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ABSTRACT

Motivation: Next-generation sequencing technologies produce un-

precedented amounts of data, leading to completely new research

fields. One of these is metagenomics, the study of large-size DNA

samples containing a multitude of diverse organisms. A key problem

in metagenomics is to functionally and taxonomically classify the

sequenced DNA, to which end the well-known BLAST program is

usually used. But BLAST has dramatic resource requirements at meta-

genomic scales of data, imposing a high financial or technical burden

on the researcher. Multiple attempts have been made to overcome

these limitations and present a viable alternative to BLAST.

Results: In this work we present Lambda, our own alternative

for BLAST in the context of sequence classification. In our tests,

Lambda often outperforms the best tools at reproducing BLAST’s

results and is the fastest compared with the current state of the art

at comparable levels of sensitivity.

Availability and implementation: Lambda was implemented in the

SeqAn open-source C++ library for sequence analysis and is pub-

licly available for download at http://www.seqan.de/projects/lambda.

Contact: hannes.hauswedell@fu-berlin.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Next-generation sequencing has opened the door to a multitude

of possible research fields, among them metagenomics. In meta-

genomic projects, millions or billions of DNA or cDNA reads

are collected in a single experiment. Usually it is attempted to

either assemble the genomes of the organisms contained in the

sample or to determine its taxonomic content, i.e. conduct a

sequence classification. This means assigning a read to a

known, usually protein-coding and annotated, subject sequence

to identify the encoded function, the organisms present in the

sample or identify the closest relative. Bazinet and Cummings

(2012) give an overview of the various programs that have

been developed to address this problem. Of the approaches

they compare, 11 of 14 use BLAST in their pipeline. Hence,

BLAST (Altschul et al., 1997) can be seen as the de facto stand-

ard used for trying to solve this problem. Bazinet and Cummings

(2012) also note in their study that ‘[the] BLAST step completely

dominates the runtime for alignment-based methods’. For the two

programs with the highest precision in their comparison,

CARMA (Gerlach and Stoye, 2011; Krause et al., 2008) and

MEGAN (Huson et al., 2007), the BLAST step actually made

up 96.40 and 99.97% of the runtime. Another metagenomic

study (Mackelprang et al., 2011) states that 800 000 CPU

hours at a supercomputer center were required to conduct the

study. Hence, since some time there is an effort to replace the

BLAST suite by algorithms and tools that are much faster while

not sacrificing too much accuracy. That means the tools aim at
finding the same alignment locations as BLAST and possibly an

alignment of similar quality (expressed by bit score).

1.1 Previous work

Some tools sought to replace BLAST, with varying success,

among them BLAT (Kent, 2002) and the more recent releases
of UBlast (Edgar, 2010), RAPSearch2 (Ye et al., 2011; Zhao

et al., 2012), and PAUDA (Huson and Xie, 2013). The latter

tools all claim to be magnitudes faster than BLAST and at
least notably faster than BLAT—at the expense of some degrees

of sensitivity. All contain specific algorithmic optimizations for
searches against protein databases, (BLAST and BLAT are more

general purpose tools, which are optimized for pure DNA
searches as well) most notably the use of reduced alphabets, a

technique that we also use in Lambda. While UBlast and

RAPSearch seem to be designed as general replacements for
BLAST modes that contain protein searches, PAUDA is more

specifically designed for metagenomic tasks.
There are further tools with similar intentions, among them

SANS (Koskinen and Holm, 2012). These were not included in
our comparison because the lack of e-value statistics makes it

difficult to assess the significance of the results and to compare
them with those of other programs.

1.2 Our contribution

Lambda adapts a new approach inspired by the read mapper
Masai (Siragusa et al., 2013). The approach is based on the con-

cepts of double indexing and multiple backtracking, i.e. Lambda

uses a Radix tree of the queries’ seeds (non-overlapping k-mers
of the reads) to search in a suffix array index built over the

subject sequences. This method is unique among the programs
compared.

The sequences in the query DNA strings are translated into
amino acid sequences and converted using an alphabet reduction.

Lambda supports several alphabet reductions, the default is the
commonly used Murphy10 reduction (Murphy et al., 2000).

Lambda offers three modes (fast, default and sensitive) in each
of which it beats the competitors in speed while having similar

sensitivity. Furthermore, it offers a sensitive version of the

x-drop algorithm for seed-extension, which results in highly ac-
curate alignments compared with the BLAST gold standard and

our competitors. Although Lambda was designed for the pur-
pose of replacing BlastX and we will concentrate on this aspect in

the following, it also supports all other versions of the BLAST

suite (BlastP, BlastN, TBlastN and TBlastX). In addition, it sup-
ports the most commonly used BLAST formats (tabular and

pairwise) and hence can easily replace BLAST in established
pipelines. Finally, Lambda is part of the tool suite of the

SeqAn library (D €oring et al., 2008) for efficient biological*To whom correspondence should be addressed.
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sequence analysis (e.g. Emde et al., 2010; Kehr et al., 2011;
Siragusa et al., 2013; Weese et al., 2009, 2012) and is multi-
threaded to offer the advantage to run in parallel on modern

multicore architectures.
In the following we will elaborate on the details of the Lambda

algorithm and implementation in Section 2 and show in Section 3
how Lambda performs on two recently discussed datasets

(Sargasso Sea and Bovine Gut) in comparison with the state-
of-the-art methods Rapsearch2, UBlast, Pauda and of course

BLAST.

2 METHODS AND IMPLEMENTATION

The general work flow of Lambda (in BlastX mode) can be

summarized as follows:
In a first step, the query DNA sequences are translated into

amino acid sequences, which are then converted into sequences

of a reduced alphabet. The sequences are then used to create a
query search trie [A trie (prefix tree) in the context of this article

describes a special tree storing for each prefix of a text its loca-
tion in the text]. Due to the alphabet reduction (which captures

the amino acid similarities) the trie can be used to search for
(edit-distanced) matches in a pre-computed database index; with-

out alphabet reductions more expensive substitution matrices
would have to be used. In a last step, the seeds are extended

and verified.
In addition to the lambda binary performing the tasks above,

Lambda also includes a second binary, lambda_indexer, for
pre-processing the database sequences. The entire pipeline is dis-
played in Figure 1.

2.1 Translation

Most metagenomic studies that are interested in the functional

analysis and identification of the sample want to search protein
databases with genomic or transcriptomic sequences, i.e. se-

quences in DNA or RNA alphabet. In this case, the sequences
need to be translated into amino acid space to permit the com-
parison. As part of this work, an efficient implementation for six-

frame translation was added to the SeqAn library (D €oring et al.,
2008) that makes use of OpenMP and allows to translate 14

million reads of �100bp length, with six frames in 2.3 s.

In contrast to other applications, Lambda offers all 19 genetic
codes currently regarded relevant by the NCBI (As compiled

by Andrzej Elzanowski and Jim Ostell, updated April 30,
2013, http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.

cgi), which could be an advantage, especially when working
with ‘exotic’ samples.

2.2 Alphabet reduction

Research on the functional redundancy of amino acids dates

back to the late 70s of the 20th century (Sander and Schul,
1979). It has mostly been used in structural research (Regan

and DeGrado, 1988); however, the main purpose of reducing
the alphabet today is the reduction of computational complexity

while sacrificing as little sensitivity as possible.
Basically, all methods begin the reduction on the canonical

20-letter amino acid alphabet that includes all proteinogenic

amino acids, without the rare amino acids Selenocystein (U)
and Pyrrolysine (O) and that does not include a character for

the STOP-codon and none of the wildcard characters frequently
encountered (X for ‘any amino acid’; B for ‘N or D’; Z for ‘Q or

E’). Depending on the method the target size may be fixed or
variable, some research indicating that sizes as low 5 are suffi-

cient (Bacardit et al., 2009), most suggesting that 10–12 letters
are required and/or most effective (Li et al., 2003; Murphy et al.,

2000; Ye et al., 2011). Of the programs previously introduced,

both RAPSearch2 and UBlast use the 10-character reduction
developed by Murphy et al. (2000), subsequently referred to as

Murphy10. Both programs apply the reduction only during seed-
ing and do the extension on the regular alphabet to achieve a

higher sensitivity in the final step. PAUDA uses a different kind
of reduction, which it calls pseudo-DNA or pDNA, because it

reduces to target size 4, the size of the DNA/RNA-alphabet. This
enables PAUDA to use Bowtie2 (Langmead and Salzberg, 2012)

in its pipeline (which was built to work in DNA-space). To com-
pensate for the loss of specificity per character, the much longer

seed length of 18 is chosen.
Owing to its popularity (Edgar, 2010; Zhao et al., 2012) and its

success in empirical comparisons (Ye et al., 2011), we chose to

implement the Murphy10 reduction (Murphy et al., 2000). It is
based on amino acids’ correlation in the Blosum50 substitution

matrix and the canonical 20-letter alphabet. In addition, we

Fig. 1. Pipeline of Lambda (BlastX-mode). The lambda_indexer takes as input a file with the subject sequences and optionally an interval file

computed by seqmasker to create the index for seed identification. The query sequences are translated fromDNA to amino acid alphabet, reduced and

then converted into a search trie. Afterwards, the search trie is used together with the pre-computed index to find candidate regions, which are then

extended and verified
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generated alphabet reductions from SeqAn’s 24-letter alphabet
and Blosum62 to increase sensitivity. This was successful, but

sensitivity gains where bought with efficiency losses, so these
are not part of default Lambda parameter profiles, yet they

remain selectable as parameters.

2.3 Seeding with double indexing

Seeding, the identification of candidate regions for hits, is a cru-
cial task in sequence classification. A good seeding strategy can

decrease the overall running time by magnitudes. Over the course

of time, several approaches have been used: Blast uses a finite
state machine from all ‘related’ query k-mers, Bowtie searches its

seeds in an FM-Index, RAPSearch uses a suffix array to find
seeds, RAPSearch2 and UBlast use hash-tables. In contrast,

Lambda uses a double indexing search approach, which was
originally developed for the Masai read mapper (Siragusa

et al., 2013). Double indexing refers to the fact that, in contrast
to all of the other tools discussed, Lambda builds an index over

both the seeds (of the queries) and the subject sequences.

The indexing structure built on the query sequences is a Radix
trie and the indexing structure built over the subject sequences is

a suffix array that is conceptionally used as a suffix trie (Other
data structures, like FM-indices are also supported, but the

Masai publication recommends the suffix array for speed rea-
sons). The suffix array is then searched by backtracking

(Ukkonen, 1993), but with the trie of the seeds instead of a
single sequence. Through the backtracking, all subtrees in the

suffix trie are explored until the distance to the query sequence

becomes too large (Details of the post-processing of candidate
regions can be found in the supplements). Using a Radix trie

for the queries ensures that multiple seeds are processed in
parallel.

2.4 Extension

The last step in verifying a candidate region is the computation-

ally expensive extension phase, which follows the post-processing
of candidate regions (described in the supplements). This is usu-

ally done by means of dynamic programming. The algorithms
are adapted from Needleman and Wunsch (1970), Smith and

Waterman (1981), Gotoh (1981) and Hirschberg (1975). To

avoid needlessly computing the full dynamic programming
matrix, we added functionality similar to the original x-drop al-

gorithm (Altschul et al., 1990). By specifying an x-drop param-
eter, columns of the alignment will only be computed for as long

as the current column maximum does not fall x below the overall
maximum seen so far. This algorithmic approach applies the

x-drop paradigm only to the horizontal dimension; extension
in vertical space is in turn limited by a fixed size band (Chao

et al., 1992); see Figure 2.
The x-drop and the width of the band can be set by the user,

and the latter can be set as an absolute value, be dynamically
computed from the query sequence’s length, or be deactivated.

Choosing non-linear growth of the band accounts for the fact

that the expected length of local alignments (and thereby the
chance for gaps) does not grow linearly with sequence length.

In fact, it grows logarithmically (The raw score influences the
e-value exponentially, while the length is a simple factor; because

the expected raw score grows linearly with length of the match

(Altschul and Gish, 1996), the lengths of the matches need to

increase logarithmically with the length of one of the sequences

to maintain the same e-value), which is why this was chosen as

default band parameter. For the x-drop parameter a default of

30 was chosen, which is similar to UBlast (32) and BLAST (27)

(in its initial gapped extension) (BLAST uses bit-score x-drops

with 15 as default; a bit score of 15.0086 corresponds to a raw

score of 27 in the default scoring scheme). The entire seeding and

extension phase are run in parallel over contiguous blocks of

queries. This is implemented with OpenMP (Dagum and

Menon, 1998).

3 RESULTS

We performed a comprehensive experimental evaluation of

Lambda and competing tools on two real-world datasets.

All these tests were conducted on a Debian GNU/Linux 7.1

system (http://www.debian.org), with 2� Intel Xeon E5-

2667V2 CPUs at 3.3GHz (a total of 16 physical, 32 virtual

cores) and 384 GB of RAM. All temporary data, intermediate

data and both input and output files were read from and written

to a tmpfs, i.e. a virtual filesystem in main memory. This prevents

disk-caching effects from disturbing the benchmark, and

increases overall performance. The latter effect is stronger on

IO-heavy tools, but since memory is a small cost factor in bio-

informatics pipelines, we recommend this approach for general

use as well.
All programs were run with 16 threads and an e-value cutoff

of 0.1 (more on scoring below). The running times do not include

the creation of a database index. However, for Lambda they

include the time needed for indexing the query sequences.

Memory usage is measured as the maximum of the sum of the

process and its child processes’ virtual memory resident set size

in/proc. This did not work for PAUDA, which uses difficult-

to-track java processes. Here we give 20GB as an upper bound

Fig. 2. Banded right extension of alignment. The seed alignment is

orange, the right extension purple; white solid cells are computed, grey

cells are out of the band; tilted cells would have been computed, but were

not, owing to the x-drop; cell with + contains the last and global

maximum
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because this is the maximum reserved by the Java Virtual
Machine; the publication states that memory usage is up to

16GB.

3.1 On scoring

The quality of an alignment in BLAST and BLAST-like pro-

grams is indicated by either a bit score or an e-value, of which
the latter takes sequence lengths into account and the former

does not. Most metagenomic studies recommend an e-value
cutoff of 10�6 to 10�4 (Lamendella et al., 2011; Mackelprang

et al., 2011; Wommack et al., 2008), but some go as low as
10�16 (Tetu et al., 2013) or 10�20 (Eikmeyer et al., 2013).

Unfortunately, although e-value calculation is widely adopted
and accepted, different programs seem to be unable to consist-

ently reproduce BLAST’s e-values [This is independent of con-
ditional compositional score matrix adjustments (Altschul et al.,

2005), which are deactivated, as no other programs support
them]. Due to changes in the statistical model, even e-values

calculated by different implementations and revisions of
BLAST are not equal. This is not true for bit-scores, which are

very close for identical alignments.
Because the only statistical difference between bit scores and

e-values is the consideration of the total length of subject

sequences—which is constant for each benchmark—and the
length of the current query sequence—which only varies a little

throughout each benchmark—we chose to use a minimum bit
score instead of a maximum e-value as cutoff. The minimum bit

score selected was the average bit score of all BLAST results that

yielded an e-value between 10�6 and 10�4. This is in line with the
e-values used in the publications of competing tools. The bit-

score cutoff was applied to the results a posteriori, after an initial
parameter of 10�1 was set as e-value cutoff for all programs in

the benchmark. This ensures that no valid results are lost early
on in the benchmark, and comparability is maintained, even if a

longer-than-average query sequence (that would have a higher
e-value) is encountered.
Concerning the choice of scoring matrix, we chose Blosum62,

as this is the de facto standard and the only available choice for
PAUDA and RAPSearch2. Lambda does, however, also support

Blosum45 and Blosum80, as well as manual scoring parameter
selection.

3.2 Measures of sensitivity

Different indicators can be used to define sensitivity, of which the
total number of valid results is the most obvious one. It is rele-

vant to research where all or up to n matches per query are
desired. In sequence classification (and many other use-cases)

we are only interested in the single best result for every query
sequence (by definition we are looking for the closest matching

sequence), so most approaches use the number of matched
queries as the critical indicator (Huson and Xie, 2013; Ye

et al., 2011).
As mentioned in the beginning, we will use the results of

BLAST as the gold standard. Hence, we want to see if programs
actually recall BLAST’s hits, i.e. whether the best match is on the

same subject sequence, or whether they classify the query se-
quence as something possibly different by assigning it to a dif-

ferent subject. Arguably, a query assigned to a different subject

sequence does not necessarily mean that the match is inferior.

However, no heuristic tool to date has shown to be significantly

more sensitive than BLAST, and none of the compared tools

claims to be, so it is a fair assumption that a high BLAST

recall is a predictive indicator of a high sensitivity. This is also

theoretically founded by BLAST having a lower effective seed

length, higher x-drop values and more steps of realignment.
The recalled matches are further categorized by the bench-

mark depending on their bit score. These categories demonstrate

whether the alignments are of comparable quality, which would

be an indicator for the ability to reproduce results at more strin-

gent cutoffs, and a general clue on the capabilities of the algo-

rithms. In Tables 2 and 3 there is one column for the number of

all recalled matches and one column (labeled ‘*’) for all recalled

matches, which scored no worse than 90% of BLAST’s bit score.

3.3 Applications

The applications compared are the following: BLAST by NCBI,

version 2.2.27+ (Camacho et al., 2009).

Pauda in version 1.0.1 (Huson and Xie, 2013); both the slow

mode and the fast mode are benchmarked (PAUDAslow and

PAUDAfast, respectively); the Bowtie2 version used in conjunc-

tion with PAUDA is 2.1.0.

RAPSearch2 (Zhao et al., 2012) in version 2.12, which claims

significant speed improvements to the previous version and

which supports an extra-fast mode—both of which were bench-

marked; the current version (2.14) crashed on one of our datasets

and was not included; however, the homepage claims no per-

formance improvements since 2.12.

UBlast by Edgar (2010): only 32 Bit binaries (and no source

code) are freely available, which is why these were used; initially,

version 7.0.1001 was tested, but this produced poor/no valid re-

sults on both datasets, so we chose to include version 6.0.307

instead. UBlast advertises an acceleration parameter as a con-

venient way to tune sensitivity, so we chose to benchmark both,

the default (0.8 according to the manual) and with a value of 1,

which should be slower but maximally sensitive.

Lambda is compared in three different configurations; the default

and sensitive/slow profiles both use approximate seeding with

seed length 10, one allowed mismatch and the Murphy10 alpha-

bet, they differ only in that the default profile has non-overlap-

ping seeds, while the slow profile generates seeds that overlap by

Table 1. Properties of the two datasets

Dataset I Dataset II

Origin Bovine Gut Sargasso Sea

Average read length 72bp 818bp

Number of reads 58240 283 1982 807

Number of reads selected 1 200 000 100 000

Selected read lengths 72bp � 900 bp

Minimum bit score 42.0695 48.5243
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five amino acids; the fast profile uses no alphabet reduction and

has exact half-overlapping 8-mers as seeds.
Not all of the applications support masking low-complexity

regions ‘online’, and because the query needs to be translated, it

is difficult to mask it before giving it to the programs. Therefore,

only the database was masked before doing the comparison and

all other masking was deactivated. Where applications supported

it, soft-masking was used (BLAST, Lambda, UBlast). The data-

base for PAUDA was hard-masked, as it supports no form of

soft-masking. In all cases the SEG algorithm (Wootton and

Federhen, 1993) was used. RAPSearch2 could not be configured

to not use its internal masking and it was not clear from the

publication whether query, database or both are masked, and

thus, the database was not ‘pre-masked’ for RAPSearch2.

3.4 Datasets

For Illumina reads, we used SRR020796 (Dataset I), a reference

dataset of the highly optimized RAPSearch2. It is sampled from

the bovine gut and an example of a metagenomic application in

medicine.

The second dataset (Dataset II) was retrieved from the servers

of the J. Craig Venter Institute (https://moore.jcvi.org/sargasso/),

it is the dataset presented in one of the most highly cited, early

metagenomic studies (Venter et al., 2004). The reads were

sequenced with Sanger’s method. Because Sanger sequencing

and 454 sequencing produce reads of similar accuracy and

lengths (Liu et al., 2012), this dataset should have informative

value for both technologies.
We chose these two datasets to have representatives of the

different sequencing approaches, especially different read

lengths, as some programs might be adapted better to one use

case. The difference in datasets also helps to prevent over-opti-

mization of heuristic parameters. The database of subject se-
quences used for all runs was UniProtKB Swiss-Prot (http://

www.uniprot.org/).

3.5 Benchmark results

Dataset I Table 2 contains a detailed overview of the results on
dataset I. The general observation is that Lambda, UBlast6 and

RAPSearch2 have a similar number of matched queries (�97%)

Table 2. Results overview of dataset I (Illumina reads)

Program # matched queries bitS % Id. BLAST recall Performance

Med Med Total * Time[s] SpeedUp mem[MiB]

BLAST 35834 100.00% 42.0 79.2 35834 100.0% 35834 100.0% 28998 1.0x 389

PAUDAfast 18 207 50.81% 46.6 86.0 5591 15.6% 5589 15.6% 35 828.5x � 20000

PAUDAslow 21 602 60.28% 46.2 86.0 12365 34.5% 12357 34.4% 186 155.9x � 20000

RAPSearch2fast 31 397 87.62% 45.8 86.9 30351 84.7% 30338 84.6% 89 325.8x 2402

RAPSearch2default 34 615 96.60% 45.4 86.9 34559 96.4% 34541 96.3% 507 57.2x 2408

Lambdafast 27 224 75.97% 46.2 87.5 24672 68.9% 24672 68.9% 21 1380.9x 4974

Lambdadefault 34 335 95.82% 45.4 86.9 33724 94.1% 33724 94.1% 250 116.0x 7719

Lambdaslow 34 597 96.55% 45.0 86.9 34086 95.1% 34086 95.1% 343 84.5x 9576

UBlast6default 34 880 97.34% 45.4 87.0 34529 96.3% 34529 96.3% 445 65.2x 947

UBlast6slow 35 019 97.73% 45.1 86.4 34745 96.9% 34745 96.9% 1234 23.5x 948

Note: Relative measures highlighted and in comparison with BLAST; green indicates the best results of a column, followed by yellow (satisfactory) and red (worst). The ‘*’

column contains only recalls with bit scores * to BLAST’s.

Table 3. Results overview of dataset II (Sanger reads)

Program # matched queries bitS % Id. BLAST recall Performance

Med Med Total * Time[s] SpeedUp mem[MiB]

BLAST 82954 100.00% 150.0 44.9 82 954 100.0% 82954 100.0% 45227 1.0x 341

PAUDAfast 5159 6.22% 139.0 49.0 387 0.4% 169 0.2% 28 1615.3x � 20000

PAUDAslow 9552 11.51% 151.0 47.0 980 1.1% 416 0.5% 130 347.9x � 20000

RAPSearch2fast 53 651 64.68% 150.2 60.2 33 259 40.0% 15988 19.2% 187 241.9x 2294

RAPSearch2default 65 594 79.07% 153.2 53.3 46 204 55.7% 30691 37.0% 1039 43.5x 2335

Lambdafast 47 541 57.31% 225.7 58.0 34 814 41.9% 34107 41.1% 82 551.5x 5370

Lambdadefault 63 422 76.45% 187.1 51.9 50 016 60.2% 48572 58.5% 522 86.6x 8650

Lambdaslow 67427 81.28% 179.1 50.9 54 060 66.3% 53255 64.2% 937 48.3x 13 121

Note: Relative measures highlighted and in comparison with BLAST; green indicates the best results of a column, followed by yellow (satisfactory) and red (worst). The ‘*’

column contains only recalls with bit scores * to BLAST’s.
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compared with BLAST, with UBlast6 being slightly better than
the rest. Different profiles (except the fast settings of Lambda

and RAPSearch2) seem to have little influence on the amount of

assigned queries, and the distributions of bit scores are similar,

also compared with BLAST. PAUDA is far behind in all aspects;

it produces only 50 and 60% of the amount of queries with

matches and in total only recalls 16 and 35% of BLAST’s results.
The greatest speed-up compared with BLAST is �1380�

achieved by Lambdafast, which is even faster than PAUDAfast

by a factor of �1.6�. Next comes RAPSearch2fast with a speed-

up of 4325� compared with BLAST. In the default mode,

Lambda is about twice as fast as RAPSearch2 while having a

similar sensitivity. Hence, when speed is priority, Lambda is the

clear winner. Even with respect to sensitivity, RAPSearch2 and

UBlast are only marginally better.

Dataset II The results on the second dataset with longer reads
have more variance, but some trends are similar to dataset I.

Table 3 shows that PAUDA is not well suited (and was not

designed) for long reads, it produces 511% of BLAST’s

amount of matched queries, even in slow mode, and it recalls

52/0.4% of BLAST’s assignments. UBlast6 fails to run on this
dataset because it runs out of memory, likely due to limitations

of the academic 32 bit version. Similar to dataset I, Lambda is

about twice as fast as RAPSearch2 in its respective modes.
In its default mode, Lambda has slightly less matched queries

(76.5 versus 79%) while having a higher BLAST recall (60.2

versus 55.7%, respectively 58.5 versus 37%). Lambda’s more

sensitive slow mode beats RAPSearch2’s default mode, both in

regard to sensitivity and speed. Thus, for this dataset, Lambda’s

profiles are well suited for different research objectives or
constraints.

Memory usage differs slightly for all the applications with

Lambda using in the range of 5–13GB, RAPSearch2 around
2.4GB. UBlast6 needs only �1GB of main memory for dataset

I, but for dataset II, it obviously exceeded its 4GB limitation.

While Lambda’s memory usage is not extraordinarily high, it can

be reduced further by a command-line parameter that offers a

convenient memory to runtime trade-off. The impact of this par-
ameter on memory usage is much stronger than on speed, so this

is worthwhile in memory-constrained environments, e.g. increas-

ing the so-called partition factor from 2 to 3 on dataset II, and

Lambdaslow reduces memory usage by 3GB (23%) while only

increasing runtime by 30 s (3%).

4 DISCUSSION

For our test datasets, the fast PAUDA program seems to be an
unsuitable choice, when recalling BLAST’s results is important.

One possible explanation for the poor performance is that

Bowtie2 (Langmead and Salzberg, 2012)—which works at

PAUDA’s core and is designed for read mapping—performs

poor in its local alignment mode, when the expected local align-

ment size is much shorter than the original read. Another factor
of why PAUDA likely misses many hits early on is that its seeds

are long. Finally, the bad rate of BLAST recalls might be ex-

plained by PAUDA apparently not performing a realignment in

regular protein space. A slightly lower recall could have been the

outcome of hard-masking, but not to this extent (only 0.4% of

BLAST’s best matches are recalled on the second dataset).

PAUDA’s speed is comparatively high, but even if taking the

measure of results per time into account (which is discussed in

PAUDA’s publication), Lambda’s fast profile is always a better

choice.
RAPSearch2 is a sensitive program with good results on both

datasets. It outperforms Lambda slightly in sensitivity on dataset

I, but is in turn outperformed on dataset II. It beats UBlast in

speed, but is �2–4 times slower than Lambda in the respective

modes.
Of UBlast we had to compare an older version because the

newest (UBlast7) did not produce correct results. We evaluated

the free 32 bit version, which allowed us to use it only on dataset

I. It performed well there in terms of sensitivity; however, it came

out as one of the slowest programs.

The evaluation of the specificity is a challenging task, as there

is no ground truth, and hence, a definition of specificity is diffi-

cult. To gain more insight into the composition of the results of

different tools (and their comparability), we included a cluster

analysis conducted with MEGAN (Huson et al., 2007) in the

supplements. It confirms the previous findings, i.e. similar results

between RAPSearch2, UBlast and Lambda.

5 CONCLUSION AND OUTLOOK

We can conclude that Lambda is of comparable overall sensitiv-

ity to state-of-the-art tools. With speed-ups of 86–116� in de-

fault mode and 551–1380� in fast mode (compared with

BLAST), it is significantly faster than the other tools in their

respective modes. The amount of required memory is higher

then that of RAPSearch, but still moderate for modern com-

puters and can easily be adjusted for constrained situations.

In contrast to some of the other programs, Lambda is free and

open-source software, has all of its parameters documented and

requires no external libraries beyond SeqAn. Lambda produces

BLAST-compatible output and can easily replace it in analysis

pipelines.
Altogether, Lambda is a worthwhile alternative to the estab-

lished tools—especially (but not only) when speed is a concern.
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