, resulting for the same gene in different versions of the

mRNA, referred to as transcripts or isoforms. Identification

and quantification of isoforms present in a sample is of outmost

interest because different isoforms can later be translated as dif-

ferent proteins. Detection of isoforms whose presence or quan-

tity varies between samples may lead to new biomarkers and

highlight novel biological processes invisible at the gene level.
Sequencing technologies are well suited to transcript quantita-

tion as the read density observed along the different exons of a

gene provide information on which alternatively spliced mRNAs

were expressed in the sample, and in which proportions. Because

the read length is typically smaller than the mRNA molecule of a

transcript, identifying and quantifying the transcripts is, how-

ever, difficult: an observed read mapping to a particular exon

may come from an mRNA molecule of any transcript containing

this exon. Some methods consider that the set of expressed iso-

forms (Jiang and Wong, 2009) or a candidate superset (Huang

et al., 2013; Xing et al., 2006) is known in advance, in which case

the only problem is to estimate their expression. However, little is

known in practice about the possible isoforms of genes, and

restricting oneself to isoforms that have been described in the

literature may lead to missing new ones.

Two main paradigms have been used so far to estimate expres-

sion at the transcript level while allowing de novo transcript

discovery. On the one hand, the Cufflinks software package

(Trapnell et al., 2010) proceeds in two separate steps to identify

expressed isoforms and estimate their abundance. It first esti-

mates the list of alternatively spliced transcripts by building a

small set of isoforms containing all observed exons and exon

junctions. In a second step, the expression of each transcript is

quantified by likelihood maximization given the list of tran-

scripts. Identification and quantification are therefore done*To whom correspondence should be addressed.
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independently. On the other hand, a second family of methods

(Behr et al., 2013; Bohnert and R€atsch, 2010; Li et al., 2011a, b;

Mezlini et al., 2013; Xia et al., 2011) jointly estimates the set of

transcripts and their expression using a penalized likelihood ap-

proach. These methods model the likelihood of the expression of

all possible transcripts, possibly after some preselection, and the

penalty encourages sparse solutions that have a few expressed

transcripts.
The two-step approach of Cufflinks (Trapnell et al., 2010) is

reasonably fast, but does not exploit the observed read density

along the gene, which can be a valuable information to identify the

set of transcripts. This is a conclusion drawn experimentally using

methods from the second paradigm (see Bohnert and R€atsch,

2010; Li et al., 2011a, b; Mezlini et al., 2013; Xia et al., 2011).

To summarize, the first paradigm is fast but can be statistically less

powerful than the second one in some cases, whereas the second

paradigm suffers from the exponential number of candidate iso-

forms and becomes intractable for genes with many exons. The

contribution of this article is to allow ‘1-penalized regression

methods from the second family to run efficiently without prefil-

tering the set of isoform candidates, although they solve a non-

smooth optimization problem over an exponential number of

variables. To do so, we show that the penalized likelihood maxi-

mization can be reformulated as a convex cost network flow prob-

lem, which can be solved efficiently (Ahuja et al., 1993; Bertsekas,

1998; Mairal and Yu, 2012). Note that a significantly different

approach was adopted by Behr et al. (2013) for non-convex ‘0-
penalty. Even though the problem they address is NP-hard, they

perform simultaneous isoform identification and quantification,

without explicitly enumerating all possible transcripts, by using

mixed integer programming techniques.
The article is organized as follows: Section 2 introduces the

statistical model (Section 2.1) and the penalized likelihood ap-

proach (Section 2.2) we follow. Our model is similar to the one

used by Xia et al. (2011), but properly models reads that cover

more than two exons, effectively taking advantage of longer

reads. We then reformulate the model as a path selection prob-

lem over a particular graph (Section 2.3), and present our

method in Sections 2.4–2.6 called FlipFlop (Fast Lasso-based

Isoform Prediction as a FLOw Problem) for solving it efficiently.

Section 3 empirically compares our approach with the state of

the art on simulated and real sequencing data. Our experiments

show that our approach has higher accuracy in isoform discovery

than methods that treat discovery and abundance estimation as

two separate steps and that it runs significantly faster than meth-

ods explicitly listing the candidate isoforms. We discuss the im-

plications of our results in Section 4.

2 METHOD

Our approach to isoform deconvolution from RNA-Seq data consists of

fitting a sparse probabilistic model, like several existing methods includ-

ing rQuant (Bohnert and R€atsch, 2010), NSMAP (Xia et al., 2011),

IsoLasso (Li et al., 2011b), SLIDE (Li et al., 2011a) or iReckon

(Mezlini et al., 2013). The reads from RNA-Seq data are modeled as a

linear combination of isoforms expressions that are estimated by using

the maximum likelihood principle. Because the number of candidate iso-

forms grows exponentially with the number of exons, the above methods

are either computationally expensive for genes with many exons (such as

NSMAP or SLIDE) or include a preselection step to reduce the number

of candidates, which may alter the method accuracy.

The main novelty of our article is to tackle the sparse estimation

problem efficiently without prefiltering. In the methodological

section, we show that the corresponding penalized maximum likelihood

estimator can be computed in polynomial time with the number of exons,

despite the exponential number of candidate transcripts. The key is

the use of a non-trivial optimization technique based on the concept

of flow in a graph (Ahuja et al., 1993; Mairal and Yu, 2012).

2.1 Statistical model

We consider an extension of the model originally introduced by Jiang and

Wong (2009) and used in NSMAP for estimating isoform expression for a

known set of expressed transcripts. Given a gene of interest, we assume

that the list of its n exons is known, and that the reads of the RNA-Seq

experiments have been mapped to a reference genome. For the purpose of

our work, an exon can either be defined by read alignment software as a

cluster of reads or from a predefined annotation such as the one provided

by the UCSC genome browser (http://genome.ucsc.edu/). In the latter

case, exons with alternative 50-donor and 30-acceptor sites are considered

as two separate exons. For alternative 50-donor sites, the exon is broken

down as one exon ending at the first 50-donor site, and another one

starting at this same point and ending at the second 50-donor site (simi-

larly for exons with 30-acceptor sites).

We define a bin to be an ordered set of exons. Each read is assigned to a

unique bin, corresponding to the exact set of exons that it overlaps. Our

model can involve bins with more than two exons. It is thus more general

than the one of NSMAP, where bins are simply exons and exon–exon

junctions. This extension of NSMAP is particularly useful for long

reads, which often cover more than two exons. We summarize the

read information by the counts y1; . . . ; yq of reads falling in q different bins.

We consider in our model all m possible candidate isoforms consisting

of an ordered sequence of exons. Each candidate isoform corresponds to

a unique sequence of bins. This sequence can be generated by virtually

moving a read along the candidate isoform, and recording the sets of

exons that it successively overlaps.

The effective length li of a bin i is defined as the number of positions in

the candidate isoform where reads can start and be assigned to the bin.

A simple computation shows that for a bin involving a single exon

of length le, we have li=le � L+1, where L is the read length,

whereas for bins involving several exons,

li=min ðlleft;L� lint � 1Þ+min ðlright;L� lint � 1Þ � L+lint+1, where

lleft and lright are the lengths of the leftmost and rightmost exons of the

bin, and lint is the total length of the internal exons of the bin.

Interestingly, we note that the effective length of a bin does not depend

on the candidate isoform it is associated with. A figure illustrating the

computation of the effective length is given in Section 1 of the

Supplementary Material.

We model read counts as independent Poisson random variables

whose means are proportional to the bins’ effective lengths and to the

total abundances of isoforms associated with each bin. More formally, let

us denote by U the m� q binary matrix defined as Uji=1 if bin i is

associated to isoform j and 0 otherwise, and by �j 2 R+ the expression of

isoform j (the expected number of reads per base in isoform j). Thus,Xm

j=1
Uji�j represents the sum of expressions of all isoforms involving

bin i. We expect the observed count for bin i to be distributed around this

value times the effective length of the bin li, and therefore model the read

count yi as a Poisson random variable with parameter �i=li
Xm

j=1
Uji�j.

For a vector �=½�j�
m
j=1 in R

m
+, this yields the log-likelihood

Lð�Þ=
Xq

i=1

��i+yilog �i � log ðyi!Þ½ � ð1Þ

where the scalars �i depend linearly on �.
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Maximizing the likelihood (1) allows quantifying the relative abun-

dance of each transcript when the model only includes the list of ‘true’

isoforms present in the sample (Jiang andWong, 2009). Because this list is

unknown a priori, we present in the next section the sparse estimation

approach that can jointly quantify and identify the transcripts using all

candidate isoforms, following Xia et al. (2011).

2.2 Isoform detection by sparse estimation

Because we do not assume that the list of expressed isoforms—i.e. such

that �j 6¼ 0—is known in advance, we endow � with an exponential prior

�j�
iid
Eð�Þ and maximize over all candidate isoforms the resulting posterior

likelihood, leading to the estimator

�̂�=argmin
�2Rm

+

½�Lð�Þ+� k�k1� ð2Þ

where � is a regularization parameter, and the ‘1-norm is defined as

k�k1=
Pm

j=1 j�jj. It is well-known that the ‘1-norm penalty and the

non-negativity constraint have a sparsity-inducing effect—that is, lead

to estimators �̂� that contain many zeroes (Tibshirani, 1996). The par-

ameter � controls the number of non-zero elements in the solution �̂�, i.e.

of selected isoforms, with larger � corresponding to fewer isoforms.

Mezlini et al. (2013) claim that the ‘1-penalty is inappropriate for

isoform selection, a claim we disagree with. As they note, the sum of

true abundances in RPKM weighted by isoform lengths is by definition

the true proportion of reads coming from the gene times 109. They con-

clude that penalizing by
P

j �j has little effect on the estimate. However,

the sum of the estimator �̂� weighted by isoform lengths has no reason to

be equal to the observed number of reads mapping to the gene. There are

several causes for that: model inadequacy, various noise sources, finite

sample size and bias of the estimator. Penalizing this sum therefore modi-

fies the sparsity level of �̂� as observed in our and other’s experiments

(Bohnert and R€atsch, 2010; Li et al., 2011a, b; Xia et al., 2011).

Note also that (2) is better adapted to long reads than the original

formulation of NSMAP (Xia et al., 2011), thanks to the use of general

bins. rQuant (Bohnert and R€atsch, 2010), IsoLasso (Li et al., 2011b) and

SLIDE (Li et al., 2011a) solve a similar problem where the likelihood is a

simpler quadratic function, corresponding to a Gaussian model for the

read counts. A difficulty with these approaches is that the dimension m

grows exponentially in n, making (2) intractable when n is large. For

example, Li et al. (2011a) restrict themselves to experiments involving

genes with 510 exons, because of the high computational cost for

larger genes. Xia et al. (2011) restrict themselves to genes with 580

exons, but only consider candidates with transcription start/polyadenyla-

tion sites (TSS/PAS) pairs already observed in annotations, and which

involve more than half of the exons of the gene. Other approaches such as

IsoLasso include a filtering step to reduce the number of isoforms, simi-

larly as Cufflinks does—in the case of single-end reads, their set of can-

didates is the set of isoforms returned by Cufflinks. As pointed out in

Section 1, this filtering may lead to a loss of power in isoform detection

because it disregards the read density information when constructing the

set of candidates. In the next section, we show that, surprisingly, problem

(2) can be solved efficiently without prefiltering the isoforms by using

network flow algorithms.

2.3 Isoform detection as a path selection problem

In this section, we reformulate the isoform detection problem as a

path selection problem over a particular graph. Remember that a

graph G=ðV;EÞ is composed of a finite set of vertices V and edges

E � V� V. A path is a sequence of vertices v1; . . . ; vk 2 V such that

ðvi; vi+1Þ is an arc in E for all indices 1 � i5k. A graph is a directed

acyclic graph (DAG) if it contains no path ðv1; . . . ; vkÞ with v1=vk. In

other words, the graph does not contain any cycle.

We construct an oriented graph G=ðV;EÞ whose vertices are the bins

with positive effective length defined in Section 2.1—each corresponding

to an ordered set of exons. An edge connects bin vi to vj if they can be

associated to two reads starting at successive positions in a candidate

isoform. In general, vj is obtained from vi by removing the first exon of

its ordered set or by adding one extra exon at the end of the ordered set,

depending on the lengths of the exons composing the bin (Fig. 1). We call

starting bins (respectively stopping bins) the bins that can contain a read at

the left-most (respectively right-most) position of an isoform. The result-

ing graph is a DAG generalizing the splicing graph (Heber et al., 2002),

whose vertices are single exons and edges are exon–exon junctions.

(a)

(b)

(c)

Fig. 1. Illustration of the graph construction for a gene with 5 exons. The

original splicing graph is represented in (a). The 5 exons are represented as

vertices and an arrow between two vertices indicates a junction. The nodes

of graphG0 in (b) and (c) are bins with positive effective length denoted by

gray square, as well as source s and sink t represented as circles.G0 in (b) is

the resulting graph when all exons are bigger than the read length. In that

case, each bin either corresponds to a unique exon, or to a junction be-

tween two exons.G0 in (c) is the resulting graphwhen the length of exon 3 is

smaller than the read length. Some bins involve thenmore than two exons,

here bins ð2�3�4Þ and ð2�3�5Þ. The source links all possible starting

bins, and conversely all possible stopping bins are linked to the sink.

There is a one-to-one correspondence between (s, t)-paths in G0 (paths

starting at s and ending at t) and isoform candidates. For example, the

path ðs; 1; 1�4; 4; 4�5; 5; tÞ corresponds to isoform 1-4-5
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We also consider two new vertices s and t, respectively, dubbed source

and sink, and connected to all starting and stopping bins, respectively. We

do not impose any restriction on the set of TSS/PAS sites and each exon

can potentially start or end an isoform. Consequently, the source is con-

nected to all bins modeling an exon start, and the sink to all bins model-

ing an exon end. This leads to the definition of an extended graph

G0=ðV0;E0Þ with V0=V [ fs; tg and E0 is obtained by adding to E all

edges of the form (s, v) where v 2 V is a starting bin, and (v, t) where

v 2 V is a stopping bin. This graph construction is illustrated in Figure 1.

Montgomery et al. (2010) use a similar graph structure in the context of

estimating the expression of a set of known annotated transcripts.

Let us denote by P the set of paths in G0 starting from s and ending at

t, which are called (s, t)-paths. By construction, one easily checks that P is

in bijection with the set of candidate isoforms, the path in G0 correspond-

ing to a candidate isoform being the set of bins that reads generated from

the isoform can produce. Based on this one-to-one mapping, we can

reformulate the penalized maximum likelihood problem (1)–(2) as fol-

lows: we want to find non-negative weights �p for each path p 2 P

which minimize:
X

v2V

�v � yv log �v½ �+�
X

p2P

�p with �v=ðlv
X

p2P:p3v

�pÞ ð3Þ

where the sum
X

p2P
�p is equal to the ‘1-norm jj�jj1 because the

entries of � are non-negative. Note that we have removed the constant

term log ðyv!Þ from the log likelihood because it does not play a role in the

optimization. This reformulation is therefore a path selection (finding

which �p are non-zero) and quantification problem over G0. The next

section shows how (3) can further be written as a flow problem, i.e.

technically a constrained optimization problem over the edges of the

graph rather than the set of paths in P. A computationally feasible ap-

proach can then be devised to solve (3) efficiently, following Mairal and

Yu (2012).

2.4 Optimization with network flows

A flow f on G0 is defined as a non-negative function on arcs ½fuv�ðu;vÞ2E0

that satisfies conservation constraints: the sum of incoming flow at a

vertex is equal to the sum of outgoing flow except for the source s and

the sink t. Such conservation property leads to a physical interpretation

about flows as quantities circulating in the network, for instance, water in

a pipe network or electrons in a circuit board. The source node s injects

into the network some units of flow, which move along the arcs before

reaching the sink t.

For example, given a path p 2 P and a non-negative number �p, we

can make a flow by setting fuv=�p when u and v are two consecutive

vertices along the path p, and fuv=0 otherwise. This construction cor-

responds to sending �p units of flows from s to t along the path p. Such

simple flows are called (s, t)-path flows. More interestingly, if we have a

set of non-negative weights � 2 R
jPj
+ associated to all paths in P, then we

can form a more complex flow by superimposing all (s, t)-path flows

according to

fuv=
X

p2P:p3ðu;vÞ

�p ð4Þ

where ðu; vÞ 2 p means that u and v are consecutive nodes on p.

While (4) shows how to make a complex flow from simple ones, a

converse exists, known as the flow decomposition theorem (see, e.g. Ahuja

et al., 1993). It says that for any DAG, every flow vector can always be

decomposed into a sum of (s, t)-path flows. In other words, given a flow

½fuv�ðu;vÞ2E0 , there exists a vector � in R
jPj
+ such that (4) holds. Moreover,

there exist linear-time algorithms to perform this decomposition (Ahuja

et al., 1993). As illustrated in Figure 2, this leads to a flow interpretation

for isoforms.

We now have all the tools in hand to turn (3) into a flow problem by

following Mairal and Yu (2012). Given a flow f=½fuv�ðu;vÞ2E0 , let us define

the amount of flow incoming to a node v in V0 as fvX
X

u2V0 :ðu;vÞ2E0
fuv.

Given a vector � 2 R
jPj
+ associated to f by the flow decomposition the-

orem, i.e. such that (4) holds, we remark that fv=
X

p2P:p3v
�p and that

ft=
X

p2P
�p. Therefore, problem (3) can be equivalently rewritten as

min
f2F

X

v2V

�v � yv log �v½ �+�ft with �v=lvfv ð5Þ

where F denotes the set of possible flows. Once a solution f* of (5) is

found, a solution �* of (3) can be recovered by decomposing f* into (s, t)-

path flows, as discussed in the next section.

The use of network flows has two consequences. First, (5) involves a

polynomial number of variables, as many as arcs in the graph, whereas

this number was exponential in (3). Second, problem (5) falls into the

class of convex cost flow problems (Ahuja et al., 1993), for which efficient

algorithms exist [The function (5) can be decomposed into costs CvðfvÞ

over vertices v. The general convex cost flow objective function is usually

presented as a sum of costs CuvðfuvÞ over arcs (u, v). It is however easy to

show that costs over vertices can be reduced to costs over arcs by a simple

network transformation (see Ahuja et al., 1993, Section 2.4). Note that all

arcs have zero lower capacities and infinite upper capacities.]. In our

experiments, we implemented a variant of the scaling push-relabel algo-

rithm (Goldberg, 1997), which also appears under the name of "-relax-

ation method (Bertsekas, 1998). Note that the approach can be

generalized to any concave likelihood function, including the Gaussian

model used by IsoLasso and SLIDE.

Network flows have been used in several occasions in bioinformatics.

Medvedev and Brudno (2009) solve a convex cost flow problem on a

bidirected deBruijn graph formaximum likelihoodwhole genome shotgun

assembly. Montgomery et al. (2010) introduced the formalism of flows for

RNA-Seq data; however, they did not perform isoform discovery but

quantification from a set of known transcripts. Their formulation is a

linear program, the dimension of which is the number of candidate tran-

scripts considered, which is not a network flow problem. Singh et al. (2011)

uses the terminology of flows for RNA-Seq data in the context of testing

differential transcription without reconstructing transcripts. Finally, while

this article was under revision, Tomescu et al. (2013) published a similar

method, which also uses minimum cost flow techniques for isoform

(a)

(b)

Fig. 2. Flow interpretation of isoforms using the same graph as in Figure

1b. For the sake of clarity, some edges connecting s and t to internal

nodes are not represented, and the length of the different bins is assumed

to be equal. In (a), one unit of flow is carried along the path in red,

corresponding to an isoform with abundance 1. In (b), another isoform

with abundance 3 is added, yielding additional read counts at every node
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recovery. However, their method only involves bins corresponding to

exons and exon–exon junction and, more importantly, does not solve the

penalized likelihood approach. They have therefore no principle way to

balance the sparsity of the solution with its likelihood, and even mention

that this leads to a NP-hard problem. To our knowledge, our work is the

first to show that the sparsity-inducing ‘1 penalty can be integrated with

the likelihood term in the language of network flow, to estimate a flowwith

large likelihood that can be easily decomposed in a number of paths as

small as we wish.

2.5 Flow decomposition

We have seen that after solving (5) we need to decompose f* into (s, t)-

path flows to obtain a solution �* of (2). As illustrated in Figure 2, this

corresponds to finding the two isoforms from 2(b). Although the decom-

position might not be ambiguous when f* is a sum of few (s, t)-path

flows, it is not unique in general. Our approach to flow decomposition

consists of finding an (s, t)-path carrying the maximum amount of flow

(equivalently finding an isoform with maximum expression), removing its

contribution from the flow and repeating until convergence. We remark

that finding (s, t)-path flows according to this criterion can be done effi-

ciently using dynamic programming, similarly as for finding a shortest

path in a directed acyclic graph (Ahuja et al., 1993). We insist on the fact

that the flow decomposition returns one solution of the ‘1-penalized es-

timator given by problem 3. This problem can have several solutions

yielding the same objective value, and which are typically sparse in the

number of transcripts (see Supplementary Fig. S2). The non-uniqueness

of the solution is not an artifact of our network flow approach, but a

property of the ‘1-penalized estimator. Algorithms such as SLIDE,

NSMAP or others that explicitly enumerate the candidates and minimize

the parameter in the candidate space also return one of several solutions.

In parallel, the stability of the estimator is investigated in Section 4 of the

Supplementary Material.

2.6 Model selection

The last problem we need to solve is model selection: even if we know

how to solve (2) efficiently, we need to choose a regularization parameter

�. For large values of �, (2) yields solutions involving few expressed iso-

forms. As we decrease �, more isoforms have a non-zero estimated ex-

pression �j, leading to a better data fit but also leading to a more complex

model. A classical way of balancing fit and model complexity is to use

likelihood ratio tests. Xia et al. (2011) chose this approach, but we found

the log likelihood ratio statistics to be empirically poorly calibrated be-

cause of the typically small number of samples units—exons—and the

non-independence of the observed read counts. We choose a related ap-

proach, which we found better behaved, and select the model having the

largest bayesian information criterion (BIC) (Schwarz, 1978). An alter-

native approach taken by Li et al. (2011a) would be to use stability

selection (Meinshausen and B €uhlmann, 2010).

3 RESULTS

We now compare our proposed method FlipFlop to Cufflinks
(Trapnell et al., 2010) version 2.0.0, IsoLasso (Li et al., 2011b)

version 2.6.1 and NSMAP (Xia et al., 2011) on both simulated
and real data. All experiments were run on a desktop computer

on a single core of an Intel Xeon CPU X5460 3.16Ghz with
16GB of RAM. Reads are aligned to a reference genome by

using TopHat (Trapnell et al., 2009) version 2.0.6, and the con-
structed alignment files are used as input to the methods we

compare. IsoLasso, Cufflinks and FlipFlop only use these
aligned reads as input, and estimate their exon boundaries and

TSS/PAS from read density. NSMAP additionally requires exon

boundaries and known TSS/PAS as input. For paired-end ex-

periments, we extended our initial model designed for single-end:

a pair of reads is considered as a long single-end read. When the

two reads of a pair span bins potentially separated by some

exons, we use heuristics based on genomic distances to decide

whether these exons are spliced. All software programs are used

with default parameters, except that for paired-end experiments,

we provide fragment length mean and standard deviation to

IsoLasso, Cufflinks and FlipFlop. Note that all results can be

easily reproduced by following the tutorials available at http://

cbio.ensmp.fr/flipflop/experiments.html.

3.1 Simulated human RNA-Seq data

Because little is known about the true set of isoforms expressed

in real data, we start our experimental validation with a set of

simulations. We use the RNASeqReadSimulator software

(http://alumni.cs.ucr.edu/�liw/rnaseqreadsimulator.html) to

generate single-end and paired-end reads from the annotated

human transcripts available in the UCSC genome browser

(hg19). We restrict ourselves to the 1137 multi-exons genes on

the positive strand for chromosome 1, corresponding to 3709

expressed transcripts.
We follow the protocol of Isolasso (Li et al., 2011b) and con-

sider that a transcript from the annotation has been detected by a

method if it predicts a transcript that (i) includes the same set of

exons, and such that (ii) all internal boundary coordinates (i.e. all

the exon coordinates except the beginning of the first exon and

the end of the last exon) are identical. The objective for each

method is to recover a large proportion of transcripts that

were used for read generation—high recall—without detecting

too many transcripts that were not used to generate the

reads—high precision.
Figure 3 shows the precision and recall of the compared meth-

ods on single-end and paired-end simulations. Because we expect

the difficulty of the deconvolution problem to increase with the

number of transcripts of the gene, we stratify the result by this

number: each dot represents the precision and recall of one

method for genes with a particular number of transcripts in

the UCSC annotation. As expected, genes with more transcripts

lead to more difficult estimation problems and decreased per-

formances for all methods. Figure 3a shows single-end results

for different read lengths from 100 to 300 bp and a fixed

number of 1 million reads per experiment. FlipFlop clearly

takes advantage of longer reads: the longer the read the better

the accuracy for all transcript levels. For 100 bp long reads,

FlipFlop and Cufflinks show similar results, while NSMAP

gives slightly better precision and recall for two transcript level

and degraded results compared with FlipFlop for more than four

expressed transcripts. These differences might arise from the fact

that NSMAP restricts its search to the TSS and PAS observed in

the annotation, whereas FlipFlop estimates them from reads,

and the fact that the two methods use different graphs and

model selection techniques. For 300 bp long reads, FlipFlop out-

performs all other methods as soon as there is more than one

expressed transcript. For instance, for the three to four tran-

scripts levels, FlipFlop achieves 75% of precision and 67% of

recall, while Cufflinks reaches 74 and 52% and IsoLasso reaches

64 and 51%. This demonstrates that an adapted model for long
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reads is critical for isoform recovery. NSMAP optimizes a similar

Poisson objective function as FlipFlop but only models reads at

the exon or exon–exon junction levels; it looses statistical power

when the read length increases. Figure 3b shows paired-end re-

sults for 400 bp fragment length, 20 bp SD, 1 million read pairs

and read lengths from 100 to 175 bp. Although our model is

designed for single-end reads and is particularly adapted to

long reads, it shows competitive or better accuracy for paired-

end reads. Once again, when the read length increases, FlipFlop

performance improves proportionally more than other methods.

In Figure 3c, the read length is set to 150 bp and the number of

simulated reads varies from 1 million to 10 million. Increasing

the coverage clearly helps FlipFlop, whereas it does not change

much for Cufflinks and IsoLasso. Cufflinks constructs its set of

Fig. 3. Precision and recall of compared methods on simulated reads from the UCSC annotated human transcripts. (a) Single-end reads with different

lengths (100, 200, 300bp). (b) Paired-end reads with different lengths (100, 125, 150, 175bp). (c) Single-end reads with a fixed 150bp length and an

increasing amout of material (1, 5, 10 million)
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transcripts and estimates their abundances in two separate steps,

and the construction of the set of returned transcripts does not

take read density into account: it intends to find the smallest set

of isoforms covering all the observed reads. IsoLasso is based on

penalized likelihood maximization like FlipFlop and NSMAP,

but starts from a restricted set of isoforms—the same set

returned by Cufflinks for single-end data. Consequently, this

family of methods discards some information that can help iden-

tifying the set of expressed isoforms.
While results in Figure 3 are obtained with default parameters

for all methods, Supplementary Figure S6 of the supplementary

shows performances when parameters are first tuned on an inde-

pendent training set; in that case, results are not significantly

different. Note that the number of exons of a gene significantly

affects the difficulty of isoform reconstruction. We show in the

Supplementary Material (Supplementary Fig. S3) similar results

to the ones presented in Figure 3 with stratification by number of

exons instead of number of transcripts. We also detail in Section

6 of the Supplementary Material more realistic simulations that

include typical library preparation and sequencing biases

using another simulator—the Flux-Simulator (Griebel et al.,

2012), which aims at modeling RNA-Seq experiments in

silico—and we show results that are consistent with the ones of

Figure 3.

Figure 4 shows the mean CPU time taken by each method to

perform the deconvolution of genes with different sizes. Genes

with more exons tend to have more candidate isoforms and ex-

periments involving such genes are expected to take more time.

Therefore, we stratify the observed times by exon number of the

genes: each barplot represents the mean time taken by each

method for finding the transcripts of genes having a particular

number of exons. As expected, FlipFlop is always faster than

NSMAP, more than a hundred times faster for genes with420

exons. FlipFlop speed is comparable with Cufflinks, and about

four times slower than IsoLasso. This is because IsoLasso maxi-

mizes its objective over a very restricted set of candidates—in

these simulations never more than nine and around two to

three on an average. Overall, FlipFlop estimates the set of

expressed isoforms for 1137 genes in 59min, i.e. about two

genes per second. Note also that the time for data pre-

preprocessing (finding exon boundaries and read counts for

exons and junctions) is taken into account for all methods

except NSMAP.

These simulations confirm several facts. First, methods that

identify and quantify transcripts as a single penalized max-

imum likelihood problem show good performances and take

clear advantage of an increase in coverage. Second,

correctly modeling long reads allows to greatly improve the ac-

curacy of isoform reconstruction. Third, the proposed network

flow strategy allows to solve the penalized likelihood approach

quickly even when the set of candidate isoforms is extremely

large.

3.2 Real RNA-Seq data

Our second round of experiments involves two independent real

human embryonic stem cell datasets. They both contain about 50

million 75bp reads, either paired-end or single-end, with respect-

ively NCBI SRA accession number SRR065504 and

ERR361241.
In the experiments of Section 3.1, we generated the reads based

on a known set of transcripts. In the present case, the reads come

from actual human tissues, and we do not have access to the true

set of expressed transcripts. Following Xia et al. (2011) and Li

et al. (2011a), we choose to use the UCSC annotation as ground

truth in the evaluation. Admittedly, this is not perfect as some

expressed transcripts may be missing from the annotation, and

some annotated transcripts may not be expressed in this particu-

lar experiment. However, agreement of the prediction with the

set of known transcripts could be a good sign.

Figure 5 shows precision and recall of each method for differ-

ent FPKM (Fragments Per Kilobase of exon per Million frag-

ments mapped) levels. When considering all transcripts with

predicted abundances higher than 1 FPKM, FlipFlop has a

higher precision for both the paired-end and single-end datasets,

while Cufflinks has a better recall. For transcripts with more

than 5 FPKM abundance, all methods have a similar recall,

with a slight advantage to Cufflinks, while FlipFlop shows a

much better precision. Section 7 of the supplementary gives add-

itional details on the real RNA-Seq data experiments:

Supplementary Figure S8 shows the running time of the com-

pared methods and Supplementary Figure S9 corresponds to the

precision-recall curves obtained for FlipFop when varying the

model selection rule.

4 DISCUSSION

Simultaneously tackling identification and quantitation using

penalized likelihood maximization is known to be a powerful

approach to estimate the set of expressed transcripts. However,

existing ‘1-regularized regression techniques cannot deal with

genes that contain too many exons, as the set of candidate iso-

forms grows exponentially with the number n of exons. By lever-

aging network flow optimization algorithms, we discover a few

expressed transcripts among the exponential number of

Fig. 4. Average CPU times in milliseconds (logarithmic scale) for the compared methods with process a gene from human simulated 100bp single-end

reads
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candidates by solving a problem with a number of variables

polynomial in n.
We compared our approach to existing ‘1-penalized likelihood

maximization methods as well as methods that define expressed

isoforms as the smallest set of transcripts covering all observed

reads; the latter methods perform abundance estimation in a

separate step. We observed on simulation data—where the true

set of expressed transcripts is known—that, unlike the second set

of methods, penalized likelihood maximization methods take ad-

vantage of an increase in read coverage. Moreover, we show that

correctly modeling long reads is of primary importance for iso-

form recovery. Our approach, which models reads covering any

number of exons, outperforms other methods for 300 bp long

reads. We believe this is an important improvement as RNA-

Seq technologies are moving forward longer reads. Our FlipFlop

method has also shown to be competitive with state-of-the-art

methods on real single-end and paired-end human stem cells

data, especially for transcripts whose abundance was significant.

In addition, the runtime of our method was comparable with the

runtime of the second set of methods, and orders of magnitude

faster than existing software for penalized likelihood

maximization.
We believe these results have important practical implica-

tions. In addition to the obvious gain in time when estimating

the expression of transcripts for a single gene and a single

sample, our approach makes the task amenable in a reason-

able amount of time for all genes in a large number of sam-

ples. This is a necessary step for high-throughput differential

expression studies at the transcript level, a direction we are

planning to explore in future work. Differential expression

studies were until now restricted to gene level studies, i.e.

ignoring the transcript level information, to cases where the

set of expressed transcripts was known in advance or to meth-

ods which were not using the read density to estimate the set

of expressed transcripts—a less efficient approach as illustrated

in our experiments. Furthermore, accurately estimating the

transcript-level expression for all genes of all samples in a

study may lead to improvements in molecular based diagnosis

or prognosis tools, as well as in clustering of samples, e.g for

cancer subtype discovery. The ability of our approach to deal

with splicing graphs with potentially hundreds of nodes also

paves the way to efficient de novo transcript identification,

where we do not restrict ourselves to annotated exons within

a single gene.
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